RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

FEDERICO MENEGAZZO DEREK J. S. ROBINSON

A finiteness condition on automorphism groups

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 267-277

http://www.numdam.org/item?id=RSMUP 1987 78 267 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Finiteness Condition on Automorphism Groups.

FEDERICO MENEGAZZO - DEREK J. S. ROBINSON (*)

1. Introduction.

If G is a group, its automorphism group Aut G acts on G in a natural way as a permutation group. Should this action be restricted by the imposition of a finiteness condition, there will be repercussions on the structure of the group G. The simplest case is where Aut G is required to be finite and there is a considerable literature dealing with the resulting structure of G (see [3]). Recently groups G for which the automorphism classes (i.e. Aut G-orbits) are finite have been studied ([5]). In the present work we study what is in a sense the dual property, that fixed point subgroups of automorphisms have finite index.

An automorphism α of a group G is said to be *virtually trivial* if $|G:C_G(\alpha)|$ is finite. (Automorphisms with this property have also been considered in [7] under the name of « bounded automorphisms ».) The set of all virtually trivial automorphisms of G is readily seen to be a normal subgroup of Aut G, denoted here by $\operatorname{Aut}_{vt}(G)$.

Should it happen that Aut $G = Aut_{vt}(G)$, that is, every automorphism is virtually trivial, we shall say that G is a VTA-group.

(*) Indirizzo degli AA.: F. Menegazzo: Seminario Matematico, Università di Padova, Padova, Italy; D. J. S. Robinson: Department of Mathematics, University of Illinois, Urbana, Illinois, U.S.A.

This research was done while the second author was a visitor at the Istituto di Algebra e Geometria, Università di Padova, with support from the C.N.R. (Italy).

Ricerca effettuata con il contributo del M.P.I.

Obviously every finite group is VTA and every VTA-group is an FC-group. It is not difficult to see that every abelian VTA-group must be finite (by considering the automorphism $x \mapsto x^{-1}$). The simplest example of an infinite VTA-group is

$$G = \langle x, y : y^5 = 1, y^x = y^2 \rangle$$
.

This group has no outer automorphisms and each conjugacy class has at most 5 elements.

2. Finiteness of the commutator subgroup.

The basic result in the theory of VTA-groups is

PROPOSITION 1. If G is a VTA-group, then G' is finite.

PROOF. Suppose to the contrary that G' is infinite. Choose any element x_1 and X_1 a finitely generated normal subgroup containing x_1 , for example $\langle x_1^G \rangle$. Set $C_1 = C_G(X_1)$; then $|G:C_1|$ is finite since G is an FC-group. Hence there is a finitely generated normal subgroup H such that $G = HC_1$. Then $G' = H'[H, C_1]C'_1$. By standard results on FC-groups (see [2]) G' is a torsion group and the elements of finite order in H form a finite subgroup. Consequently C'_1 is infinite and by a well-known theorem of B. H. Neumann [1] there are conjugacy classes of C_1 with arbitrarily large finite orders. Hence one can find an element e of C_1 such that $|C_1:C_{C_1}(e)|$ exceeds $|X_1:C_{X_1}(x_1)|$. Put $x_2 = x_1e$ and observe that $C_{C_1}(x_2) = C_{C_2}(e)$. Therefore

$$|G:C_{G}(x_{2})|\geqslant |C_{1}:C_{C_{1}}(c)|>|X_{1}:C_{X_{1}}(x_{1})|$$
.

Now choose a finitely generated normal subgroup X_2 such that $G = X_2 C_G(x_2)$ and $X_1 \leq X_2$. Then

$$|X_2:C_{X_2}(x_2)|=|G:C_G(x_2)|>|X_1:C_{X_1}(x_1)|.$$

Notice that conjugation by x_1 and x_2 produce the same inner automorphism on X_1 .

