RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ALESSANDRO PEROTTI

Extension of CR-forms and related problems

Rendiconti del Seminario Matematico della Università di Padova, tome 77 (1987), p. 37-55

http://www.numdam.org/item?id=RSMUP_1987_77_37_0

© Rendiconti del Seminario Matematico della Università di Padova, 1987, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Extension of CR-Forms and Related Problems.

Alessandro Perotti (*)

Introduction.

Let D be a bounded domain of \mathbb{C}^n , $n \geqslant 3$, whose boundary contains a real hypersurface S of class C^1 , connected, with boundary ∂S , and such that $A = \partial D \setminus S$ is a non empty piecewise C^1 real hypersurface. Assume that there exists a family $\{V_j\}_{j\in\mathbb{N}}$ of (n-3)-complete open sets such that $\overline{V}_{j+1} \subset V_j$, $\left(\bigcap_{j\in\mathbb{N}} V_j\right) \cap \overline{D} = \overline{A}$.

In particular these conditions are satisfied when A is contained in the zero-set of a pluriharmonic function, a situation which is considered in [11].

We show (Theorem 1) that every locally Lipschitz CR-form of type (p,0) on \mathring{S} extends, in a unique way, by a (p,0)-form holomorphic on D and continuous on $D \cup \mathring{S}$.

This result is obtained employing the techniques used in [11], and is based on the existence of primitives of Martinelli-Bochner-Koppelman integral kernel adapted to the sets V_i .

The result shown here sharpens what obtained in [11], [13], [14], where the extension problem is posed only for *CR*-functions, and on more particular domains.

Furthermore, we consider CR-forms of type (p,q) on S, with q>0. In this case extendibility depends on the Levi convexity of S, as shown by Andreotti and Hill [4] and Kohn and Rossi [8] when S is the boundary of a compact region. However, under the following assumptions we can obtain a jump theorem.

(*) Indirizzo dell'A.: Scuola Normale Superiore, 56100 Pisa.

Let D be a bounded domain of \mathbb{C}^n , $n \geqslant 2$, of the type considered above, with A of class C^1 . Let $2 \leqslant s \leqslant n-2$ be a fixed integer. Assume that there exists a family $\{V_j\}_{j \in \mathbb{N}}$ of (n-s-2)-complete open sets such that $\overline{V}_{j+1} \subset V_j$, $\left(\bigcap_{i \in \mathbb{N}} V_i\right) \cap \overline{D} = \overline{A}$.

Then we can show (Theorem 2) that if 0 , every regular <math>CR-form of type (p, q) on S is the jump across S between two $\bar{\partial}$ -closed forms defined on D and on $\mathbf{C}^a \setminus (\bar{D} \cup \bigcap_{i \in N} \bar{V}_i)$.

Finally, we give some applications of the jump theorem under pseudoconvexity assumptions on S.

We obtain some results about the $\bar{\partial}_b$ -problem and the Cauchy problem for $\bar{\partial}$ -operator. In particular, extension theorems for CR-forms of type (p,q) are obtained (Theorems 3, 4). We prove these results for forms of class C^m , $m \leq +\infty$. In the case of C^∞ forms, these problems have been considered by Andreotti and Hill in [4], under weaker conditions for S.

We wish to acknowledge the help and stimulation received from G. Tomassini.

1. Preliminaries.

1) We recall the Martinelli-Bochner-Koppelman formula (see [6] Ch. 1 and [1] Ch. 1).

Let Δ be the diagonal of $\mathbb{C}^1 \times \mathbb{C}^2$. For $(z, \zeta) \in \mathbb{C}^2 \times \mathbb{C}^2 \setminus \Delta$, we consider the differential form

$$U(z,\zeta) = \frac{(n-1)!}{(2\pi i)^n} \sum_{j=1}^n (-1)^{j-1} \frac{\vec{z}_j - \vec{\zeta}_j}{|z - \zeta|^{2n}} (\overline{dz_1} - \overline{d\zeta_1}) \wedge \dots \wedge (\overline{dz_j} - \overline{d\zeta_j}) \wedge \dots \wedge (\overline{dz_n} - \overline{d\zeta_n}) \wedge dz_1 \wedge \dots \wedge dz_n.$$

 $U(z,\zeta) \in C^{\infty}_{(n,n-1)}(\mathbb{C}^{n} \times \mathbb{C}^{n} \setminus \Delta)$, and we have the decomposition

$$U(z,\zeta) = \sum_{q=0}^{n-1} U_{0,q}(z,\zeta)$$

in forms $U_{0,q}(z,\zeta)$ of type (n,n-q-1) with respect to z and type (0,q) with respect to ζ .

Let $\mu_q(z,\zeta)$ be the form such that $U_{0,q} = \mu_q \wedge dz_1 \wedge ... \wedge dz_n$. For

 $0 \le p \le n$ and $0 \le q \le n-1$, we consider the forms

$$U_{p,q}(z,\zeta) = (-1)^{p(n-1)} \mu_q(z,\zeta) \wedge \sum_{|I|=p}^\prime \sigma(I) \, dz [I] \wedge d\zeta_I \, ,$$

where $dz[I] = dz_1 \wedge ... \wedge \widehat{dz}_{i_1} \wedge ... \wedge \widehat{dz}_{i_p} \wedge ... \wedge dz_n$, $\sigma(I)$ is the sign determined by $dz_I \wedge dz[I] = \sigma(I) dz_1 \wedge ... \wedge dz_n$, and the sum is taken on increasing multiindices. $U_{p,q}$ is C^{∞} on $\mathbb{C}^n \times \mathbb{C}^n \setminus A$, of type (n-p, n-q-1) in z and (p,q) in ζ . We set $U_{p,-1} \equiv U_{p,n} \equiv 0$.

REMARK. The forms $U_{p,q}$ introduced above differ in sign from the corresponding forms defined in [1]. This is due to the fact that they are considered as forms on the product manifold $\mathbb{C}^n \times \mathbb{C}^n$, and not as double forms.

Let D be a bounded domain of \mathbb{C}^n with piecewise C^1 boundary. The orientation of D is defined by the form $dx_1 \wedge ... \wedge dx_n \wedge dy_1 \wedge ... \wedge dy_n$, where $z_{\alpha} = x_{\alpha} + iy_{\alpha}$ ($\alpha = 1, ..., n$), and ∂D has the orientation induced from D.

