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Propagation, Reflection and Refraction
of Singularities for a Hyperbolic Trasmission Problem

in Two Adjacent Angular Regions.

LORENZA DIOMEDA - BENEDETTA LISENA (*)

0. Introduction.

The main purpose of this paper is to study propagation and re-
flection of singularities of the solution to a transmission problem for
the wave equation with different sound speeds in two adjacent angular
regions.

The reflection of singularities for transmission problems with smooth
separation surface has been studied by M.E. Taylor [10] [11].

For manifolds with conical singularities M. Kalka-A. Menikoff [7],
J. Cheeger-M. E. Taylor [2] have propagation of singularities results
for the wave equation by constructing the Kernel of the fundamental
solution for such operator.

On the same type of manifolds M. Rouleux [8], studies the analytic
regularity of the Kernel of the fundamental solution of the wave equa-
tion, calculated by the methods of functional analysis of Cheeger and
Taylor.

J. P. Varenne [12], y obtains propagation, reflection and diffraction
of singularities results for a mixed Cauchy problem with zero Dirichlet
data relative to the wave equation in where D is a corner
of R2 or a wedge of R3.

Varenne gives an explicit representation of the solution and de-
terminies its wave front set by the use of the well known Hormander
Kernel theorem (see [5]).

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universitk di Bari,
Italy.
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In this paper we use the classic method of images (see I. Stak-
gold [9]) and the theory of pseudodifferential operators to find an
explicit potential representation of solution of the following transmis-
sione problem:

where

.T’ is the common boundary of D, and Q2 and the data (p, ~, f 2, gl, g,
are opportune distribution with compact support.

Moreover 0 is the wave operator a2/at2 - L1, 0: is the « modified »
wave operator

~ denotes the normal unit vector to r interior to S~1 and A is the unit
vector of components (cos a, sin a). Then we show that the sin-

gularities of such solution travel:

1 °) along bicharacteristic lines coming out from points of the
wave front set of 12, gi and g2 , if possible after either a reflection
on the other face or a refraction on the separating surface R+ 
according to the geometric optics;
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20) along bicharacteristic lines which have the initial point
in the wave front set of the data rp and V, if possible after either at
the most two reflections on the faces or a refraction on the common
face otherwise a reflection on the edge.

In our case diffraction phenomena don’t occur because S2, and .~2
have amplitude nf2, analogously to what happens in [12].

Using the method shown in this work our results can be extended
to Qi and ,5~2 right angle wedges of R3 by only technical difficulties.
The results of this paper are explained as follows: in section 1 we pre-
cise the notations and the problems studied; in section 2 we study
the singularities of two mixed problems for the wave equation in Di
and Q2 respectively recalling some results of J. P. Varenne [12]; in
section 3 we give a potential representation of the solution of (I) when
the initial data rp and y are zero using the theory of pse-adodifferential
operators; in section 4 we give a complete description of wave front
set of the solution of the problem (I) by the study of wave front set
of the solution obtained in section 3 and the results of the section 1.
We wish to thank Proff. J. Lewis and C. Parenti for useful conversa-
tions about this work.

1. Preliminaries.

First we precise some notations.
We define S~1, S~2 , .hx ,1~’2 as in the introduction. Let

Moreover we denote the space of extendible distributions byT
= 1, 2, the space of distributions with compact sup-

port in by = 1, 2, and the space of distributions on R+
with values in by 0’(R+; Hs(T)) (see [6]). In the problem (I)
we assume that
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Finally we consider the operators D and 0: as in the introduction
where c E ]0, 1[ and a E ]- ~/2[. We seek a solution, v = (V’l v2) E
E x of the problem (I) in the following way

where u = (ui , uz) and ul, U2 are solutions of the following independent
problems

Instead w = (w~, w2) is solution of the following transmission

problem:

We will describe the wave front set of the solution v, i.e. ~W’F(v)
by and WF(w), where for a vector valued distributed
v = (v1, v2) we put
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In the section 2 we give a complete description of WF(u,),
i = 1, 2, recalling the results of J. P. Varenne [12].

Moreover we determine the wave front set of (du1/dÂ)R+ X r and
(du2/dN)R+xT.

Indeed in the section 3 we give a potential representation of the
solution w of the problem (1.4), which we use to obtain the wave front
set of w knowing the wave front sets of the boundary data.