By repetition of this procedure one can construct a sequence of elements $x_1, x_2, ...$ and a chain of finitely generated normal subgroups $X_1 < X_2 < ...$ with $x_i \in X_i$ such that conjugation by x_i and x_{i+1} have

the same effect on X_i and

$$|X_{i+1}: C_{X_{i+1}}(x_{i+1})| > |X_i: C_{X_i}(x_i)|$$
 for all $i = 1, 2, ...$

Let $U = \bigcup_{i=1,2,...} X_i$ and let α be the locally inner automorphism of U whose restriction to X_i is the inner automorphism induced by conjugation by x_i . Now it is always true that a locally inner automorphism of a subgroup of an FC-group can be extended to a locally inner automorphism of the group (see [6], Lemma 2.3, but note that the periodicity hypothesis is not essential). It follows that α is a virtually trivial automorphism of U and this yields the contradiction that the $|X_i: C_{X_i}(x_i)|$ are bounded. The proof is now complete.

It is an easy observation that if G is a group with finite derived subgroup, then G/Z(G) has finite exponent. Also a theorem of P. Hall (see [2]) shows that $G/Z_2(G)$ is finite. Hence

COROLLARY 1. If G is a VTA-group, then G/Z(G) is centre-by finite and has finite exponent.

As a result of Proposition 1 one can give an equivalent definition for VTA-groups.

LEMMA 1. A group G is a VTA-group if and only if $[G, \alpha]$ is finite for every automorphism α of G.

PROOF. It is clear that $|G:C_G(\alpha)|$ will be finite if $[G,\alpha]$ is finite. Conversely assume that G is a VTA-group; set C = Z(G). Since $a \mapsto [a,\alpha]$ is an endomorphism of C and $C/C_C(\alpha) \cong [C,\alpha]$, the subgroup $[C,\alpha]$ is finite. By Corollary 1 G/C has finite exponent, say e, and $[G,\alpha]^e \leq [G^e,\alpha]G' \leq [C,\alpha]G'$. Hence $[G,\alpha]^e$ is finite and $[G,\alpha]$ is locally finite. Since $[G,\alpha]$ is certainly finitely generated, it is finite, as required.

REMARK. In general, $\alpha \in \operatorname{Aut} G$ and $|G:C_G(\alpha)| < \alpha$ do not imply that $[G,\alpha]$ is finite. For let $G=\langle x,y|x^2=1,\,y^x=y^{-1}\rangle$ be the infinite dihedral group and let $\alpha \in \operatorname{Aut} G$ be defined by $x\mapsto xy,\,y\mapsto y$.

The following lemma is a sharper form of [7], Theorem 1:

LEMMA 2. Let G be an arbitrary group and let X be a finitely generated subgroup of $\operatorname{Aut}_{vt}(G)$. Then $X/Z(X) \cap \operatorname{Inn} G$ is finite. In particular $\operatorname{Aut}_{vt}(G)$ is locally FC and $\operatorname{Aut}_{vt}(G)/\operatorname{Aut}_{vt}(G) \cap \operatorname{Inn} G$ is locally finite.

PROOF. We know that $|G:C_G(X)|$ is finite. Let N be the core of $C_G(X)$ in G, so that |G:N| is finite. Put $X_1 = C_X(G/N)$. Then X/X_1 is finite and there is an obvious injection

$$\mu: X_1 \to \mathrm{Der}\left(G/N, Z(N)\right)$$
.

Of course X_1 is finitely generated. Now $H^1(G/N, Z(N))$ is a bounded abelian group, being annihilated by |G:N|. Hence X_1/X_2 is finite where X_2 is the inverse image of $\operatorname{Inn}(G/N, Z(N))$ under μ . But X_2 consists of inner automorphisms induced by elements of Z(N), and such automorphisms commute with X. Hence $X_2 \leq Z(X) \cap \operatorname{Inn} G$.

COROLLARY 2. If G is a VTA-group, then Aut G is locally finite.