For $0 \le p$, $q \le n$, let f be a continuous (p, q)-form on \overline{D} such that $\overline{\partial} f$ (defined in the weak sense) is also continuous on \overline{D} . Then the Martinelli-Bockner-Koppelman formula holds:

$$\begin{split} \int_{\partial D} & f(z) \wedge U_{r,q}(z,\,\zeta) - \!\!\!\int_{D} & \bar{\partial} f(z) \wedge U_{r,q}(z,\,\zeta) + \bar{\partial} \!\!\!\int_{D} & f(z) \wedge U_{r,q-1}(z,\,\zeta) = \\ & = \left\{ \begin{array}{ll} (-1)^{q} f(\zeta) & \text{if } \zeta \in D \;, \\ 0 & \text{if } \zeta \notin \bar{D} \;. \end{array} \right. \end{split}$$

The form $U(z,\zeta)$ is $\bar{\partial}$ -closed on $\mathbb{C}^n \times \mathbb{C}^n \setminus \Delta$ (see [6] 1.7) Since the component of $\bar{\partial} U$ of type (n, n-q) in z and (0, q) in ζ is $\bar{\partial}_z U_{0,q} + \bar{\partial}_\zeta U_{0,q-1}$, the condition $\bar{\partial} U = 0$ is equivalent to the property

$$\bar{\partial}_z U_{0,q} = -\bar{\partial}_\zeta U_{0,q-1} \quad \text{ for } 0 \leqslant q \leqslant n$$

(indices z, ζ mean differentiation with respect to z and ζ respectively). This property obviously holds for μ_q , and so for $U_{r,q}$:

(1)
$$\bar{\partial}_z U_{p,q} = -\bar{\partial}_\zeta U_{p,q-1} \quad \text{for } 0 \leqslant p, q \leqslant n .$$

In particular, $\bar{\partial}_z U_{p,0} = \bar{\partial}_\zeta U_{p,n-1} = 0$.

2) In order to apply the integral representation formula which we have just mentioned, we need some primitives of the kernel $U(z, \zeta)$.

We recall that an open set D of \mathbb{C}^n is called q-complete if there exists an exhaustion function for D which is strongly q-plurisubharmonic (i.e. its Levi form has at least n-q positive eigenvalues at every point of D). Such an open set is q-cohomologically complete, i.e. $H^p(D, \mathcal{F}) = 0$ for every p > q and every coherent analytic sheaf \mathcal{F} on D ([3]).

PROPOSITION 1. For fixed $0 \leqslant s \leqslant n-2$, let $V \subseteq \mathbb{C}^n$, n > 1, be a (n-s-2)-complete open set. Then we can find forms $\eta_{\mathfrak{p},\mathfrak{q}}(z,\zeta)$ $(0 \leqslant p \leqslant n, 0 \leqslant q \leqslant s)$, of class C^{∞} on $V \times (\mathbb{C}^n \setminus \overline{V})$, of type (n-p, n-q-2) in z and (p,q) in ζ , such that

$$U_{p,0}(z,\zeta) = \bar{\partial}_z \eta_{p,0}(z,\zeta)$$

$$U_{p,q}(z,\zeta) = \bar{\partial}_z \eta_{p,q}(z,\zeta) + \bar{\partial}_\zeta \eta_{p,q-1}(z,\zeta) \quad \text{ for } 1 \leqslant q \leqslant s.$$

PROOF. Set $U_p(z,\zeta):=\sum_{q=0}^{n-1}U_{p,q}(z,\zeta)\in C^\infty_{(n,n-1)}(\mathbb{C}^n\times\mathbb{C}^n\setminus\varDelta)$. From (1) we have that U_p is $\bar{\partial}$ -closed on $\mathbb{C}^r\times\mathbb{C}^n\setminus\varDelta$. Let $\{B_\alpha\}_{\alpha\in J}$ be a locally finite family of Stein open subsets of $\mathbb{C}^n\setminus\overline{V}$ which covers $\mathbb{C}^n\setminus\overline{V}$. For fixed $\alpha\in J$, $V\times B_\alpha$ is (n-s-2)-complete, therefore (n-s-2)-cohomologically complete. Then we can find for any $0\leqslant p\leqslant n$ a form $\eta_p^\alpha\in C^\infty_{(n,n-2)}(V\times B_\alpha)$ such that $\bar{\partial}\eta_p^\alpha=U_p$ on $V\times B_\alpha$.

Let $\{\varphi_{\alpha}\}_{\alpha\in J}$ be a C^{∞} partition of unity subordinate to the covering $\{B_{\alpha}\}_{\alpha\in J}$.

$$\det^{\kappa_{\zeta}} \eta_{p}(z,\zeta) := \sum_{\alpha \in J} \varphi_{\alpha}(\zeta) \eta_{p}^{\alpha}(z,\zeta) \in C^{\infty}_{(n,n-2)} \big(V \times (\mathbb{C}^{n} \setminus \overline{V}) \big).$$

Then we have $\bar{\partial}\eta_{p} = U_{p} + \sum_{\alpha \in J} \bar{\partial}_{\zeta} \varphi_{\alpha} \wedge \eta_{p}^{\alpha}$.

Let $\eta_p = \sum_{q=0}^{n-2} \eta_{p,q}$ be the decomposition of η_p in forms $\eta_{p,q}$ of type (n-p, n-q-2) in z and (p,q) in ζ . By comparison of types, we obtain in particular $\bar{\partial}_z \eta_{p,0} = U_{p,0}$ and the proposition is proved for s=0.

Now take $s \geqslant 1$. We have $\tilde{\partial}(\eta_{\mathfrak{p}}^{\alpha} - \eta_{\mathfrak{p}}^{\beta}) = 0$ on $V \times (B_{\alpha} \cap B_{\beta})$, and then we can find $\gamma_{\mathfrak{p}}^{\alpha\beta} \in C_{(n,n-3)}^{\infty}(V \times (B_{\alpha} \cap B_{\beta}))$ such that $\tilde{\partial}\gamma_{\mathfrak{p}}^{\alpha\beta} = \eta_{\mathfrak{p}}^{\alpha} - \eta_{\mathfrak{p}}^{\beta}$.

Set
$$\gamma_p(z,\zeta) := \sum_{\alpha,\beta\in J} \bar{\partial}_{\zeta} \varphi_{\alpha}(\zeta) \wedge \varphi_{\beta}(\zeta) \gamma_p^{\alpha\beta}(z,\zeta) \in C_{(n,n-2)}^{\infty}(V \times (\mathbb{C}^n \setminus \overline{V}))$$
. Then

$$egin{aligned} ar{\partial}(\eta_{_{m{p}}}+\gamma_{_{m{p}}}) &= U_{_{m{p}}} + \sum_{lpha \in J} ar{\partial}_{\zeta} arphi_{lpha} \wedge \eta_{_{m{p}}}^{lpha} - \sum_{lpha,eta \in J} ar{\partial}_{\zeta} arphi_{lpha} \wedge \eta_{_{m{p}}}^{lpha} - \eta_{_{m{p}}}^{eta}) &= U_{_{m{p}}} - \sum_{lpha,eta \in J} ar{\partial}_{\zeta} arphi_{lpha} \wedge \eta_{_{m{p}}}^{lphaeta} \,. \end{aligned}$$

If $\gamma_{p} = \sum_{q=1}^{n-2} \gamma_{p,q}$ is the decomposition in forms $\gamma_{p,q}$ of type (n-p, n-q-2) in z and (p,q) in ζ , by comparison of types we obtain

$$ar{\partial}_z \eta_{r,0} = U_{r,0}; \quad ar{\partial}_z (\eta_{r,1} + \gamma_{r,1}) + ar{\partial}_\zeta \eta_{r,0} = U_{r,1}$$

and the proposition is proved for s = 1.