Later on we denote the cotangent bundle of ~8+ x Di by T*(R+ X 
and the covariant variables of t, 8 E R+ x = (x1, ~2), y =

- Y2) E Q i by r, o- E R, ~ = (~1’ ~2) ~ ~ _ {~l ~ ~I2) E R2 respectively.

2. - By the classical method of images the solutions ~c1 and U2
of the problems (1.2) and (1.3) can be written as follows:

where is the Green function of the problem (1.2).
Precisely

where is the Heaviside function.

In order to describe propagation and reflection of singularities
of u = (u1, u2) we give the following two theorems without proof
because we refer to J. P. Varenne [12] for details.
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THEOREM 2.1. If (t, x; z~, ~) E WF(Ul) then there exists (y; q) E
E such that (t, x, y ; T, ~, - r¡) belongs to normal bundle of

one of the following surfaces :

If (t, x; 7:,~) e WF(u2) then there exists (y; ~) e WF(1p) such that
(t, x; y; i, ~, - ~) belongs to normal bundle of one the following
surfaces:

Before enunciating the second theorem we will give some notations.
If (0, Yl, Y2; 0 1}2) E T*(R+ X 1}~ &#x3E; 0, we denote the null

bicharacteristic issuing from (0, 0,~1~2)? associated to 7: ==

{3;:
Moreover we denote the null bicharacteristic issuing from

(0,2013~2013~;0,2013~2013~) associated by 
If (0, Y2; 0, N2) e T*(R+ X Q2), N2 1+ cos a2 N22 &#x3E; 0, B+0c and B+0c

are the null bicharacteristic issuing from (o, yl, y2; 0, 1Jl, 1J2) and
(0, 2013 ~ - Y2; 0, -1Jl, - 1}2)’ respectively, associated to

THEOREM 2.2. If (t, x; ~, ~) then there is 
such that 1’2 = c2(~ i + cos ~x7y~) and one of two following cases is true :

i) ~o hits the corner in t = = when

P;c hits also the corner and come into so (t, x; belongs
to Poc or 

ii) ~8o does not hit the corner and (t, x; joins with (y; ~)
by ~8o after at most two transversal reflections on the faces 0

or X2 = 0.
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We choice the sign + or - according to r is positive or negative.
The same results is true for WF(u1) with Q2’ 1p, ~o replaced

by Q,,, , respectively and c = cos a = 1.
Now we will study (dUl/dÂ - to determinate its wave

front set.
After differentiating ui and ~2 we use the integration by parts to

obtain the following expression for the traces of and du2/dN
on R+ xF:

Remark that and have null traces on

x2 = 0 and are odd extendible distributions on R X T.

So we can define and (du2/dN)/R+xr when 

By (2.8) and (2.9) we have that and 

are linear continuous transformation from to 5)’(R+xR),
i = 1, 2, with densities 8qf8yi and 8yf8yi respectively.
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So we can write

where and ..g2 - H~i are the Kernels which are in (2.8) and
(2.9) respectively.

Moreover these transformations are extendible to 6’(Q+) i = 1, 2,
respectively.

These extensions are unique and continuous by applying a known
theorem of L. Hormander[5]. Hormander’s theorem also says that

From the last remark we obtain the following

THEOREM 2.3. Let (t, x2; r, ~2) E X R).
If (t, x2; r, ~2) e then there exists (y, q) e 

such that r2 = + and

The same result is true for with c = cos a =1

and 1p replaced by q.
The details of the proof are omitted because they are similar to

the methods used by Varenne in [12].

REMARK 2.1. By theorem 2.3 we have that if (t, x2; try ~2) belongs
to then its mirror image (t, - x2 ; ~, - ~2) is also
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in Moreover n con-

sists of intersection points of bicharacteristics ~o or their reflected
bicharacteristic lines, with the face xl = 0. Analogous remarks are
true for the wave front set of (du2/dN)R+ 

REMARK 2.2. Later on we denote the Laplace transform of a di-
stribution g E with respect to tER+, by g(k,X2).

