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Hopf Bifurcation from Infinity.

MARCO SABATINI (*)

0. Introduction.

The aim of this paper is to give sufficient conditions for bifur-
cation from infinity of periodic solutions of second order autonomous
O.D.E.’s.

Let us consider the parametrized equation

where the map -* .F’u(x, x’ ) is continuous.
The generalized Li6nard and Rayleigh equations

are special cases of (E~), that will be considered in detail in sections 3, 4.
The main result is the following.

THEOREM A. Let ns suppose that (Eu) de f ines a continuous f amily
o f dynamical systems np(t, x) such that:

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata, Uni-
versity dell’Aquila, Via Roma, 67100 L’Aquila.

This work was performed under the auspices of the Italian Council of

Researches (C.N.R.), and partially supported by the International School for
Advanced Studies (I.S.A.S.) in Trieste.
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(i) a(t, x) : = no(- t, x) is ultimately bounded;

(ii) n,(t, x) is ultimately bounded for ft &#x3E; 0;

(iii) there are no equilibrium points of (Ell) out of a f ixed ball.

Then there exists a family of asymptotically stable compact annuli,
with closed orbits as boundaries, bi f urcating f rom infinity.

We remark that the notion of ultimate boun,dedness for is equi-
valent to that of uniform ultimate boundedness for the solutions of

(Ell)’ that was studied by several authors (see [3], [4], [5], [7], [12]).
Moreover, condition (i) is verified by the flow defined by (E,~) if and
only if the solutions of

are uniformly ultimately bounded (u.u.b. ). Hence, if the solutions of
(- Eo) and (Eu), for It positive, are u.u.b., then there are periodic
solutions of (E,~) bifurcating from infinity.

Theorem A is obtained as a corollary of a more general one, con-
cerning abstract dynamical systems in locally compact metric spaces.

THEOREM B. Let be a one-parameter continuous family of dyna-
mical systems on X, a locally compact metric space. Assume that:

(i) a(t, x) = x) is ultimately bounded;

(ii) x) is ultimately bounded for it &#x3E; 0.

Then a family of asymptotically stable, invariant, compact sets bi-

furcates f rom in f inity.

The central idea of the proof is to extend the flows 7lp, to the Ålex-
androv compactification 0l := X U of X by setting, for any p

Auslander and Seibert showed in [1] that stability properties of
(m) with respect to A are strictly related to global boundedness prop-
erties of n. Then, to prove Theorem B it is sufficient to apply a re-
sult by Marchetti-Negrini-Salvadori-Scalia, [11].
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Part of the results contained in this work could be reached by a
suitable use of the stereographic projection. Alexandrov’ compactifica-
tion has been chosen for it allows to study also dynamical systems
on unbounded submanifolds of R", where a stereographic projection
is not defined in a natural way.

A result similar to theorem A has been obtained by Lins-De Melo-
Pugh (see [9]) for the equation:

They studied it on Poincaré’s sphere and proved that a closed
orbit goes to infinity when (c/a) diverges negatively.

Oliva, too, used Poincaré’s sphere to study delay-differential equa-
tions at infinity, with special regard to Hopf bifurcation (see [8], and
its references). A shortcoming of Hopf bifurcation around a point
at infinity on Poincaré’s sphere is that closed orbits do not correspond
to periodic solutions of the original system.

Recently L. Malaguti [10] proved a theorem of bifurcation of

cycles from infinity for the equation

This paper is divided in four sections. In the first one the fun-

damental definitions and theorems about bifurcation in dynamical
systems are given. In section 2 the relation between boundedness

properties and stability at infinity is described and Theorems A and B
are proved. In the remaining sections, the previous results are applied
to the study of generalized Liénard and Rayleigh equations.

1. Preliminaries.

For basic definitions and notations we refer to [2]. If 

we denote by the region of attraction of M with respect to the
dynamical system Furthermore, the negative dynamical system
~(- t, x) will be called a(t, x).