3. Structure of the centre.

LEMMA 3. If G is a VTA-group, then Z(G) is reduced and its primary components are all finite.

PROOF. Let C = Z(G) and Q = G/C. By Corollary 1 it is possible to express Q as a direct product $Q_1 \times Q_2$ where Q_1 is finite and Q_2 is abelian. By the Universal Coefficients Theorem $H^2(Q, C)$ is bounded, say $l \cdot H^2(Q, C) = 0$ with l > 0.

Suppose that C is not reduced and so $C = D \times E$ where D is either a p^{∞} -group or \mathbb{Q} . Then there is an automorphism of C in which $d \mapsto d^k$ and $e \mapsto e$ $(d \in D, e \in E)$; here k > 1 and $k \equiv 1 \pmod{l}$ or pl according as $D \simeq \mathbb{Q}$ or p^{∞} . Since $l \cdot H^2(Q, C) = 0$ this α extends to an automorphism of C. Hence $|D: C_D(\alpha)| < \alpha$ which is of course impossible.

Next assume that the p-component C_p is infinite for some prime p. Then $C[p] \equiv \{a \in C : a^p = 1\}$ is infinite since C is reduced. By constructing central automorphisms of G corresponding to elements of Hom $(Q_2, C[p])$ one can see that Q_2/Q_2^p must be finite. Since Q_2 has finite exponent, this implies that $(Q_2)_p$ is finite. There is nothing to be lost in supposing Q_2 to be a p'-group. Since C_p/C_p^p is infinite, so is C/C^p . Also G' is finite; thus G/C^p has an infinite elementary abelian quotient. Therefore $C^p[p]$ is necessarily finite, which shows that $(C^p)_p$ is finite. It follows that C_p has finite exponent. Hence it is possible to write $C = C_p \times F$ for some subgroup F.

Since $Q_2 \equiv G_2/F$ is a p'-group, G_2/F splits over C/F and

$$G_2/F = X/F \times C/F$$
,

say. Thus $G_2 = X \times C_p$. Because Q_1 is finite, there is a finitely generated subgroup Y such that $G = YG_2$ and $Y \cap G_2 \leqslant C$. But C_p has finite exponent, so one can write $C_p = C_{p,0} \times C_{p,1}$ where $C_{p,0}$ is finite and $Y \cap G_2 = X \cap C_{p,0}$. Hence

$$G = YG_2 = Y \times FC_{v,0} C_{v,1} = (YXC_{v,0}) C_{v,1}$$
.

If $yxc_0 = c_1$ where $y \in Y$, $x \in X$, $c_i \in C_{p,i}$, then $y \in Y \cap G_2 \leqslant X \times C_{p,0}$. Hence one can assume that y = 1 and $xc_0 = c_1$. But now $x \in X \cap C_p = 1$ and $c_0 = c_1 = 1$. Consequently $G = (Y \times C_{p,0}) \times C_{p,1}$. Since G is a VTA-group and $C_{p,1}$ has finite exponent, $C_{p,1}$ is finite. This gives the contradiction that C_p is finite.

LEMMA 4. If G is a torsion VTA-group, then Z(G) is finite and G has finite exponent.

Proof. By Lemma 3 and Corollary 1, it is sufficient to prove that the set π of prime divisors of orders of elements of G is finite. Let L denote the second centre of G. Then |G:L| is finite and there is a finite normal subgroup N such that G = NL; since G' is finite, one can assume that $G' \leqslant N$. If π_0 is the set of prime divisors of |N|, then $G = N(L_{\pi_0} \times L_{\pi'_0}) = (NL_{\pi_0}) \times L_{\pi'_0}$. Now $(L_{\pi'_0})' \leqslant L_{\pi'_0} \cap G' = 1$, so $L_{\pi'_0}$ is abelian; therefore it is finite by the VTA-property.

However in general the torsion subgroup of the centre of a VTA-group can be infinite, as will be shown in § 5.