If s > 1, it is sufficient to solve the equation $\bar{\partial} \tau_{p}^{\alpha\beta\delta} = \gamma_{p}^{\alpha\beta} + \gamma_{p}^{\beta\delta} + \gamma_{p}^{\delta\delta}$ on $V \times (B_{\alpha} \cap B_{\beta} \cap B_{\delta})$ and then consider the form

$$\tau_{\boldsymbol{v}}(\boldsymbol{z},\zeta) := \sum_{\alpha,\beta,\delta\in J} \bar{\partial}_{\boldsymbol{\zeta}} \varphi_{\alpha}(\boldsymbol{\zeta}) \wedge \bar{\partial}_{\boldsymbol{\zeta}} \varphi_{\beta}(\boldsymbol{\zeta}) \wedge \varphi_{\delta}(\boldsymbol{\zeta}) \, \tau_{\boldsymbol{v}}^{\alpha\beta\delta}(\boldsymbol{z},\zeta) \; .$$

Then we have

$$\delta(\eta_{p}+\gamma_{p}+ au_{p})=U_{p}+\sum\limits_{lpha,eta,\delta}ar{\partial}_{\zeta}arphi_{lpha}\wedgear{\partial}_{\zeta}arphi_{eta}\wedgear{\partial}_{\zeta}arphi_{\delta}\wedge$$
 ,

and therefore

$$egin{aligned} ar{\partial}_z \eta_{p,0} &= U_{p,0}\,; & ar{\partial}_z (\eta_{p,1} + \gamma_{p,1}) + ar{\partial}_{\xi} \eta_{p,0} &= U_{p,1}\,; \ ar{\partial}_z (\eta_{p,2} + \gamma_{p,2} + au_{p,2}) + ar{\partial}_{\xi} (\eta_{p,1} + \gamma_{p,1}) &= U_{p,2}\,. \end{aligned}$$

By induction we can prove the proposition for any $0 \le s \le n-2$.

REMARK. Given a sequence $\{V_j\}_{j\in\mathbb{N}}$ of open sets satisfying the hypothesis of Proposition 1, with $\overline{V}_{j+1}\subset V_j$, the forms $\eta^j_{p,q}$ defined on $V_j\times (\mathbb{C}^n\setminus \overline{V}_j)$ can be constructed in such a way that $\eta^j_{p,q}(z,\zeta)==\eta^{j+1}_{p,q}(z,\zeta)$ if $z\in V_{j+1}$ and dist $(\zeta,V_j)>1/j$. In fact, we can construct the covering \mathfrak{U}^{j+1}_j of $\mathbb{C}^n\setminus \overline{V}_{j+1}$ recursively by taking a locally finite covering \mathfrak{U}^{j+1}_j of $\overline{V}_j\setminus \overline{V}_{j+1}$ with balls of radius less than 1/4(j+1), and then setting $\mathfrak{U}^{j+1}_j:=\mathfrak{U}^j\cup\mathfrak{U}^{j+1}_j$, where \mathfrak{U}^j is the covering of $\mathbb{C}^n\setminus \overline{V}_j$ already constructed. Then on the set $\{\zeta\in\mathbb{C}^n\colon \mathrm{dist}\,(\zeta,V_j)>1/j\}$ the coverings \mathfrak{U}^j and \mathfrak{U}^{j+1} coincide, and if $B\in\mathfrak{U}^j$ is such that

 $B \cap \{\zeta \in \mathbb{C}^n : \text{dist } (\zeta, V_j) > 1/j\} \neq \emptyset$, then we have $B \cap B_1 = \emptyset$ for every $B_1 \in \mathcal{U}_1^{j+1}$. Therefore, the partition of unity subordinate to \mathcal{U}_j^{j+1} can be taken equal to that subordinate to \mathcal{U}_j^{j+1} on the set

$$\{\zeta \in \mathbb{C}^n : \operatorname{dist}(\zeta, V_j) > 1/j\}$$
.

2. Extension of CR-forms of type (p, 0).

- 1) Let D be a bounded domain of \mathbb{C}^n , $n \geqslant 3$, with the following properties:
- I) ∂D contains a real hypersurface S of class C^1 , connected with boundary ∂S ;
 - II) $A := \partial D \setminus S \neq \emptyset$ is a piecewise C^1 real hypersurface;
- III) there exists a family $\{V_i\}_{i\in\mathbb{N}}$ of (n-3)-complete open sets such that $\overline{V}_{i+1}\subset V_i$, $\left(\bigcap_{i\in\mathbb{N}}V_i\right)\cap\overline{D}=\overline{A}$.

Among the open sets of this type there are those considered in [11] where A is contained in the zero-set of a pluriharmonic function.

REMARK. It can be shown (the proof is not trivial) that the complement of a (n-2)-complete open set cannot have compact components. This implies that if D verifies properties I), II), III), and j is so large that $S \setminus V_j$ is connected, then the component of $\mathbb{C}^n \setminus (\overline{D} \cup \overline{V}_j)$ whose boundary contains $S \setminus V_j$ is unbounded.

In order to obtain an extension theorem for CR-forms of type (p,0) (the weak solutions of the tangential Cauchy-Riemann equation), we shall need the following result, that in the case of functions is proved in [11].

PROPOSITION 2. Let Σ be an oriented C^1 real hypersurface of \mathbb{C}^n . Let f be a locally Lipschitz CR-form of type (p,0) on Σ . For any C^1 (n+r)-chain C_{n+r} of Σ and any (n-p,r-1)-form θ , of class C^{∞} on a neighbourhood of C_{n+r} , the following formula holds:

PROOF. We can repeat the proof given in [11], using the kernel $U_{p,0}$ in place of the Martinelli-Bochner kernel $U_{0,0}$.

2) Now we are able to prove the extension theorem for CR-forms of type (p, 0).

THEOREM 1. Let $D \subseteq \mathbb{C}^n$, n > 3, be a bounded domain that verifies conditions I), II), III), and $0 \le p \le n$. Then every locally Lipschitz CR-form f on \mathring{S} of type (p, 0) extends, in a unique way, by a (p, 0)-form F, holomorphic on D and continuous on $D \cup \mathring{S}$.

PROOF. Let $j \in \mathbb{N}$ be a fixed integer.