As already observed in the introduction, the appearance of bi-
furcation in dynamical systems is often related to a sudden change of
the stability properties of suitable sets. In [11] the following definition
has been given:
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DEFINITION 1.1. Let C be the set o f all proper non empty compact
subsets of X. Let us consider a map K: [0, ,u # ) - C’, K,, such that:

then f-l = 0 is said to be a bifurcation point for the map K i f there ex-
ists E (0, and a second map M: (0, ,u*) -~ C, M, satis f ying
the conditions:

( 1 ) ’if fl E ( o, It*), M, is n,-invariant and g,~ r1 _ ~ ;

( 2 ) max Eo): x E M,~~ --~ 0 as p - 0 .

In the same paper, the following basic theorem has been proved:

THEOREM 1.2. Let X be connected and R03BC be ac continuous family
o f flows on X. Let f-l &#x3E; 0 and K: [0, It#) --~ C be ac map as in Del. 1.1.
If Eo is R0-asymptotically stable and is n,-completely unstable (i.e.
negatively asymptotically stable) for f-l E (0, p#), then p = 0 is a bifur-
cation point for K. Furthermore, the map M and It* can be chosen so
that V03BC E (0, 03BC*), M, is R03BC-asymptotically stable.

REMARK 1.3. The proof shows that the set M, can be identified
as the largest n,-invariant compact set disjoint from .go, contained
in a suitable neighbourhood of Ko independent of p, for It small.

When X = R2 , theorem 1.2 can be used to prove the existence
of periodic solutions of ordinary differential systems.

Let

be a family of ordinary differential systems defining a continuous
family of dynamical systems on R2 , and let us assume that, for small
ft’s, the origin is the unique critical point of our system contained
in a fixed ball. Then:

THEOREM 1.4. Let the origin be no-asymptotically stable and n,-
completely unstable, E (0,,a#). Then ft = 0 is a bifurcation point;

and M can be determined so that, ’Bj ft E (0, 

( i ) M, is R03BC-asymptotically stable;
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(ii) M, is the compact annular region enclosed between two cycles
C~ , C~ of n,; the inner one C, equal to 

For the proofs of theorems 1.2 and 1.4 see [11].

2. Alexandrov’ compactification and bifurcation from infinity.

In this section we denote .X U (o) the Alexandrov’ com-
pactification of a topological space X (see [6] for details). As already
remarked in [1], a flow R defined on X can be extended in a unique
way to a iljw yr on X: since X is invariant with respect to n, its com-
plement has to be invariant, hence a fixed point. Let us define
a new flow:

Group axioms are trivially verified by A, and its continuity comes
from a standard compactness argument.

From our viewpoint, the relevant feature of A consists of the strict
relation existing between the stability properties of w with respect
to R and the boundedness properties of n. In particular:

THEOREM 2.1. (Auslander-Seibert, [1]). n is ultimately bounded if
and only if is negatively asymptotically stable with respect to ~.

Now we are ready to state the main result of this section. 
be a connected, locally compact, non compact metric space.

TEOREM 2.2 (B). Let n,,,(t, x) be a continuous family 0f flows on X s.t.

(1 ) no(t, x) is negatively ultimately bounded;

(2) if fl &#x3E; 0, x) is ultimately bounded.

Then 3 fl* E [o, ,u#) such that V fl E (0, It*):

( i ) 3 M, compact, R03BC-invariant and asymptotically stable;

(ii) M,~ is the largest invariant set contained in the complement
o f a f ixed compact;

(iii) 1V1,~ -~ cv in the Hausdorff metric of X as ,u -~ 0.
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PROOF. It is easy to prove, by the usual compactness argument,
that if n, is a continuous family of flows on .~, then ji, has the same
property.

Since X is separable, X is metrizable, so it makes sense speaking
of bifurcation. The hypotheses and theorem 2.1 imply that (cv) is

no-asymptotically stable and R03BC-completely unstable, for p &#x3E; 0. By
theorem 2.1, ~C = 0 is a bifurcation point. So there exists ¡t* E (0, p’)
and a map M, , defin,ed on (0, p*) , such that is not empty,
compact in X, R-invariant and disjoint from {to); moreover:

By remark 1.3, .Mu may be chosen as the largest asymptotically stable
np-invariant set contained in a neighborhood of v), such that Mp.
This means that Mp may be chosen as the largest asymptotically
stable R03BC-invariant set contained in the complement of a compact of X.
Since X/,, y by a well known property of Alexandrov’ compact-
ification, M,~ is compact also in ~. Point (iii) of the thesis comes
directly from point (2) of definition 1.1. 0

As it has been made in [11] for Hopf bifurcation, the previous
result may be used in the study of bifurcation from infinity for pe-
riodic solutions of differential systems in R2.