Here we show that and (du2/dN)R+xr belong to Hi(R).
Consider the odd extension of (OCP/OY1)(Yl’ Y2) to R+ X R, with respect

to y,. So we can write

Now we calculate the Fourier transform of and we
obtain

We will show

Consider
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It is finite because exp [- y,,-B/! 2F+-$22]((agglay~,)(yL, is ra-
pidly decreasing to 0, as [~2 - + 00-

Analogously we can shown 

3. - In this section we propose to study the singularities of 
solution in ~’(~ X Q1) X D’(++X S~2) to the problem (1.4). This can

be converted into a boundary value problem by reflecting Sz2 On DI
and setting

and

We are led to a second order system with zero initial data of
the form

where Z(t, x2) denote the distribution

From now on, to make the notation simpler, we will use w~ and f 2
instead of iv2 and 12, respectively.

We will write explicitly a solution of (3.1) in integral form with
Kernel .K. From the knowledge of we will deduce informa-
tion about the wave front set of (?,vl , W2).

As first stage we will find an explicit representation for w1 and W2’ y
Laplace transform of w, and w, respectively. To do this we first split
(3.1) into two distinct problems introducing two auxiliary distribu-
tions h, and h2 and we find zu~ and w, solutions of the two mixed pro-
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blems with zero initial data

Then we determine h1 and h2 in such a way that (WI’ w2) results
solution of (3.1), too.

Moreover, y for the present, y we suppose that cos a = 1.
Applying the Laplace transform to (3.2) we obtain the two auxiliary

problems:

where h2 are the Laplace transform of 7 f, hi , h2 respectively.
By the method of images write the Green functions of (3.3) in the

form

where

and .go is the Mac Donald function (see [13]).
Using this Green function we can find wl and w2 solution of (3.3)

in the form
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Now we have to determine (iiI, h2) in such a way that (11B, w2 )
verify the boundary condition initially assigned on h, that is

Note that we are supposing cos a = 1 so dfdl = d/dx1.
The trace of on T’ is given by

where r denotes + x2 .
Calculating the trace of on 7~ we have

To obtain (3.7) we have kept into account that the Mac Donald
function .go verifies the Helmotz equation (7~2 - d ) ~c = 0 and have
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supposed that h1(k, 0) = 0. Extending h1, h2, gl, l as odd functions,
so that their derivatives result even functicns, u-e can write

where

where A is the pseudodifferential operator in with symbol
-ilwl

Since are known, the boundary conditions (3.6) turn
into the following integral system:

So far we have supposed cos a = 1 and then sin a == 0.
When cos cx is any real number between 0 and 1 it can easily seen

that (3.8) becomes
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where

and

the operators I~1 and 1~2 are in the class of pseudodifferential oper-
ators then they take to HS+1(~g), ~l. take H8(R) to Hs-1(R)
therefore

Since the Fourier transform of is given by

the integral operator ~ has for symbol

so Aa is elliptic.
Before going on, we need to show that

To this aim we remark that T1 f 1 and are odd distributions
and therefore it is enough to verify that the operator T defined by

maps Hi(R+) in H’(R+) and in 
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First observe that the operator

with Hardy Kernel XI(y2 + x2) takes L2(R)+ to L2(R+) (see [3]).
Moreover, if f belongs to 

As y/(y2 + x2) is also a Hardy Kernel we obtain

so

Using the operator ~S we can prove

Since

and
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we obtain

To prove ii), first note that

Using that verify the Helmotz equation and then integrating
by parts we have

The first addendum is a continuous operator from L2 (R+) to 
and using (3.12)

iii) can be proved in a similar way.
Applying known interpolation results and i), ii), iii) we obtain (3.11).
From the ellipticity of ~ it follows that we can find one and

only one

satisfying the integral system (3.9).
Moreover h1 and h2 are odd functions and 0) = 0. 

_

Finally we may observe that the Fourier transform of x2)
and h2(1~, x2) is given by

where a(k, (o) is the determinant of the matrix (3.10).
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Applying the Paley-Wiener-Schwartz theorem (see [5]) it follows
that Jt(k, m) is the Laplace-Fourier transform of a distribution with
compact support. Then the inverse Laplace-Fourier transform of

o) and h2(1~, m), which we will denote by hl(t, x2) and h2(t, x2)
is obtained by convolutions of distributions in 8’ (R+ x R) with ele-

ments of 5)’(R+ XR).
Therefore

To this point, we are able to calculate wi and w2 as inverse Laplace
transform of and W2, defined by (3.4) and (3.5) respectively. 