Let D' be an open set with C^1 boundary such that $D \setminus V_j \subset D' \subset D$ and $\overline{D}' \cap \overline{A} = \emptyset$. We set $S' := S \cap \overline{D}'$ and $A' := \partial D' \setminus S'$.

Suppose we have found the extension F. Then the Martinelli-Bochner-Koppelman formula applied on D' gives

$$F(\zeta) = \int_{S'} f(z) \wedge U_{p,0}(z,\zeta) + \int_{A'} F(z) \wedge U_{p,0}(z,\zeta) \quad \text{if } \zeta \in D'.$$

For $z \in D \cap V_i$ and $\zeta \in \mathbb{C}^n \setminus \overline{V}_i$, we have

$$F(z) \wedge U_{p,0}(z,\zeta) = (-1)^p d_z (F(z) \wedge \eta^i_{p,0}(z,\zeta)),$$

where $\eta_{p,0}^i$ is the C^{∞} form on $V_j \times (\mathbb{C}^n \setminus \overline{V}_j)$ given by Proposition 1. Therefore

$$(*) \quad F(\zeta) = \int\limits_{S'} \!\! f(z) \wedge U_{p,0}(z,\zeta) - (-1)^p \!\! \int\limits_{\partial S'} \!\! f(z) \wedge \eta^j_{p,0}(z,\zeta) \quad \text{ if } \; \zeta \in D \backslash \overline{V}_j \; .$$

Since (*) holds for every $j \in \mathbb{N}$, the uniqueness of the extension follows.

Now we prove existence. Let $F(\zeta)$ be the $C^{\infty}(p, 0)$ -form defined on $\mathbb{C}^n \setminus (S \cup \overline{V}_j)$ by (*). First we show that F is holomorphic on $\mathbb{C}^n \setminus (S \cup \overline{V}_j)$:

$$egin{aligned} ar{\partial} F(\zeta) &= (-1)^{p-1} \!\!\int_{S'} \!\! f(z) \! \wedge \! ar{\partial}_{arsigma} \, U_{p,\mathbf{0}}(z,\zeta) - \!\!\!\int_{\partial S'} \!\! f(z) \! \wedge \! ar{\partial}_{arsigma} \, \eta_{p,\mathbf{0}}^{i}(z,\zeta) = \ &= (-1)^{p} \!\!\int_{S'} \!\! f(z) \! \wedge \! ar{\partial}_{z} \, U_{p,\mathbf{1}}(z,\zeta) - \!\!\!\int_{\partial S'} \!\! f(z) \! \wedge \! ar{\partial}_{arsigma} \, \eta_{p,\mathbf{0}}^{i}(z,\zeta) \;. \end{aligned}$$

REMARK. By definition of integration with respect to z (see [6] Ch. 1), if f(z) and $\alpha(z, \zeta)$ are differential forms and C is a chain of dimension dim $C = \deg f + \deg \alpha(\cdot, \zeta)$, we have

$$ar{\partial}_{\zeta}\left(\int\limits_{C}f(z)\wedgelpha(z,\zeta)
ight)=(-1)^{\deglpha(\cdot,\,\zeta)}\int\limits_{C}f(z)\wedgear{\partial}_{\zeta}lpha(z,\,\zeta)\;.$$

We go back to our proof.

From Proposition 2 and Proposition 1 we obtain

$$\begin{split} \bar{\partial} F(\zeta) = & \int\limits_{\partial S'} \!\! f(z) \wedge [\, U_{p,1}(z,\,\zeta) - \bar{\partial}_{\zeta} \eta^{j}_{p,0}(z,\,\zeta)] = \\ = & \int\limits_{\partial S'} \!\! f(z) \wedge \bar{\partial}_{z} \eta^{j}_{p,1}(z,\,\zeta) = (-1)^{p} \!\! \int\limits_{\partial (\partial S')} \!\! f(z) \wedge \eta^{j}_{p,1}(z,\,\zeta) = 0 \;. \end{split}$$

We set

$$egin{aligned} F_{1}(\zeta) := & \int_{S'} \!\! f(z) \! \wedge U_{p,0}(z,\zeta) & ext{for } \zeta \in \mathbf{C}^n \!\! \setminus \!\! S \;, \ & F_{2}(\zeta) := (-1)^p \!\! \int_{\partial S'} \!\! f(z) \! \wedge \! \eta^j_{p,0}(z,\zeta) & ext{for } \zeta \in \mathbf{C}^n \!\! \setminus \!\! ar{V}_j \end{aligned}$$

and denote by F_i^+ , F_i^- (i=1,2) their restrictions to $D \setminus \overline{V}_i$ and $\mathbb{C}^n \setminus (\overline{D} \cup \overline{V}_i)$ respectively. Since f is locally Lipschitz, F_1^{\pm} extend continuously to $S \setminus \overline{V}_i \subset S'$, and we have $F_1^+ - F_1^- = f$ on $S \setminus \overline{V}_i$.

continuously to $S \setminus \overline{V}_i \subset S'$, and we have $F_1^+ - F_1^- = f$ on $S \setminus \overline{V}_i$. Moreover, $F_2^+ = F_2^-$ on $S \setminus \overline{V}_i$ and therefore F extends continuously to $(D \setminus \overline{V}_i) \cup (S \setminus \overline{V}_i)$ and $F = f + F_1^- - F_2^-$ on $S \setminus \overline{V}_i$.

Now take the integer j as in the remark in section 2.1. Let W be a bounded Stein neighbourhood of \overline{D} and $\zeta \in \mathbb{C}^n \setminus (\overline{V}_j \cup \overline{W})$ fixed. On W we can find a primitive ψ of $U_{p,0}(\cdot,\zeta)$. Then from Proposition 2 we have

$$\int\limits_{S'}\!\!f(z)\!\wedge U_{p,\mathbf{0}}(z,\zeta)=(-1)^p\!\!\int\limits_{\partial S'}\!\!f(z)\!\wedge\!\psi(z)$$

and therefore

$$F(\zeta) = (-1)^{p} \int\limits_{\partial S'} \!\! f(z) \wedge [\psi(z) - \eta^{j}_{p,0}(z,\zeta)] \ .$$

Since $\bar{\partial}_z[\psi - \eta^i_{p,0}(\cdot,\zeta)] = 0$ on $V_i \cap W$, there exists ψ' such that $\psi - \eta^i_{p,0}(\cdot,\zeta) = \bar{\partial}_z \psi'$, and then

Therefore $F \equiv 0$ on $\mathbb{C} \setminus (\overline{V}_i \cup \overline{W})$ and the remark in 2.1 implies that $F_1^- - F_2^- = 0$ on $S \setminus \overline{V}_i$, and F = f on $S \setminus \overline{V}_i$.

