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A Finiteness Condition on Automorphism Groups.

FEDERICO MENEGAZZO - DEREK J. S. ROBINSON (*)

1. Introduction.

If G is a group, its automorphism group Aut G acts on G in a natural
way as a permutation group. Should this action be restricted by the
imposition of a finiteness condition, there will be repercussions on the
structure of the group G. The simplest case is where Aut G is required
to be finite and there is a considerable literature dealing with the
resulting structure of G (see [3]). Recently groups G for which the
automorphism classes ( i.e. Aut G-orbits) are finite have been stu-

died ([5]). In the present work we study what is in a sense the dual
property, that fixed point subgroups of automorphisms have finite
index.

An automorphism a of a group G is said to be virtually trivial if
I is finite. (Automorphisms with this property have also

been considered in [7] under the name of abounded automorphisms ».)
The set of all virtually trivial automorphisms of G is readily seen to
be a normal subgroup of Aut G, denoted here by Autvt (G).

Should it happen that Aut G = Autvt (G), that is, every auto-

morphism is virtually trivial, we shall say that G is a ~V’TA.-group.
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This research was done while the second author was a visitor at the

Istituto di Algebra e Geometria, Università di Padova, with support from the
C.N.R. (Italy).
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Obviously every finite group is VTA and every VTA-group is an
.F’C-group. It is not difficult to see that every abelian VTA-group
must be finite (by considering the automorphism x - x-1). The sim-
plest example of an infinite VTA-group is

This group has no outer automorphisms and each conjugacy class
has at most 5 elements.

2. Fin,iteness of the com~mutator subgroup.

The basic result in the theory of VTA-groups is

PROPOSITION 1. 1 f G is a TTTA-group, then G’ is finite.

PROOF. Suppose to the contrary that G’ is infinite. Choose any
element x, and X1 a finitely generated normal subgroup containing Xl’ y
for example ~x~~. Set Ci = then I G: I is finite since G is

an FC-group. Hence there is a finitely generated normal subgroup H
such that G = HCI. Then G’= H’[H, By standard results
on FC-groups (see [2]) G’ is a torsion group and the elements of finite
order in .g form a finite subgroup. Consequently C’ is infinite and by
a well-known theorem of B. H. Neumann [1] there are conjugacy
classes of 01 with arbitrarily large finite orders. Hence one can find
an element c of 01 such that I exceeds Put

x2 = xlc and observe that = Therefore

Now choose a finitely generated normal subgroup ~Y2 such that

G = X2Ca(X2) and X1 ~ X2 . Then

Notice that conjugation by x, and X2 produce the same inner auto-
morphism on X1.

By repetition of this procedure one can construct a sequence of
elements xl , x2 , ... and a chain of finitely generated normal subgroups
X1  .X2  ... with xi E X such that conjugation by xi and xi+1 have
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the same effect on Xi and

Let U = lJ X Z and let a be the locally inner automorphism of U
i=1,2,...

whose restriction to Xi is the inner automorphism induced by con-
jugation by Now it is always true that a locally inner automor-
phism of a subgroup of an FC-group can be extended to a locally
inner automorphism of the group (see [6], Lemma 2.3, but note that
the periodicity hypothesis is not essential). It follows that a is a vir-

tually trivial automorphism of U and this yields the contradiction
that the I are bounded. The proof is now complete.

It is an easy observation that if G is a group with finite derived

subgroup, then GfZ(G) has finite exponent. Also a theorem of P.

Hall (see [2]) shows that is finite. Hence

COROLLARY 1. I f G is a VTA-group, then G/Z(G) is centre-by
finite and has finite exponent.

As a result of Proposition 1 one can give an equivalent definition
for VTA-groups.

LEMMA 1. A group G is a VTA-group if and only if [G, a] is

f inite for every automorphism a o f G.

PROOF. It is clear that I will be finite if [G, a] is finite.

Conversely assume that G is a VTA-group; set C = Z(G). Since
a H [a, oc] is an endomorphism of C and C/Cc(x) gz [C, cx], the sub-
group [C, a] is finite. By Corollary 1 GIC has finite exponent, say e,
and [G, ce]6  [Gs, a] G’ c [C, oc] G’. Hence [G, a]e is finite and [G, ex] is

locally finite. Since [G, oc] is certainly finitely generated, y it is finite, y
as required.

REMARK. In general, a E Aut G and do not imply
that [G, oc] is finite. For let G = 1, yx = be the infinite
dihedral group and let oc E Aut G be defined by 0153 ~ y.