Let f : [0, pO) X R2 - R2 &#x3E; 0) be a continuous map satisfying the
following conditions:

(i) the family of differential equations

(2.2) defines a continuous family n, of dynamical systems on
R2 (see remark 2.5);

(ii) there exists a compact set H out of which (~~) has no
critical points.

We may now state the following:

THEOREM 2.3 (A). Let no be negatively ultimately bounded and a,
be ultimately bounded, for p E (0, p’).
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Then ft = 0 is a bi f urcation point f rom infinity. Furthermore, ,u* &#x3E; 0

and Mg may be determined in such a way that the conclusions of theorem
2.2 hold and M, is the enclosed between two cycles C,, C~, with
Cu - 

PROOF. Let us consider the homeomorphism:

The dynamical system:

has a fixed point at the origin whose stability properties coincide
with ones. We may apply theorem 1.4 to in order to obtain
the existence of an annulus N, enclosed between two cycles T) «
where = Now, setting .~’u = ex-1(Np,) and C, = 

C) = a-1(1-’~ ), we get the thesis. C7

REMARK. 2.4. If O, = C~, then M, = C, = C~ is an asymptotically
stable closed orbit.

REMARK 2.5. If x) 1-+ f,~(x) is continuous and existence and

uniqueness of solutions of (S,~) are guaranteed, we always may define
a continuos family of dynamical systems having the same orbits as
(8/J)’ possibly reparametrizing the time. For example, the differential
system

may be susbstituted by the following one:

to obtain the desired result.

REMARK 2.6. In general the map M is not continuous with respect
to Hausdorff metric, for p =1= 0. In the following example the origin
is a cluster point of discontinuities.

Let us consider the family of dynamical systems defined by the
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following differential systems:

where

To study the stability properties of the unique equilibrium point of
(2.3)p, the origin, we use the Liapunov function

whose derivative, along the solutions of (2.3),, is

For p = 0, the origin is asymptotically stable, because

For p &#x3E; 0, the origin is completely unstable, because

is positive definite in a neighbourhood of (0, 0).
Hence, a family of asymptotically stable sets M, bifurcates from

the origin. Mu consists of a single cycle when the quadratic poly-
nomial

has no real roots. This happens when
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is negative. In this case the cycle is the circumference of equation

When 4 (p) changes sign, a new cycle appears and suddenly bifurcates
in two cycles of equations

If zt(~)~0y Mu can be characterized as follows:

It is immediate to verify that M is Hausdorff-discontinuous where
d (~u) changes sign, and that p = 0 is an accumulation point of such
discontinuities.

Let us introduce a new topology -r in C:

DEFINITION 2.7. Let us set _ We

call z~ the topology having, for any M E C, the family e) : ~ &#x3E; 01
as a fundamental system o f neighborhoods.

The topology induced on C by Hausdorff metric is strictly finer
than z. Moreover, z is To but not Tl (see [6] for separation axioms).
The restriction of í to the subspace J of C consisting of all Jordan
closed curves is T2, that ensures the uniqueness of the limit in J.

We say that a map M: [0, -~ C, continuous with respect to z,
defines a « continuous family of compact sets ». In some cases , 7 we

may prove that the bifurcating families of theorems 1.4 and 2.3 are
r-continuous.

COROLLARY 2.8. In the hypotheses o f Theorem (2.3), if ag has at

most one cycle for a E (o, ~C#), then M de f ines a continuous family of
asymptotically stable cycles.

PROOF. By theorem 3.1 in [11], y the asymptotic stability of M;~
entails its total stability. So, for any positive 8, there exists 6 &#x3E; 0

such that |03BC -,u) + M;;)  6 implies that x), .M’u.)  E for

any positive t. So the co-limit set of x is compact for each 3) .
By Poincaré-Bendixson theory, it is a cycle Fp. For the uniqueness
of cycles of n,, we have FIl = M, and the thesis.
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3. Generalized Liinard equation.