Thus we have found an extension F_j of f on $D \setminus \overline{V}_j$, for any $j \in \mathbb{N}$ sufficiently large. If j' > j, the (p,0)-form $F_j - F_j$. has components which are holomorphic on $D \setminus \overline{V}_j$ and vanish on $S \setminus \overline{V}_j$. Therefore $F_j - F_j = 0$ on $D \setminus \overline{V}_j$. In fact, if g is such a component, the function obtained extending g by zero on a connected neighbourhood of a point of $S \setminus \overline{V}_j$ is holomorphic in the weak sense, and therefore zero by uniqueness of analytic continuation.

By the same reasoning we can obtain again the uniqueness of the extension. \blacksquare

3. Applications of the extension theorem.

1) Let $\varphi_1, ..., \varphi_m$ be pluriharmonic C^2 functions on \mathbb{C}^n . Let D be a domain verifying I) and II) and such that $A \subset \bigcup_{i=1}^m \{\varphi_i = 0\}$ and $D \subset \bigcap_{i=1}^m \{\varphi_i > 0\}$. This situation was considered in [11] for m = 1 and [13], for m = 2.

for m=2. Set $\psi_j:=\prod_{i=1}^m \varphi_i-1/j$ and $V_j:=\{z\in \mathbb{C}^n\colon \varphi_j(z)<0\}$. For $z_0\in\partial V_j$, the holomorphic tangent space to ∂V_j at z_0 is

$$T_{z_0}(\partial V_j) = \left\{ w \in \mathbf{C}^n \colon \partial \psi_j(\varepsilon_0)(w) = \sum_{i=1}^m \partial \varphi_i(z_0)(w) \prod_{h \neq i} \varphi_h(z_0) = 0
ight\},$$

and the Levi form of ψ_i is given by

$$\mathscr{L}_{\psi_{j},z_{0}}(w) = \sum_{i=1}^{m} \sum_{k \neq i} \overline{\partial \varphi_{i}(z_{0})(w)} \ \partial \varphi_{k}(z_{0})(w) \prod_{k \neq i,k} \varphi_{k}(z_{0}) \ .$$

Consider the sets

$$V_{z..i} := \{z \in \mathbb{C}^n : \varphi_i(z) < \varphi_i(z_0)\} \quad (i = 1, ..., m).$$

The subspace of $T_{z_0}(\partial V_i)$

$$E_{z_{\mathbf{0}}} := \{w \in \mathbf{C}^n \colon \partial \varphi_i(z_{\mathbf{0}})(w) = 0 \ \text{ for } i = 1, \dots, m\} = \bigcap_{i=1}^m T_{z_{\mathbf{0}}}(\partial V_{z_{\mathbf{0}},i})$$

has dimension not less than n-m, and $\mathcal{L}_{\psi_j,z_o}E_{z_o}=0$. Therefore the Levi form of ψ_j restricted to $T_{z_o}(\partial V_j)$ has at most n-1-(n-m)=m-1 negative eigenvalues at each point of ∂V_j . The set V_j is then (weakly) (m-1)-pseudoconvex, and so it is (m-1)-complete (see [16]).

If $m \le n-2$ the family $\{V_j\}_{j \in \mathbb{N}}$ satisfies condition III) of the extension theorem, which can then be applied on D.

2) Theorem 1 can also be applied to deduce the well known theorem on global extension of CR-forms of type (p, 0) defined on the boundary of a bounded domain of \mathbb{C}^n (see [7] Th. 2.3.2' and [1] Th. 3.2).

COROLLARY 1. Let U be a bounded domain of \mathbb{C}^n , $n \geqslant 3$, with ∂U of class C^1 and connected. Then every locally Lipschitz CR-form of type (p,0) on ∂U extends, in a unique way, by a (p,0)-form holomorphic on U and continuous on \overline{U} .

PROOF. Let $z_0 \in \partial U$ and $r_0 > 0$ such that $D := U \setminus B(z_0, r_0) \neq \emptyset$ and $S := \partial U \setminus B(z_0, r_0)$ is connected. We set $A := \partial B(z_0, r_0) \cap U$ and $V_j := B(z_0, r_0 + 1/j), j \in \mathbb{N}$. Since the set D verifies conditions I), III) of Theorem 1, we obtain the extension on D.

Since z_0 and r_0 are arbitrary, we have the extension on the whole U.

REMARK. Corollary 1 holds also for n=2 and for CR-forms of type (p,0) only continuous on ∂U (see [1]).

3. The extension theorem can also be applied to the following situation, that generalizes the result contained in [14] Th. 1.

Let D be a domain of \mathbb{C}^n , n > 3, verifying I) and II). Suppose A relatively open in a hypersurface M defined by a C^{∞} function ϱ on a Stein open set U of \mathbb{C}^n . Suppose also that there exists r > 0 such that ϱ is strongly (n-3)-plurisubharmonic on the set $\{z \in U : 0 < \varrho(z) < r\}$.

Then the extension theorem holds on D. In fact, the open sets $V_i := \{z \in U : \varrho(z) < 1/j\}$ (j > 1/r) verify condition III) of Theorem 1. To see this, consider the functions $\varphi_i := \varphi - \varepsilon_i \log (-\varrho + 1/j)$, where

 φ is a strongly plurisubharmonic exhaustion function for U. If $\varepsilon_i > 0$ is small enough, we obtain, after restricting U if necessary, that φ_i is a strongly (n-3)-plurisubharmonic exhaustion function for V_i .

4. « Jump « theorem for CR-forms of type (p, q).

1) Now we consider CR-forms of type (p,q), with q>0. As we shall see later, in this case it is not possible to obtain an extension theorem as for (p,0)-forms without imposing a pseudoconvexity condition on S.

However, we can prove a «jump» theorem, i.e. a CR-form can be written as the difference between two $\bar{\partial}$ -closed forms, defined on the two sides of the hypersurface (additive Riemann-Hilbert problem).

In the case when the CR-forms are defined on the boundary of a compact set, this result is proved in [1] Th. 2.10-2.11.

In the following we deal with bounded domains of \mathbb{C}^n , $n \ge 2$, satisfying conditions I) and II) of 2.1, where A is of class C^1 and has the following property:

$$\begin{array}{c} \mathrm{III')} \ \ \mathrm{for} \ \ \mathrm{a} \ \ \mathrm{fixed} \ \ 2 \leqslant s \leqslant n-2, \ \ \mathrm{there} \ \ \mathrm{exists} \ \ \mathrm{a} \ \ \mathrm{family} \ \ \{V_j\}_{j \in \mathbb{N}} \ \ \mathrm{of} \\ (n-s-2)\text{-complete open sets such that} \ \ \overline{V}_{i+1} \subset V_i, \ \left(\bigcap_{j \in \mathbb{N}} V_j\right) \cap \overline{D} = \overline{A}. \end{array}$$

THEOREM 2. Let $D \subseteq \mathbb{C}^n$, $n \geqslant 2$, be a bounded domain satisfying properties I), II), III'). Let $0 \lessdot p \lessdot n$, $1 \lessdot q \lessdot s - 1$ or q = n - 1. Consider a (p,q)-form f of class C^1 on a neighbourhood of S, and suppose f is CR on \mathring{S} for $q \neq n - 1$. Then there exist two C^∞ forms of type (p,q) F^+ on D and F^- on $\mathbb{C}^n \setminus \left((\overline{D} \cup \bigcap_{i \in \mathbb{N}} \overline{V}_i)\right)$, continuous up to \mathring{S} , with $\eth F^+ = \bar{\delta}F^- = 0$ and $F^+ - F^- = f$ on \mathring{S} .