The following lemma is a sharper form of [7], Theorem 1:

LEMMA 2. Let G be an arbitrary group and let X be a finitely gen-
erated subgroup o f Autvt (G). Then X/Z(X ) r1 Inn G is f inite. In par-
ticular Autvt (G) is locally FC and Autvt (G)/Autvt (G) r1 Inn G is locally
finite.
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PROOF. We know that I is finite. Let N be the core

of Cg(X) in G, so that is finite. Put Xl = Gx(G/N). Then X/Xl
is finite and there is an obvious injection

Of course Xl is finitely generated. Now Z(N)) is a bounded
abelian group, y being annihilated by IG:NI. Hence XI/X2 is finite

where X2 is the inverse image of Inn (G/N, Z(N)) under fl. But X2
consists of inner automorphisms induced by elements of Z(N), and
such automorphisms commute with X. Hence .X2  Inn G.

COROLLARY 2. If G is a VTA-group, then Aut G is locally f inite.

3. Structure of the centre.

LEMMA 3. 1 f G is a VTA-group, then Z(G) is reduced and its

primacry components are all f inite.

PROOF. Let C = Z(G) and Q = By Corollary 1 it is possible
to express Q as a direct product Q1 X Q2 where Q1 is finite and Q2 is
abelian. By the Universal Coefficients Theorem H2(Q, C) is bounded,
say 1.H2(Q, C) = 0 with 1 &#x3E; 0.

Suppose that C is not reduced and so C = D X .E where D is either
a p°°-group or Q. Then there is an automorphism of C in which d H dk
and e H e (d E D, e E E) ; here k &#x3E; 1 (mod 1 or pl) according
as or p°°. Since Z ~.g2(Q, C) = 0 this a extends to an auto-

morphism of G. Hence C a which is of course impossible.
Next assume that the p-component Op is infinite for some prime p.

Then (7:~=1} is infinite since C is reduced. By con-
structing central automorphisms of G corresponding to elements of
Hom (Q2, 7 C[p]) one can see that Q2/Q: must be finite. Since Q2 has
finite exponent, this implies that (Q2)P is finite. There is nothing to
be lost in supposing Q2 to be a p’-group. Since is infinite, so
is CICP. Also G’ is finite; thus has an infinite elementary abelian
quotient. Therefore CP[p] is necessarily finite, which shows that 
is finite. It follows that Cp has finite exponent. Hence it is possible
to write C = C~ X .F’ for some subgroup I".
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Since Q2 = G21F is a p’-group, splits over and

say. Thus G2 = Because Q1 is finite, there is a finitely gen-
erated subgroup Y such that G = YG2 and Y r1 G2 c C. But C~ has
finite exponent, so one can write C~ = X where Cp,o is finite
and Y n G2 = X n C,o . Hence

If yxco = cl where y E Y, x E X, ei E then y E Y r1 C~,o .
Hence one can assume that y = 1 and xco = c1. But now x r1

n C~ = 1 and co = C1 = 1. Consequently G = Since
G is a VTA-group and Op,1 has finite exponent, is finite. This

gives the contradiction that C, is finite.

LEMMA 4. If G is a torsion VTA-group, then Z(G) is f inite and G
has f inite exponent.

PROOF. By Lemma 3 and Corollary 1, it is sufficient to prove
that the set n of prime divisors of orders of elements of G is finite.
Let L denote the second centre of G. Then is finite and there
is a finite normal subgroup N such that G = NL; since G’ is finite,
one can assume that If no is the set of prime divisors of 
then G = N(Lno = (NLn) Now n G’=1, so

is abelian; therefore it is finite by the VTA-property.

However in general the torsion subgroup of the centre of a VTA-
group can be infinite, as will be shown in § 5.

4. Necessary and sufficient conditions.

Let Q be a group and C an abelian group regarded as a trivial
Q-module. Then there are natural left and right actions of Aut Q
and Aut C respectively on H2(Q, C). If 0» G -~ Q is a central ex-
tension with cohomology class L1, then a necessary and sufhcient con-
dition for there to exist an automorphism of G inducing in Q and C
automorphisms x and y is that x4 = L1y. If we make C) into
a right Aut Q X Aut C-module by means of the rule d (x, y) = 
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then the above condition is equivalent to

These observations, the background to which may be found in [4],
may be used to give necessary and sufficient conditions for a group
to be a VTA-group.