4. Necessary and sufficient conditions.

Let Q be a group and C an abelian group regarded as a trivial Q-module. Then there are natural left and right actions of $\operatorname{Aut} Q$ and $\operatorname{Aut} C$ respectively on $H^2(Q,C)$. If $C \rightarrowtail G \twoheadrightarrow Q$ is a central extension with cohomology class Δ , then a necessary and sufficient condition for there to exist an automorphism of G inducing in G and G automorphisms G and G is that G in G if we make G into a right G automorphism of the rule G into G into a right G and G is that G into G into G in G in

then the above condition is equivalent to

$$(\varkappa, \gamma) \in C_{\operatorname{Aut} Q \times \operatorname{Aut} C}(\Delta)$$
.

These observations, the background to which may be found in [4], may be used to give necessary and sufficient conditions for a group to be a VTA-group.

THEOREM 1. Let G be a group with centre C and central quotient group Q. Let Δ be the cohomology class of the extension $C \hookrightarrow G \twoheadrightarrow Q$. Then G is a VTA-group if and only if the following hold:

- (i) G' is finite;
- (ii) each primary component of C is finite;
- (iii) $C_{\operatorname{Aut} Q \times \operatorname{Aut} C}(\Delta)$ is contained in $\operatorname{Aut}_{vt}(Q) \times \operatorname{Aut}_{vt}(C)$.

PROOF. Let G be a VTA-group; then (i) and (ii) hold by Proposition 1 and Lemma 3. If (\varkappa, γ) belongs to $C_{\operatorname{Aut} Q \times \operatorname{Aut} C}(\Delta)$, then \varkappa and γ are induced by an automorphism of G. Hence

$$\varkappa \in \operatorname{Aut}_{vt}(Q)$$
 and $\gamma \in \operatorname{Aut}_{vt}(C)$.

Conversely, assume that the three conditions hold. Let α be an automorphism of G inducing \varkappa in Q and γ in C; then $\varkappa \in \operatorname{Aut}_{vt}(Q)$ and $\gamma \in \operatorname{Aut}_{vt}(C)$ by (iii). Set $K/C = C_Q(\varkappa)$ and $L = C_C(\gamma)$. Then |G:K| and |C:L| are finite. The mapping $x \mapsto [x,\alpha]$ is a homomorphism from K onto $[K,\alpha]$ whose kernel contains L. Now condition (i) implies that G/C has finite exponent, whence so does G/L. Consequently $[K,\alpha]$ has finite exponent. Since $[K,\alpha] \leqslant C$, it follows that $[K,\alpha]$ is contained in T, the torsion subgroup of C. Since T has finite primary components by (ii), the subgroup $[K,\alpha]$ is finite. This shows that $|K:C_K(\alpha)|$ is finite, therefore $|G:C_G(\alpha)|$ is finite and G is a VTA-group, as claimed.

It is of course the third condition which is difficult to deal with. For torsion groups this can be simplified slightly.

THEOREM 2. Let G be a torsion group with centre C and central quotient group Q. Let Δ be the cohomology class of the extension $C \hookrightarrow G \twoheadrightarrow Q$. Then G is a VTA-group if and only if the following con-

ditions hold:

- (i) G' is finite;
- (ii) C is finite;
- (iii) $St_{Aut Q}(\Delta^{Aut C})$, the stabilizer in Aut Q of the Aut C-orbit containing Δ , is contained in $Aut_{vt}(Q)$.

The point to note here is that \varkappa in Aut Q is induced by an automorphism of G if and only if there exists a γ in Aut C such that $\varkappa \Delta = \Delta \gamma$, that is, \varkappa stabilizes $\Delta^{\operatorname{Aut} C}$. Theorem 2 is now a consequence of Theorem 1 and Lemma 4. (An example of an infinite torsion VTA-group is given in § 5.)

Finitely generated VTA-group admit a precise characterization.