Let us consider a one-parameter family of second order differential
equations:

where (p, x, x’) H x’) is a continuous real function. (E,) is equi-
valent to the system

If Vp E [0, x’) is locally lipschitzian, then (8#) defines a
dynamical system ~c,~(t, x), possibly by a suitable reparametrization
of its orbits (see remark 2.5).

The following differential system

defines the (negative) dynamical system c~,~(t, x) = np(- t, x). (- Sm)
is equivalent to

Hence, (S~) is negatively ultimately bounded if and only if the so-
lutions of are uniformly ultimately bounded. This allows us
to use boundedness theorems in order to obtain unboundedness of
solutions of the given differential equations. Then, by virtue of the-
orems 2.2 and 2.3, to any boundedness theorem we may associate a
result of bifurcation from infinity. An example of this procedure will
be given in this section for the generalized Liénard equation

In next section, we will give other examples concerning Rayleigh
equation.

We recall below a theorem by J. R. Graef [7], relative to equa-
tion (L).
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THEOREM 3.1. Let f be continuous and g be locally lipschitzian.
Let us suppose that there exist positive constants k, c such that:

where .F"(x) = t(x), .F’(0) = 0.
I’2crther, if

then the solutions o f (L) are uni f ormly ultimately bounded.

Now let us consider the family of equations

where, V03BC E [0, 03BC#), f, is continuous and g, is locally lipschitzian. The
results of section 2 may be applied to the study of bifurcation of pe-
riodic solutions of (Lp) from infinity, as it is shown by the following:

THEOREM 3.2. Let us assume that

(i) (- Lo) and (.Lu), for p &#x3E; 0, veri f y the hypotheses o f theorem 3.1;

(ii ) there exists a f ixed compact H that contains all f ixed points
(Lp), for ~u positive.

T hen p = 0 is a point of bi f urcation f rom in f inity for a family of
compact, invariant, agymptotically stable annuli.

PROOF. By remark 2.5, we see that for Ti ¡t E [0, (LA) defines
a continuous family of dynamical systems np(t, x). Moreover, the fa-
mily verifies the hypotheses of theorem 2.3. This yields the thesis. Cl

An existence result of a continuous family of asymptotically
stable cycles bifurcating from infinity may be derived from theo-
rem 3.2. For that, we need the following:
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THEOREM 3.3 (Zhang Zhifen [14], [15]). Let us consider the dif-
f erential system in R2:

if

(i) g locally lipschitzian, xg(x) &#x3E; 0 for x =1= 0 , G(::f:: 00) == + oo
(where G’ (x) = g(x), G(O) = 0);

(ii) .I’(x) E C1(R), F(O) = 0, I"(x) jg(x) is increasing for x =1= 0;
(iii) yO(y) &#x3E; 0 for y =1= 0, 16( + oo) _ ~ oo, 0 is locally lipschi-

tzian and non =1= 0;

then ( 3 .1 ) has at most one closed orbit.

Now we are in position to prove the following corollary of the-
orem 3.2.

COROLLARY 3.4. Suppose that (L~) verifies the hypotheses of 3.2 for
[0, ,u ~ ) . Moreover, assume that for p, &#x3E; 0 :

(vi) is increasing for 0 .

Then, a continuous family o f asymptotically stable cycles bifurcates
f rom in f inity when p becomes positive.

PROOF. is equivalent to the following system:

where = f (x), = 0. The above assumptions ensure that
Zhang Zhifen theorem holds. By remark 2.4, the bifurcating annuli
reduce to single orbits and we may apply Corollary 2.8. 0

When f, and gi, are polynomials, y bifurcation from infinity may
happen when the leading coefficient of f becomes positive.

COROLLARY 3.5..Let f, and g, be :
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where the coe f f icients o f f p, and are real continuous f unctions de f ined
on [0, that n is even, m is odd, an(,u), bm(p) are positive
for p &#x3E; 0 . If

then p = 0 is a point of bifurcation f rom infinity, and conclusions o f
theorem 3.2 hold.