PROOF. Let $j \in \mathbb{N}$ be a fixed integer.

Let \tilde{f} be a C^1 extension of f on a neighbourhood of \overline{D} . From Martinelli-Bochner-Koppelman formula we get

and by Proposition 1, for $\zeta \notin \overline{V}_i$ we have

$$\begin{split} (2) \qquad &\int\limits_{A}\tilde{f}\wedge U_{p,q} = \int\limits_{A}\tilde{f}\wedge [\bar{\partial}_{z}\eta_{p,q}^{j} + \bar{\partial}_{\zeta}\eta_{p,q-1}^{j}] = \\ &= -(-1)^{p+q}\int\limits_{\partial S}f\wedge \eta_{p,q}^{j} - (-1)^{p+q}\int\limits_{A}\tilde{\partial}_{z}\tilde{f}\wedge \eta_{p,q}^{j} + \int\limits_{A}\tilde{f}\wedge\bar{\partial}_{\zeta}\eta_{p,q-1}^{j} \,. \end{split}$$

Then, if $1 \leq q \leq s-1$ we set

on $D \setminus \overline{V}_i$ and on $\mathbb{C}^n \setminus (\overline{D} \cup \overline{V}_i)$ respectively. Therefore we have

$$egin{aligned} ar{\partial} F^{\pm} &= (-1)^{p-1} \!\!\int_S f \! \wedge ar{\partial}_{arepsilon} U_{p,q} \! - (-1)^q \!\!\int_{\partial S} f \! \wedge ar{\partial}_{arepsilon} \eta^j_{p,q} = \ &= (-1)^p \!\!\int_S f \! \wedge ar{\partial}_{arepsilon} U_{p,q+1} \! - (-1)^q \!\!\int_{\partial S} f \! \wedge ar{\partial}_{arepsilon} \eta^j_{p,q} = \ &= (-1)^q \!\!\int_S f \! \wedge [U_{p,q+1} \! - ar{\partial}_{arepsilon} \eta^j_{p,q}] = (-1)^q \!\!\int_S f \! \wedge ar{\partial}_{arepsilon} \eta^j_{p,q+1} = 0 \; , \end{aligned}$$

since f is CR.

If q = n - 1, we consider the forms

$$F^{\pm} := (-1)^{n-1} \int\limits_{S} f \wedge U_{p,n-1} + (-1)^{n-1} \int\limits_{A} \tilde{f} \wedge U_{p,n-1} + (-1)^{n-1} \, \bar{\partial}_{\xi} \int\limits_{D} \tilde{f} \wedge U_{p,n-2} \, ,$$

which are $\bar{\partial}$ -closed since $\bar{\partial}_{\xi} U_{p,n-1} = 0$.

From (1) and (2) we now obtain

$$\left\{egin{aligned} F^+ &= ilde f + (-1)^p \int\limits_A ilde \partial_z ilde f \wedge \eta^j_{p,q} + (-1)^q \int\limits_D ilde \partial_z ilde f \wedge U_{p,q} \ F^- &= (-1)^p \int\limits_A ilde \partial_z ilde f \wedge \eta^j_{p,q} + (-1)^q \int\limits_D ilde \partial_z ilde f \wedge U_{p,q} \end{aligned}
ight.$$

(the first integral is missing for q = n - 1).

Since the integral $\int_{D} \bar{\partial}_{z} \tilde{f} \wedge U_{p,q}$ is absolutely convergent for every $\zeta \in \mathbb{C}^{n}$, F^{+} and F^{-} extend continuously up to $S \setminus \overline{V}_{i}$, and we have

$$|F^+|_{S \smallsetminus ar{V}_I} - F^-|_{S \smallsetminus ar{V}_I} = ilde{f}|_{S \smallsetminus ar{V}_I} = f|_{S \smallsetminus ar{V}_I}$$
 .

By the remark following Proposition 1, F^{\pm} define, as $j \in \mathbb{N}$ varies, two C^{∞} forms, $\bar{\partial}$ -closed on D and on $\mathbf{C}^{\wedge} \setminus (\bar{D} \cup \bigcap_{j \in \mathbb{N}} \bar{V}_j)$ respectively, continuous up to \mathring{S} , and such that $F^+ - F^- = f$ on \mathring{S} .

REMARK. If $S \in C^{\infty}$ and $f \in C^{m}_{(p,\varrho)}(S)$ $(m \geqslant 2)$, then F^{\pm} extend up to \mathring{S} as forms of class $C^{(m,\lambda)}$, with $\lambda \in (0,1)$ (i.e. the coefficients of F^{\pm} are C^{m} and their derivatives of order m are λ -Hölder).

This follows from Proposition 0.10 of [2] applied to the integral $\int_{D_{\varepsilon}} \bar{\partial}_{\varepsilon} \tilde{f} \wedge U_{\mathfrak{p},a}$, where $\{D_{\varepsilon}\}_{\varepsilon>0}$ is an increasing family of open sets with C^{∞} boundary such that $\bigcup_{\varepsilon>0} D_{\varepsilon} = D$ and $\bigcup_{\varepsilon>0} (S \cap \overline{D}_{\varepsilon}) = \mathring{S}$.

5. Applications.

1) A first application of Theorem 2 allows to obtain an extension theorem for CR-forms of type (p,q).

Let D be a domain which satisfies I) and II), with S contained in a smooth and strictly pseudoconvex hypersurface Σ and A of class C^1 . Assume that \overline{A} has a fundamental system of Stein neighbourhoods $\{V_j\}_{j\in\mathbb{N}}$ with boundaries ∂V_j transversal to Σ .

THEOREM 3. Let $0 \le p \le n$ and $1 \le q \le n - 3$. Let f be a (p, q)-form of class C^m on S $(2 \le m \le + \infty)$ and W a neighbourhood of \overline{A} . If f is CR on \mathring{S} , then there exists a (p, q)-form F of class C^{m-2} on $D \cup \mathring{S}$, $\overline{\delta}$ -closed on D, and such that $F|_{S \setminus W} = f_{S \setminus W}$.