THEOREM 3. A finitely generated group G is a VTA-group if and only if it is either finite or the split extension of a finite group F by an infinite cyclic group $\langle x \rangle$ such that \hat{x} , the image of x in Out F, is not conjugate to its inverse.

PROOF. Let G be a finitely generated infinite VTA-group, and write C = Z(G) and Q = G/C. By Corollary 1 the group Q is finite, so C is finitely generated. Suppose that C had a free abelian direct factor of rank 2, say $\langle a \rangle \times \langle b \rangle$. If |Q| = m, then it is easy to see that $a \mapsto ab^m$, $b \mapsto b$ extends to an automorphism of G; but this cannot be virtually trivial. Consequently C has torsion-free rank 1. Since G' is finite, the elements of finite order form a finite subgroup F and G/F is infinitely cyclic. Write $G = \langle x \rangle F$ with $\langle x \rangle \cap F = 1$. If $\alpha \in \operatorname{Aut} G$ induces the inversion automorphism in G/F, then $C_G(\alpha) \leqslant F$ and $|G:C_G(\alpha)|$ is infinite. Therefore every automorphism of G acts trivially on G/F.

Conversely let $G = \langle x \rangle \ltimes F$ have the property that all automorphisms of G act trivially on G/F. Let $\alpha \in \operatorname{Aut} G$. Now G/C is finite where C = Z(G), and $C = D \times E$ where D is finite of order d, say, and E is infinite cyclic. Hence there is an m > 0 such that $x^m \in C^d = E^d$. Now C^d is characteristic in G and infinite cyclic, so $\langle x^m \rangle$ is α -invariant. Since α clearly cannot map x^m to its inverse, it follows that $x^m \in C_G(\alpha)$ and $|G:C_G(\alpha)|$ is finite. Thus G is a VTA-group.

It remains to decide when the inversion automorphism of Q lifts to G. A simple argument shows that this occurs if and only if \hat{x} is conjugated to its inverse in Out F by some $\varphi \in \operatorname{Aut} F$.

REMARK. In order to construct all finitely generated VTA-groups one must select a finite group F with the property that not every element of Out F is conjugate to its inverse (or, equivalently, such that some irreducible C-character of F is not real). If $\hat{\varphi}$ is such an element, lift $\hat{\varphi}$ in any way to an automorphism φ of F and form the semidirect product $\langle x \rangle \ltimes F$ of F with an infinite cyclic group $\langle x \rangle$ where x induces φ in F. The smallest possible F is the cyclic group of order 5; this gives rise to the VTA-group mentioned in § 1.

Hence the isomorphism classes of finitely generated VTA-groups are in one-one correspondence with pairs $(F, \hat{\varphi})$ where F is a finite group as above and $\hat{\varphi}$ is a conjugacy class of Out F not equal to its inverse.

5. Examples.

We shall now construct the examples of infinite VTA-group promised in earlier sections.

(A) There is an infinite VTA-group which is a p-group with nilpotency class 2.

For p=2 the group constructed in [5], Prop. 3 will do. Let p>2 and let G be the group with generators $a, b, x_1, x_2, ...$ and relations

$$egin{aligned} &[x_{2i-1},x_{2i}]=a\,,\quad [x_{2i},x_{2i+1}]=b\,,\quad [x_i,x_i]=1\quad ext{ if } i\!<\!j-1\,,\ &[a,x_i]=1=[b,x_i]=[a,b]=a^p=b^p\,,\ &x_1^p=ab\,,\quad x_2^p=a\,,\quad x_i^p=1\quad ext{ if } i\!>\!2\,. \end{aligned}$$