PROOF. Since, for 03BC &#x3E; 0, and gg(x) are odd-degree polyno-
mials with positive leading coefficients, Graef’ theorem holds. For

p = 0 the same theorem holds for equation (- Lo), because

To prove the thesis it is sufficient to show that all critical points of
(L~), for p E [0, p’/2], are contained in a fixed compact. That is equi-
valent to prove that the roots of are contained in a fixed ball.
If x~ is a root of gu(x), we have:

Let us set

Now

hence

Since

inequality (3.2) holds in a compact .g, indepent of p. So all roots
of are contained in H, for any p in [0, ~C~’/2]. 0

What follows is the analogue of 3.5 for polynomial Li6nard equation:
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COROLLARY 3.6. Under the hypotheses o f Cor. 3.5, i f n &#x3E; m,
xgu(x) &#x3E; 0 for x ~ 0 and the polynomial - g~ 1", has no real roots,
then It = 0 is a point of bifurcation f rom in f inity for a continuous family
of asymptotically stable cycles.

PROOF. Zhang Zhifen theorem holds if = (1~ g,~ - f, &#x3E; o.

Since the leading coefficient of 1~ g~ - f, g~ is (n - &#x3E; 0,
if f ~ g~ - gy has no real roots, the function is increasing in
R/tOl, and Cor. 2.8 applies. 0

4. Rayleigh equation.

In this section we deal with the same problem of section 3 for
a continuous family of generalized Rayleigh equations :

In the whole section it is assumed that all the functions f,,, gu are
locally lipschitzian. Let us recall a simplified version of a theorem
by Cartwright and Swinnerton Dyer [4], about the equation

THEOREM 4.1. If there are constants q, k, b, d &#x3E; 0 such that :

then the solutions of (R) are uniformly ultimately bounded.

Let us call (- the equation obtained from (Ro) by applying
the procedure described at the beginning of section 3. As it has been
done in the previous section, we may write the bifurcation theorem
associated to Cartwright-Swinnertone Dyer’s one.

THEOREM 4.2. Let us suppose that (- and (1~,~), for p, &#x3E; 0, sat-
is f y the hypotheses o f theorem 4.1. I f all equilibrium points of (R,~) are
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contained in a f ixed ball, then fl = 0 is a point o f bifurcation f rom in-
f inity for a family o f compact, invariant, asymptotically stable annuli.

PROOF. Like in theorem 3.2. 0

Zhang Zhifen’ theorem allows us to state the following:

THEOREM 4.3. Under the assumption of the above theorem, if

(iii) gu is non decreasing, gu( ~ oo) = ~ 00 ;
(iv) ~9~(~) ~ ~ ~
(v) is increasing for 0 ;

then ,u = 0 is a bifurcation point f rom in f inity for a continuous family
o f asymptotically stable cycles.

PROOF. (R,~) is equivalent to the system:

After the substitution:

the system becomes:

Then, like in corollary 3.4, the conclusion comes from theorem 3.3
and corollary 2.8. 0

The following corollaries are the analogue of 3.5 and 3.6 for Ray-
leigh equation.

COROLLARY 4.4. Let f,~ and g,~ be polynomials. I f they have odd
degree and all other hypotheses of corollary 3.5 hold, then ,u = 0 is a

point o f bi f urcation f rom in f inity and the thesis o f theorem 4.2 holds.
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PROOF. On the same line of corollary 3.5. It is immediate to

verify that the boundedness properties requested by theorem 4.2 hold.
It remains to prove that all equilibrium points of (R,) are contained
in a fixed compact. To see this, we consider the equivalent system (4.1),
whose critical points have coordinates (x, 0), where x is a root of the
polynomial --f- Now it is sufficient to repeat the second
part of the proof of corollary 3.5 to have the thesis. 0

COROLLARY 4.5. Under the hypotheses o f corollary 4.4, i f n &#x3E; 2 and:

(iii) xfu - t~ has no real roots;
then fl = 0 is a bifurcation point f rom in f inity for a continuous family
o f asymptotically stable cycles.

PROOF. If the polynomial - f ~ has no real roots, then it is

always positive, since its leading coefficient is n(n - 2)an(,u) &#x3E; 0.

Hence the function which has ~(xf~ - as derivative, is

increasing, and the system

has at most one closed orbit, by Zhang Zhifen’ theorem. By exchang-
ing x and y, we obtain system (4-1), that is equivalent to (R,). By
corollary 2.8 we get the thesis. D
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prof. V. Moauro and dr. P. Marcati for many fruitful conversations
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