In the proof of this theorem we need the following approximation lemma (for a proof see [15] p. 244 or [4] p. 785):

LEMMA. Let $V \subseteq \mathbb{C}^n$ be an open set and $G := \{z \in V : g(z) < 0 \text{ and } h(z) < 0\}$ where g, h are C^{∞} on V and $dg(z) \neq 0$ if g(z) = 0, $dh(z) \neq 0$ if h(z) = 0, $dg \wedge dh(z) \neq 0$ if g(z) = h(z) = 0. We suppose that \overline{G} is a compact connected region of \mathbb{C}^n . Let W be a neighbourhood of the set

 $\{z \in V : g(z) = h(z) = 0\}$. Then there exists a domain $G' \subset G$ defined on V by a C^{∞} function F such that $\partial G' \setminus \partial G \subset W$ and

$$\mathscr{L}_{F,z} \geqslant \alpha(z) \mathscr{L}_{g,z} + \beta(z) \mathscr{L}_{h,z}$$

for every $z \in \partial G'$, where α , $\beta \geqslant 0$, $\alpha + \beta = 1$ and

$$\operatorname{supp} \alpha \cap \partial G' \subset W \cup \{g = 0\}, \quad \operatorname{supp} \beta \cap \partial G' \subset W \cup \{h = 0\}.$$

Proof of Theorem 3. Let $\Sigma = \{\rho = 0\}$, where ρ is a strongly plurisubharmonic function on a neighbourhood U of \overline{D} . Let $\rho' \colon U \to \mathbb{R}$ be a C^{∞} function such that $\varrho' \leqslant \varrho$ on U, $\varrho' = \varrho = 0$ on $\widehat{S} \setminus W$ and $\varrho' < \varrho = 0$ on ∂S , and with the same convexity properties as ϱ .

Take $V_i \subseteq W$. We may suppose that V_i is defined by a strongly plurisubharmonic function ψ on a neighbourhood of V_i .

Let ψ' be a C^{∞} function on \mathbb{C}^n such that $\psi' = \psi$ on a small neighbourhood V of $(\partial V_i \setminus D) \cap \{\rho' > 0\}$ and $\psi' < 0$ on the component of $\{\varrho' \leq 0\} \setminus V$ which contains D.

The open set $D' := \{ \varrho' < 0 \} \cap \{ \psi' < 0 \}$ contains $\overline{D} \setminus \mathring{S}$, and $\partial D' \supset S \setminus W$. Applying the lemma to D' we can obtain a C^{∞} domain $D'' \subset D'$, strictly pseudoconvex, such that $D'' \supset \overline{D} \setminus \mathring{S}$ and $\partial D'' \supset S \setminus W$.

Since condition III') of 4.1 is verified for s = n - 2, we can apply Theorem 2 on D and obtain two $\bar{\partial}$ -closed forms F^+ on D and F^- on $\mathbb{C}^n \setminus \overline{D}$, of class $C^{(m,\lambda)}$ up to \mathring{S} (0 < λ < 1), such that $F^+ - F^- = f$ on \mathring{S} .

The form $F^-|_{\mathbf{C}^n \setminus \overline{D^*}}$ is C^m up to the boundary $\partial D''$. Let \widetilde{F}^- be a C^m extension to $\underline{\mathbf{C}^n}$, and let $\beta := \overline{\partial} \widetilde{F}^- \in C^{m-1}_{(p,q+1)}(\mathbf{C}^n)$. Then we have $\overline{\partial} \beta = 0$ and supp $\beta \subseteq \overline{D''}$. According to Theorem 4.3 of [1] (see also [9]), we can find a $u \in C^{m-2}_{(p,q)}(\mathbb{C}^n)$ with supp $u \subseteq \overline{D}^n$ and $\partial u = \beta$. Let $F := F^+ - \widetilde{F}^- + u \in C^{m-2}_{(p,q)}(D \cup \breve{S})$. Then $\partial F = -\partial \widetilde{F}^- + \partial u = 0$,

and we have $F|_{S \setminus W} = (F^+ - F^-)|_{S \setminus W} = f|_{S \setminus W}$.

REMARKS. (1) In particular, Theorem 3 can be applied when S is strictly pseudoconvex and A is contained in the zero-set of a pluriharmonic function.

- (2) If S is q-pseudoconvex, a theorem analogous to Theorem 4.3 of [1] holds for forms of certain types depending on q (see [12]). This can be applied as before to obtain the extension.
- (3) If CR-forms are C^{∞} , Theorem 3 is a particular case of a more general theorem which can be deduced from results of Andreotti and

Hill [4] and which holds under weaker convexity assumptions on S. These results are based on a difficult cohomology vanishing theorem, while in the preceding theorem only integral representation formulas are used.

Let D be a domain verifying conditions I) and II) of 2.1, with $S \subset \Sigma := \{z \in U : \varrho(z) = 0\}$, U open set of \mathbb{C}^{a} . Suppose that $\mathscr{L}_{\varrho,z}$ has at least r+1 positive eigenvalues for z in a neighbourhood W of S.

Let $\psi\colon U \to \mathbb{R}$ be strongly (n-r-1)-plurisubharmonic on a neighbourhood of the set $\{\psi=0\}$, such that $d\psi \neq 0$ on $\{\psi=0\}$, $\psi < 0$ on \overline{D} and $\{\psi=0\} \cap \Sigma \subset W$. Let $D':=\{\varrho < 0\} \cap \{\psi < 0\}$ be such that $D'\subset\subset U$ and $d\varrho \wedge d\psi \neq 0$ on $\Sigma \cap \{\psi=0\}$.

From the results of [4] we can obtain the following theorem.

THEOREM. If $0 \leqslant p \leqslant n$ and $0 \leqslant q \leqslant r-1$, every CR-form of type (p,q) of class C^{∞} on \breve{S} extends on $D \cup \breve{S}$ by a \eth -closed C^{∞} form.

PROOF. We can apply the lemma to D' and obtain a domain $D''=\{F=0\}$ contained in D' such that $D''\supset \overline{D} \setminus S$, $\partial D''\supset S$ and $\mathscr{L}_{F,z\mid T_z(\partial D'')}$ has at least r positive eigenvalues at each point $z\in \partial D''$. In fact, $\mathscr{L}_{\varrho,z}$ is positive definite on a r-dimensional subspace of $T_z(\partial D'')$, for every $z\in \partial D''\cap W$. The same holds for $\mathscr{L}_{\varrho,z}$, for z in a neighbourhood of $\{\psi=0\}$.

Let $V \subset U$ be an open neighbourhood of D'' such that $D \cup \mathring{S} \subset V$, $\partial D'' \setminus \mathring{S} \subset \partial V$. Now the theorem follows from Theorem 6 of [4] part I and Theorem 6 of [4] part II, since $\mathring{S} = \{z \in V : F(z) = 0\}$ and we have $D'' = V^- := \{z \in V : F(z) < 0\} \supset D$.