One quickly sees that $G' = Z(G) = \langle a \rangle \times \langle b \rangle$ and $Q \equiv G/Z(G)$ is an infinite elementary abelian p-group. For i = 1, 2, ... put $M_i = \langle x_i \rangle G'$ and $C_i = \langle x_{i+2}, x_{i+3}, ... \rangle G'$. It is easily seen that M_1 is the set of all $y \in G$ such that $|G:C_G(y)| = p$. Thus M_1 is characteristic in G, as is $C_1 = \Omega_1(C_G(M_1))$. The elements y of G for which $|M_1:C_{M_1}(y)| = p = |C_1:C_{C_1}(y)|$ are those of the form $x_1^r x_2^s z$ where $s \neq 0 \pmod{p}$ and $z \in G'$. From this it follows that: $\langle x_1, x_2 \rangle G'$ is characteristic in G. Among these y those that generate a cyclic normal subgroup of $\langle x_1, x_2 \rangle G'$ are of the form $x_2^s z$; hence M_2 is characteristic in G.

Now suppose that M_1, \ldots, M_i are characteristic in G (where $i \geqslant 2$); then also $C_{i-1} = \Omega_1(C_G(M_1 \ldots M_{i-1}))$ is characteristic. A little calculation shows that the elements y of C_{i-1} such that $|[y, C_{i-1}]| = p$ are those of the form $x_{i+1}^r z$ $(r \not\equiv 0 \pmod p), z \in G'$). It follows that M_{i+1} is characteristic in G.

Next let $\alpha \in \operatorname{Aut} G$. We have just shown that $x_i^{\alpha} \equiv x_i^{n_i} \pmod{G'}$ for all i and some integers n_i . Our relations imply $n_1 \equiv n_2 \equiv n_{2i-1} \cdot n_{2i} \equiv n_{2i}n_{2i+1}$, (i=1,2,...), i.e. $n_i \equiv 1 \pmod{p}$ for all j. Thus every automorphism of G acts trivially on Z(G) and on Q. Hence $|G:C_G(\alpha)| \leqslant p^2$ for every automorphism α . Notice also that $\operatorname{Aut} G \cong \operatorname{Hom} (Q, Z(G))$, an elementary abelian p-group of cardinality 2^{\aleph_0} .

(B) There exists a VTA-group with finite torsion-free rank whose centre has infinite torsion subgroup.

The construction falls into two parts; first we assign the central quotient, then we construct the centre.

Let Q be a finite group satisfying the conditions

- (i) $Q_{ab} \equiv Q/Q'$ is not an elementary abelian 2-group;
- (ii) no automorphism of Q induces an automorphism of order 2 in Q_{ab} ;
- (iii) Z(Q) = 1.

Of course such groups abound; the simplest example is the holomorph of a cyclic group of order 5. Let σ be the set of all primes which do not divide the order of Q.

The centre of our group has to be chosen with some care. Let $\langle t_p \rangle$ be a cyclic group of order p, written additively, and define

$$T = \mathop{
m Dr}_{p \in \sigma} \left\langle t_p
ight
angle \quad {
m and} \quad T^* = \mathop{
m Cr}_{p \in \sigma} \left\langle t_p
ight
angle \, ,$$

the direct and cartesian sums. We shall construct a group ${\cal C}$ such that

- (i)' $T \leqslant C \leqslant T^*$;
- (ii)' $\vec{C} = C/T$ has automorphism group of order 2;
- (iii)' Aut $C = \operatorname{Aut}_{vt}(C) \times \langle -1 \rangle$.

Here of course (-1) refers to the automorphism $c \mapsto -c$ of C.

Assuming this C to be constructed, one regards it as a trivial Q-module. Then by the Universal Coefficients Theorem

$$H^2(Q, C) \cong \operatorname{Ext}(Q_{ab}, \overline{C})$$
.