-

Let YI y2), i =1, 2, the inverse Laplace transform of Gi,
i = 1, 2. They can be calculated explicitly by the following equality

The first addendum of G1(t, xl, X2, Y1, Y2)’ is, for instance,

and the other three are of the same type.
Therefore we have
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where

and analogously

where

We can summarize the results till now found in the following

THEOREM 3.1. The distribution w = (WI’ W2) E (Ð’(R+XQ1))2 de-
fined by (3.14) and (3.16) is solution to the problem (3.1) with bound-
ary data ( f~, f 2) on R,-xF1 in the space (9)(R+; H!(F1)) r1 f;/(R+xF1))2, 1
(9x ~ 92) on in the space (5)’(R+; H~(r)) r1 6’(R+ X (9)’(R+;
H!Cf.)) 0 provided (hi , h2) is the inverse Laplace transform
of (hl, h2) solution in Hi (R) of the integral system (3.9)

4. We are now interested in describing C"-singularities of the solu-
tion w = of problem (3.1).

We are going to give a complete description of 
The results for WF(w2) shall be analogous.
wi is sum of the two distributions w~ and W2
wl is of the type
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that it is a distribution with Kernel

where r1 is defined by (3.15).
Let

then

Our purpose is to determine from the knowledge of WI"((K)
and WF(h1).

PROOF. Since

the wave front set of .g’ is included in the wake front set of

which results the distribution H(t)lti = tj+ concentrated on surface
~ = 0.

Let Q be the following diffeomorphism

and q5* the pullback of 0. From the equality
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follows by a known result

where (15* is the induced diffeomorphism between bundles. Since

the statement of the theorem can be deduced from (4.3).
We can obtain in terms of wave front set of the boundary

data Y1, l, 11, f 2. Indeed.

and the projection

is proper, i.e. the inverse image of each compact set is compact.
Then by a known result (see [1])

Moreover from (3.9) and ellipticity of ~ it follows

In the following theorem 4.2 using (4.4) and theorem 4.1, we give
a description of WI’(wi) in terms of bicharacteristic lines issuing from
points of the following set

~ can be considered a subset of X R).
Fixed ~Oo = (s, y2; J, r¡2) E Z let ~oo be it image point (s, - y2; ar, - ~2).
Note that if ~Oo belongs to WF(hi) then ~Oo is also a point of the

wave front set of h, because hi is odd in the space variable.
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Denote by (J1(f!O) the bicharacteristic outgoing from ~o 
Its projection on R+ XR2 has equation

where 81 = T V’J2- q) according to 0’ is positive or negative.
REMARK 4.1. Suppose eo = (8, Y2; (J, 112) E E, (J &#x3E; 0, y2 &#x3E; 0.
Then if f}2  0 the bicharacteristic lies in whereas

is always out of if f}2 &#x3E; 0 (31(eO) is in 
until t  8 + whereas P1(e:) goes into T*(R+ X Q1) when t&#x3E; 8 +
+ y2~/~72. Indeed the projections of and intersect on the

f ace x2 = 0 when t - 8 = 8’ ‘ - 

THEOREM 4.2. Let (t, x; ’1:, ~) e belonging to the wave
front set of defined by (3.14).

Then ~1 ~ o, r2 = $f + $) and there is 

belonging to Z m WF(h1) such that (t, x; z~, ~) E ~81(~00) or
(~~ ~ ~ ~~ ~) E N1(~o ) ~

PROOF. Using (4.4) we can state that if (t, x; r, ~) E then

By thoerem 4.1 it implies that

Three cases may occur
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In the first case, by remark 4.1, (t, x; 7:, ~) belongs to the bicharacter-
istic ~1 outgoing from (s, Y2; or, r¡2) and the point ~Oo in the statement

is just (S’Y2; a,r¡2).
If ii) happens the point oo is (s, - y2; (1, - r¡2) and (t, x; ~, ~) c 0

When y, = 0 then r¡2 =F 0. Moreover (t, x; 7:, ~) lies on the bicharacter-
istic ~1 outgoing from (s, 0; a, r¡2) if r¡2/a  0 whereas it belongs to the
bicharacteristic outgoing from (s, 0; (1, - r¡2) if 0.

REMARK 4.2. Theorem 4.2 gives a complete enough description of
provided that we know the wave font set of the auxiliary

distribution h,.

