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On Differential Systems with Impulsive Controls.

ALBERTO BRESSAN (*)

SUNTO - Si dimostra un teorema di buona posizione per un problema di Cau-
chy con controlli impulsivi. Cib conduce ad una nuova definizione di solu-
zioni generalizzate, per cui sussiste un generale risultato di unicita.

1. Introduction.

Let f, g be continuously differentiable mappings and consider the
control system

where, as usual, dots denote differentiation w.r.t. time. The presence
of the derivative of the control u on the right-hand side of (1.1), which
is motivated by several applications [1, 2, 4], requires a careful defini-
tion of solutions of (1.1). Indeed, as long as the control u is ~1, the
classical theory on O.D.E. applies. However, if u is assumed to be
a bounded measurable function, its derivative can only be interpreted
as a distribution. Two main approaches to the Cauchy Problem (1.1)
are then possible. In [4], solutions are defined in the distributional
sense, and existence theorems are proven for scalar controls with
bounded variations. In [5], Sussmann considered the input-output
functional y that maps a smooth control u(.) into the corresponding
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trajectory x(u, ~ ) of (1.1) on the time interval [0, T]. In the case of
scalar controls, he showed that the map q admits a unique continuous
extension ’ defined for controls u which are merely continuous,
possibly with unbounded variation. This provided a new method
to construct Stratonovich solutions for stochastic differential equations
driven by scalar white noise.

Aim of the present paper is to push this second approach further,
in order to include discontinuous controls as well. For scalar controls,
we prove that the functional 99 is Lipschitz continuous with respect
to suitable £1 norms on the spaces of controls and trajectories, hence
it admits a unique extension to a functional y that maps Cl-equiva-
lence classes of controls into £,1-equivalence classes of trajectories.
This correspondence can be further refined by constructing a version
of §5 which is Lipschitz continuous w.r.t. the norms of uniform conver-
gence on [0, T] . A new definition of generalized solution, similar
to the one in [5], is given in §3. We conclude with an example of a
Cauchy Problem which, according to [4], has infinitely many solu-
tions. The present definition, on the contrary, singles out a unique
acceptable trajectory.

2. The basic estimates.

Let V be an open set in and let f, g be C1 and C2 functions
respectively, from V into Given a scalar control u(.) E £1[0, T],
we denote by x(u, ~ ) the solution (if it exists) of the Cauchy Problem

on the time interval [0, T]. Using the coordinates x = (zi, ... , xn),
(2.1) becomes

In order to extend the input-output map 99: u(-) --~ x(u, ~ ) from
T] to a broader class of controls, it is necessary to investigate
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the continuity of q w.r.t. weaker norms on the spaces of controls and
trajectories.

THEOREM 1. Let U c e1[0, T] and let be compact
sets such that

i) all controls u E U take values inside 

ii) for the solution x(~c, ~ ) of (2.1) exists on [0, T]
and takes values inside K.

Then there exists a constant .llT such that

for all u, v E U, z~ E [0, T’] .
The theorem will be proven first for control systems of the form

where f is a C’ vector field with compact support in R" and e is a unit
vector, then in the general case. For any u E CI[O, T], (2.4) is equiva-
lent to the integral equation

which can be written in the more compact form

In order to show that the functional u - ), implicitly defined
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by (2.6), is Lipschitz continuous (w.r.t. suitable norms), we rely upon
the following corollary of the Contraction Mapping Theorem [3].

LEMMA 1. Let E, F be Banach spaces, be a map
such that Vu, v E E, b’x, y E F one has

for some constant L. Then for each u E E there exists a unique x =
= x(u) E F such that = x(u)). Moreover

PROOF OF THE LEMMA. For each u E E, exists and is unique,
being the fixed point of the strict x) in .I’. Moreover

from which (2.9) follows.
To prove (2.3) for the special system (2.4), choose a constant N~ 1

such that the operator norm of the derivative of f satisfies

We will apply Lemma 1 to the functional V defined by (2.7) on the
spaces = {u; £1[0, ~"]~ with norm

and F = (z E C1 ([o, ~"] ; Rn) ) with norm
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The assumptions (2.8) are both satisfied. Indeed, if u 
recalling (2.10) one has

hence (2.8)1 holds. As to (2.8)2 we have, for any u, x E F:

This yields (2.8)2 with L = 1.
By Lemma 1, the map ~c -~ x(u, ~ .), implicity defined by (2.6),

(2.7), is Lipschitz continuous with constant 2. This means that, for
all ~c, v E e1[0, T],

and yields (2.3) with M= 8N exp (4NT).
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To achieve the proof in the general case, notice first that if f, g
in (2.1) are replaced by vector fields f *, g* with compact support
such that

then the input-output map 99: u --&#x3E;- ~(~y ’) does not change on U.