This group has an element Δ with order > 2 by properties (i) and (ii)'. Let

$$C \Rightarrow G \Rightarrow Q$$

be a central extension with cohomology class Δ . Then Z(G)=C since Z(Q)=1. Let α in Aut G induce automorphisms \varkappa and γ in Q and C respectively; then $\varkappa\Delta=\Delta\gamma$. If $\gamma\notin \operatorname{Aut}_{vt}(C)$, then by (iii)' γ must induce -1 on \overline{C} ; in this case $\varkappa\Delta=-\Delta$ by the above (natural) isomorphism. But \varkappa cannot induce an automorphism of even order in Q_{ab} , so we reach a contradiction. It follows that $\gamma\in\operatorname{Aut}_{vt}(C)$ and $\alpha\in\operatorname{Aut}_{vt}(G)$ since Q is finite.

Construction of C. It remains to find an abelian group C satisfying (i)', (ii)', (iii)'. First we specify \overline{C} . Let

$$\sigma = \pi \cup \rho$$

be a partition of σ into two infinite sets of primes. Define $x^*, y^* \in T^*$ by

$$(x^*)_p = t_p \,, \quad (y^*)_p = 0 \quad \text{ if } \ p \in \pi$$
 $(x^*)_p = 0 \,, \quad (y^*)_p = t_p \quad \text{ if } \ p \in \varrho \,.$

Also let q be a prime not in σ . Define A_1 , A_2 , A_3 to be the subrings of \mathbb{Q} generated by π^{-1} , ϱ^{-1} , q^{-1} respectively.

Now $u=x^*+T$, $v=y^*+T$ are independent vectors in the Q-vector space $\overline{T}=T^*/T$, and we may define our group C by requiring $T \le C \le T^*$ and

$$\overline{C} \equiv C/T = A_1 u + A_2 v + A_3 (u+v)$$
.

It is straightforward to check that \overline{C} has automorphism group of order 2. It remains to check property (iii)'. Let $\gamma \in \operatorname{Aut} C$; replacing γ by $-\gamma$ if necessary, we can assume that γ acts trivially on \overline{C} . The task is now to show that $\gamma \in \operatorname{Aut}_{vt}(C)$. Let $p \in \pi$. There is a unique

coset $b_p + T \in \overline{C}$ such that $x^* - pb_p \in T$; notice that, since pb_p obviously has trivial p-component, the p-component of $x^* - pb_p$ is t_p , and we may as well assume that $x^* - pb_p = t_p$. Now $b_p(\gamma - 1) = a_p$ (say) is in T, and one obtains

$$t_p(\gamma - 1) = x^*(\gamma - 1) - pa_p$$
.

Looking at p-components one gets

$$t_n(\gamma-1) \in \langle x^*(\gamma-1) \rangle$$
 for all $p \in \pi$.

This means that γ fixes almost all t_p with p in π ; a similar conclusion holds for ϱ . Modifying γ by a virtually trivial automorphism of C, one can assume that γ operates trivially on T. However it is easily checked that Hom (\overline{C}, T) is periodic, and this implies that $C(\gamma - 1)$ is finite and $|C: C_c(\gamma)|$ is finite. Therefore $\gamma \in \operatorname{Aut}_{vt}(C)$.

REFERENCES

- [1] B. H. NEUMANN, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), pp. 236-248.
- [2] D. J. S. Robinson, Finiteness conditions and generalized suloble groups, Springer, Berlin (1972).
- [3] D. J. S. Robinson, A contribution to the theory of groups with finitely many automorphisms, Proc. London Math. Soc. (3), 35 (1977), pp. 35-54.
- [4] D. J. S. Robinson, Applications of cohomology to the theory of groups, in Groups - St. Andrews 1981, London Math. Soc. Lecture notes 71 (1982), pp. 46-80.
- [5] D. J. S. ROBINSON J. WIEGOLD, Groups with boundedly finite automorphism classes, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 273-286.
- [6] S. E. Stonehewer, Locally soluble FC-groups, Arch. Math., 16 (1965), pp. 158-177.
- [7] A. E. ZALESSKIĬ, Groups of bounded automorphisms of groups, Dokl. Akad. Nauk BSSR, 19 (1975), pp. 681-684.

Manoscritto pervenuto in redazione il 24 febbraio 1987.