By (4.5) and theorem 2.3 we need only information about
and 

THEOREM 4.3. Let (t, x2 ; ~, ~2 ) E T* (R+ X R) .

If (t, x2; r, ~2) E then 7: -:F 0, ~c2~c2 &#x3E; cos a2~2 and there
exists (s, Y1; (J, E such that

For an analogous result is valid with c = cos a = 1

PROOF.

where

so it is a distribution of the type

with Kernel 
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Since the operator

is linear and continuous it can be extended continuously as

Moreover

Is not difficult to see, using the same tecnique of theorem 4.1,
that in this case

and then from (4.7) the thesis follows.
It is enough to apply again Hormander’s theorem concerning the

distribution with Kernel to prove the following theorem 4.4. First

introduce some notations.
Let e. = (s, yl; ~, T*(R+ 0 0, J2 &#x3E; We will denote

by the bicharacteristic outgoing from ~o whose projection on
R+xR 2 has equation

with ~2 == =f Ý a2 - r¡î according to a is positive or negative.
THEOREM 4.4. Let (t, x; e X ill) belonging to the wave

front set of defined by (3.14).

0 ~2 ~ 0 1:’2 == ~~ -~-- ~2 and there exists oo = (s, a, E

E such that (t, x; 1:’, ~) E Y1(eO) or (~, x; E where

o/ = (~2013~;~2013~i)’
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To complete the study of propagation and reflection of singular-
ities of the solution w = (w,, w2) to the problem (3.1) observe that
the results concerning are of the same type of those established
in the previous theorems 4.2 and 4.4 where hi and f1 are replaced by h2
and f2, respectively and the bicharacteristics fJ1 and yi are replaced
by and whose projections on R+ X R2 have equations of the type

respectively.
It easy to verify that if (t, X2; 1:, ~2) E f 2)~ ~’1 T*(R+ x F)

then it is the intersection point of the bicharacteristic y~~", outgoing
from some with the face x1= 0.

Analogously r1 T*(R+ consists of intersection

points of with the face xi = 0.

Putting together the result of theorems 2.1, 4.2, 4.4, using (1.5)
after reflecting again W2, f, on R+ X we obtain a complete descrip-
tion of the wave front set of the solution v to the problem (I).

If we look for a solution to the problem (I) in an opportune distri-
bution space uniqueness results can be used (use [1] [6]). In this
case the solution v, found by us explicitely, is the unique solution of
the problem (1).

REMARK 4.3. Suppose that Oo E WI’( f 1) and the bicharacteristic
Yl(eO) intersects the face xl = 0 in po- Then it reflects on x., = 0

giving origin to the bicharacteristic 0 On the other hand

éoE W~( ~-1(Tl ti) ). It may happen that éoE W.F(h1) so from this point
starts the bicharacteristic 

One could ask if the propagation of the singularity oo of the data fix
happens on or It easy verify that in this case, yi(o§f)
and coincide. The same happens in other cases analogous to this.

Now examin another eventuality.
(Yl, Y2, 1)2} E + n’ 2 &#x3E; 0 and suppose the bichar-

acteristic B0 issuing from e hits the corner in eo and reflects along Po.
By remark 2.1 ~Oo belongs also to and then ~Oo

may be in WF(hi). So this singularity should propagate along 
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or by theorem 4.2. It can be verify that Po coincides with 
and along this line the singularity ~oo propagates.

We conclude this section resuming how the singularities of the data
gl, g, on the face common boundary to and 

propagate.
Let eo = (s, y2; o, r2) E WF(Y1) u WF(g2) .
It is known that over any ~Oo E T*(l!~+ X 1~’) pass either 0, 2 (1 incoming,

1 outgoing) or 4 (2 incoming, 2 outgoing) bicharacteristics according
to c2 cos &#x3E; a2, ’I2 &#x3E; o2 &#x3E; c2 cos or a &#x3E; 772 2-

If only two bicharacteristics pass over eo, they must be incident
(incoming) and reflected (outgoing) bicharacteristics for the slow speed
region that is ~3.

When the bicharacteristics incident in eo do not issue from any
singularity of the data 99, 1p, 11, f then the solution v = v2) is smooth
along these incoming rays but the singularity eo of the data (91, 92)
propagate along the outgoing rays.
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