THEOREM 1. Let G be a group with centre C and central quotient
group Q. Let d be the cohomology class of the extension 0 4- G --~ Q.
Then G is a VTA-group if and only if the following hold:

( i ) G’ is finite;

(ii) each primary component of C is f inite;

(iii) OAutQXAutO(L1) is contained in Autvt (Q) X Autvt ( C).

PROOF. Let G be a V’TA-group ; then ( i ) and ( ii ) hold by Propo-
sition 1 and Lemma 3. If (x, y) belongs to then x

and y are induced by an automorphism of G. Hence

Conversely, assume that the three conditions hold. Let a be an

automorphism of G inducing x in Q and y in C; then x E Autvt (Q)
and y E Autvt (C) by (iii). Set KIC = CQ(x) and L = Go(y). Then

and are finite. The mapping x H [x, a] is a homomorphism
from g onto [g, a] whose kernel contains L. Now condition (i) implies
that G/C has finite exponent, whence so does Consequently
[.K, a] has finite exponent. Since [K, a] ~ C, it follows that [.g, a]
is contained in T, the torsion subgroup of C. Since T has finite primary
components by (ii), the subgroup [g, a] is finite. This shows that

I is finite, therefore (G : is finite and G is a VTA-group,
as claimed.

It is of course the third condition which is difficult to deal with.
For torsion groups this can be simplified slightly.

THEOREM 2. Let G be a torsion group with centre C and central

quotient group Q. Let d be the cohomology class of the extension

Q. Then G is a VTA-group if and the following con-
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ditions hold:

( i ) G’ is f inite ;

(ii) C is finite;

(iii) C) ~ the stabilizer in Aut Q o f the Aut 0-orbit con-
taining L1, is contained in Autvt (Q).

The point to note here is that x in Aut Q is induced by an auto-
morphism of G if and only if there exists a y in Aut C such that
xd = L1y, that is, x stabilizes L1Aut c. Theorem 2 is now a consequence
of Theorem 1 and Lemma 4. (An example of an infinite torsion VTA-
group is given in § 5.)

Finitely generated VTA-group admit a precise characterization.

THEOREM 3. A finitely generated group G is a VTA-group if and
only i f it is either finite or the split extension of a f inite group F by
an infinite cyclic group ~x~ such that x, the image o f x in Out .F, is
not conjugate to its inverse.

PROOF. Let G be a finitely generated infinite VTA-group, and
write C = Z(G) and Q = GIC. By Corollary 1 the group Q is finite,
so C is finitely generated. Suppose that C had a free abelian direct
factor of rank 2, say a~ X ~. If == m, then it is easy to see that

b H b extends to an automorphism of G; but this cannot
be virtually trivial. Consequently C has torsion-free rank 1. Since G’
is finite, the elements of finite order form a finite subgroup .~ and
G/.F is infinitely cyclic. Write G = with ~x~ rl F = 1. If

a E Aut G induces the inversion automorphism in GjF, then C,,(oc) F
and I is infinite. Therefore every automorphism of G acts
trivially on 

Conversely let G = x~ IX .h’ have the property that all auto-

morphisms of Gx act trivially on G/.I’. Let a E Aut G. Now G/C is
finite where C = Z(G), and C = D x E where D is finite of order d,
say, and E is infinite cyclic. Hence there is an m &#x3E; 0 such that xm E

E Cd = Ed. Now ed is characteristic in G and infinite cyclic, so xm~
is a-invariant. Since a clearly cannot map xm to its inverse, it follows
that xm E and is finite. Thus G is a VTA-group.

It remains to decide when the inversion automorphism of Q lifts
to G. A simple argument shows that this occurs if and only if x is
conjugated to its inverse in Out .F’ by some E Aut .F’.
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REMARK. In order to construct all finitely generated VTA-groups
one must select a finite group .I’ with the property that not every
element of Out F is conjugate to its inverse (or, equivalently, such
that some irreducible C-character of .I’ is not real). If ’ is such an
element, lift 0 in any way to an automorphism of F and form the
semidirect product F of .F with an infinite cyclic group x~
where x induces 99 in .F’. The smallest possible .F’ is the cyclic group
of order 5; this gives rise to the VTA-group mentioned in § 1.

Hence the isomorphism classes of finitely generated VTA-groups
are in one-one correspondence with pairs (.h, where .F’ is a finite

group as above and ’ is a conjugacy class of Out .F not equal to its
inverse.

5. Examples.

We shall now construct the examples of infinite VTA-group prom-
ised in earlier sections.