We can thus assume that f and g have already compact support.
Consider the system on obtained by adjoining to (2.2) the

trivial equation = it, zo(0) = 0, which yields xo(t) = u(t) - u(0).
This can be written in the form

Construct on Rn+1 a new set of coordinates fj = (yo, ..., yn) as follows,
Given the n + 1-tuple (yo, ..., yn), let s - (xo(s), ..., xn(s)) be the

solution of the Cauchy problem

Define (yo, ..., yn) as the new coordinates of the point P = ..., xn)
in reached by the solution of (2.12) at time s = yo . It is now easy
to verify that the coordinate transformation

is a C2 homeomorphism of into itself, and that in the new coor-
dinates the vector field g has the constant expression g(y) ==
= (1, 0, ... , 0), while the components of f are still given by C1 func-
tions with compact support.
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By the first part of the proof, Theorem 1 holds for the system
(2.11). Therefore it holds for (2.1) as well.

3. A class of generalized solutions.

In analogy with [5], a notion of generalized solution for (2.1) can
now be introduced.

DEFINITION. Given an equivalence class of bounded controls
u E EI[07 T] and an initial value u(0), a trajectory t -~ t) is a gener-
alized solution of (2.1) if there exists a sequence of controls Vk E C’[O, T]
such that = u(0), in ~1, and the corresponding trajec-
tories have uniformly bounded values and tend to x(u, ~ ) in
the Cl norm.

Thanks to the estimate (2.3), any uniform a priori bound on x(vk, t),
t E [0, T], for some sequence vk - u will provide the existence of a
generalized solution to (2.1). Such solution is unique up to El-equiva-
lence and depends continuously on the control. In the case where u
is defined pointwise on [0, T], the trajectory x(u, ~ ) can also be point-
wise determined. Indeed, assume that for any fixed r E [0, T] there
exists a sequence of C’ controls wk such that w~(O) = ~c(o), = u(r)

in T]. The estimate (2.3) then implies that, as k - oo,
x(wk, ~ ) tends to x(u, ~ ) in El and T) has a limit, say £(r). Re-

peating this construction for all Ty one obtains a function T -~ x(z)
defined pointwise on [0, T]. Notice that from any sequence vk con-

verging to u in El one can extract a subsequence vk which converges
pointwise to u on the complement [0, of a set JW of measure
zero. The estimate (2.3) implies that r) converges to for
all T i JY’, hence ,V(-) is a generalized solution of (2.1). More generally,
if the control u is pointwise determined at t = 0 and on some subset

I c [o, T], the same is true for the corresponding trajectory.
Theorem 1 can be extended to the case where f and g depend on t

and u as well, simply by adding the new variables = t, xn+2 = u.
The Lipschitz continuity of the trajectory x(u, ~ ) w.r.t. changes in
the initial condition x can also be proven. It is interesting to study
the behaviour of the trajectory at points T where the control has a
jump.

PROPOSITION. Assume that there exists the limits
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Then the limits

exist and

As customary, y the right-hand side of (3.1) denotes the value at
time t = u+ - u- of the solution to the Cauchy Problem y = g(y),

= x-. Indeed, by the same change of variable used in § 2, it

suffices to prove the result for the system (2.4), in which case (3.1)
becomes simply

and the Proposition follows from (2.5).

EXAMPLE. Consider the scalar equation

with x(0) = 0 and u(t) ==t for 0 c t C 1, for It2.
In [4, p. 19] the authors consider infinitely many solutions of (3.2),
given by

where c is an arbitrary constant. However, according to the defini-
tion given in the present paper, the only acceptable solution is obtained
for c = 0, because x(v, t) = 0 for every v E C’[O, 2].
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