(A) There is an in f inite VTA-group which is a p-group with

nilpotency ctass 2.

For p = 2 the group constructed in [5], Prop. 3 will do. Let p &#x3E; 2

and let (~ be the group with generators a, b, x1, x2 , ... and relations

One quickly sees that G’ = Z(G) _ (a) X (b) and Q = GIZ(G) is an
infinite elementary abelian p-group. For i = 1, 2, ... put Mi = 
and Ci = ~xE+2, xZ+3,...~ G’. It is easily seen that is the set of all

such that = p. Thus M1 is characteristic in G, as is
Ci = The elements y of G for which ~11: C~1 (y ) ~ = p =

I are those of the form where (mod p ) and
From this it follows that: x1, X2) G’ is characteristic in G.

Among these y those that generate a cyclic normal subgroup of

(Xl’ x2~ G’ are of the form x* z ; hence .1~2 is characteristic in G.
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Now suppose that ifi, ... , are characteristic in G (where i ~ 2 ) ;
then also Oi-l = ... Mi_,)) is characteristic. A little calcu-
lation shows that the elements y of Ci-~ such that Oi-1] = p are
those of the form (r fl 0 (mod p ) , G’ ) . It follows that 
is characteristic in G.

Next let a E Aut G. We have just shown that x" = xi a (mod G’)
for all i and some integers Our relations imply n1- n? = *

~n2i - (i == 1,2, ...), Le. 1 (mod p) for all j. Thus every

automorphism of G acts trivially on Z(G) and on Q. Hence 
for every automorphism a. Notice also that Aut Hom (Q, Z(G)),
an elementary abelian p-group of cardinality 2No.

(B) There exists a VTA-group with finite torsion- f ree rank whose
centre has infinite torsion subgroup.

The construction falls into two parts; first we assign the central
quotient, then we construct the centre.

Let Q be a finite group satisfying the conditions

(i) Qab = QIQ’ is not an elementary abelian 2-group;

(ii) no automorphism of Q induces an automorphism of order
2 in Qab ;

Of course such groups abound; the simplest example is the holo-
morph of a cyclic group of order 5. Let o be the set of all primes which
do not divide the order of Q.

The centre of our group has to be chosen with some care. Let

be a cyclic group of order p, written additively, and define

the direct and cartesian sums. We shall construct a group C such
that

(ii)’ C = CIT has automorphism group of order 2;

(iii)’ Aut C = Aut,,(C) X -1~.

Here of course -1 &#x3E;&#x3E; refers to the automorphism c ~ - c of C.
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Assuming this C to be constructed, one regards it as a trivial

Q-module. Then by the Universal Coefficients Theorem

This group has an element d with order &#x3E; 2 by properties (i) and (ii)’.
Let

be a central extension with cohomology class L1. Then Z(G) = C
since Z(Q) = 1. Let a in Aut G induce automorphisms x and y in Q
and C respectively; then "L1 == L1y. If y 0 Autvt (C), then by (iii)’
y must induee - 1 on C; in this case x4 = - L1 by the above (natural)
isomorphism. But x cannot induce an automorphism of even order
in 7 so we reach a contradiction. It follows that y E Autvt ( C) and
a E Autvt (G) since Q is finite.

Construction o f 0. It remains to find an abelian group C satisfying
(i)’, (ii)’, (iii)’. First we specify C. Let

be a partition of or into two infinite sets of primes. Define x*, y* E T* by

Also let q be a prime not in cr. Define A2, As to be the subrings
of Q generated by a-’, q-1 respectively.

Now u = x*_ + T, v = y* + T are independent vectors in the

Q-vector space T = T*IT, and we may define our group C by requiring
and

It is straightforward to check that C has automorphism group
of order 2. It remains to check property (iii)’. Let replacing
y by - y if necessary, we can assume that y acts trivially on C. The
task is now to show that y E Aut,, (C). There is a unique



277

coset T E C such that notice that, since pb~ ob-
viously has trivial p-component, the p-component of is t,,
and we may as well assume that x* - pbp = tp . Now 1) = a~
(say) is in T, and one obtains

Looking at p-components one gets

This means that y fixes almost all tp with p in n ; a similar conclusion
holds for e. Modifying y by a virtually trivial automorphism of C,
one can assume that y operates trivially on T. However it is easily
checked that Hom (C, T) is periodic, and this implies that C(y - 1)
is finite and 10: Cc(y) I is finite. Therefore y E Aut,, (C).
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