Now suppose that S is a C^{∞} real hypersurface defined by $\varrho = 0$ and let x_0 be a point of strict pseudoconvexity. Then there exixts an open neighbourhood U of x_0 such that $\overline{U} \cap \{\varrho \leq 0\}$ is biholomorphic to the intersection of a strictly convex set with a halfspace, and so it verifies the conditions considered in Remark (1).

Thus we obtain a local extension theorem for CR-forms, which generalizes the local extension theorem for CR-functions of H. Lewy [10]:

COROLLARY 2. There exists a neighbourhood S' of x_0 , relative to S, such that every CR (p,q)-form of class C^m $(2 \le m \le +\infty)$ on a neighbourhood of S' in S $(0 \le p \le n, \ 0 \le q \le n-3)$, extends by a δ -closed form on an open set D contained in the convex side, such that $\partial D \supset S'$.

REMARK. For C^{∞} forms, also this result is a particular case of a theorem of Andreotti and Hill (see Theorem 6 of [4] part I and Theorem 2

of [4] part II), which assures local extendibility of C^{∞} CR-forms of type (p,q) near a point $x_0 \in S$ where the Levi form has at least r+1 positive eigenvalues, for $0 \le q \le r-1$.

2) Now we consider the problem of extension of CR-forms outside D.

Suppose that S is strictly pseudoconvex and A is contained in the zero-set of a pluriharmonic function φ .

THEOREM 4. For $0 \le p \le n$, $1 \le q \le n-3$, let f be a CR-form of type (p,q) of class C^m on S $(2 \le m \le +\infty)$. Then

- (a) if $m<+\infty$ and W is an open neighbourhood of \overline{A} , there exists a (p,q)-form F of class C^{m-1} on $(\mathbf{C}^n \setminus \overline{D}) \cup \mathring{S}$ which is $\overline{\partial}$ -closed on $\mathbf{C}^n \setminus \overline{D}$ and such that $F|_{S \setminus W} = f|_{S \setminus W}$;
- (b) if $m = +\infty$, there exists a (p,q)-form F, C^{∞} on $(\mathbb{C}^n \setminus \overline{D}) \cup \mathring{S}$, such that $\bar{\partial} F = 0$ on $\mathbb{C}^n \setminus \overline{D}$ and $F|_{\widehat{S}} = f|_{\widehat{S}}$.

Proof. Since condition III') is verified for s = n - 2, we can apply Theorem 2 on D and obtain two $\bar{\partial}$ -closed forms F^+ on D and F^- on $\mathbb{C}^n \setminus \bar{D}$, of class C^m up to \mathring{S} , such that $F^+ - F^- = f$ on \mathring{S} .

Let $m < + \infty$. Let $\lambda > 0$ so small that the set $D' := \{z \in D: -\varphi(z) + \lambda |z|^2 > 0\}$ contains $D \setminus W$. Applying the lemma to D' we get a strictly pseudoconvex domain D'' with C^{∞} boundary which contains $D \setminus W$.

Let $u \in C^m_{(p,q-1)}(\overline{D}'')$ be such that $\bar{\partial}u = F^+$ (see [15] Th. 3). Let \tilde{u} be a C^m extension of u to \mathbb{C}^n . Set $F := \bar{\partial}\tilde{u} - F^-$. Then $F \in C^{m-1}_{(p,q)} \cdot ((\mathbb{C}^n \setminus \overline{D}) \cup \mathring{S})$ and $\bar{\partial}F = 0$, $F|_{S \setminus W} = (F^+ - F^-)|_{S \setminus W} = f|_{S \setminus W}$.

Now take $m = +\infty$. According to Theorem 2 of [13], we can find $u \in C^{\infty}_{(p,q-1)}(D \cup \mathring{S})$ such that $\bar{\partial}u = F^+$. Let \tilde{u} be a C^{∞} extension of u to \mathbb{C}^n .

Then $F := \bar{\partial} \tilde{u} - F^-$ is the desired extension of f.

3) Under the same assumptions, we consider the inhomogeneus $\bar{\partial}_b$ -problem on \mathring{S} :

$$(1) \bar{\partial}_b u = f$$

where f is a (p, q + 1)-form on \mathring{S} and u is a (p, q)-form on \mathring{S} .

COROLLARY 3. Let $0 \le q \le n-4$, and let f be a CR-form of type (p, q+1) of class C^m on S $(3 \le m \le +\infty)$. Then

- (a) if q>0 and $m=+\infty,$ there exists a solution $u\in C^{\infty}_{(p,q)}(\mathring{S})$ of (1);
- (b) if q=0 or $m<+\infty$ and W is an open neighbourhood of \overline{A} , there exists a (p,q)-form $u\in C^{m-2}_{(p,q)}(S\diagdown \overline{W})$ such that $\overline{\partial}_b u=f|_{S\diagdown W}$.

PROOF. For $j \in \mathbb{N}$ sufficiently large, consider the set $D_j := \{z \in D : \varphi(z) > 1/j\}$. Let $S_j := S \cap \overline{D}_j$.

According to Theorem 3, we can find a form $\tilde{f}_j \in C^{m-2}_{(p,q+1)}(D_j \cup \mathring{S}_j)$ such that $\partial \tilde{f}_j = 0$ on D_j and $\tilde{f}_j|_{S_{j-1}} = f|_{S_{j-1}}$.

As in the proof of Theorem 4, we can construct a smooth strictly pseudoconvex domain D'_j such that $\overline{D}_{j-1} \subset \overline{D'_j} \subset D_j \cup \mathring{S}_j$. Let $u_j \in C^{m-2}_{(p,q)}(\overline{D'_j})$ be such that $\overline{\partial} u_j = \widetilde{f}_j$ on D'_j . Then $\overline{\partial}_b(u_{j}|\mathring{S}_{j-1}) = f|\mathring{S}_{j-1}$.

Since $\bar{\partial}(u_j - u_{j+1|p'_j}) = 0$, if q > 0 and $m = +\infty$ we can find a $v_j \in C^{\infty}_{(p,q-1)}(\overline{D'_j})$ such that $u_j - u_{j+1|p'_j} = \bar{\partial}v_j$. Let \tilde{v}_j be a C^{∞} extension of v_j to \mathbb{C}^n . Replace u_{j+1} by $u'_{j+1} := u_{j+1} + \bar{\partial}\tilde{v}_j$. Then $u'_{j+1} \in C^{\infty}_{(p,q)}(\overline{D'_{j+1}})$ and $u'_{j+1|p'_j} = u_j$, $\bar{\partial}_b(u'_{j+1}|s'_j) = f^{\infty}_{|p|_j}$, and therefore we can glue the forms together and obtain the desired form u.

Now take q=0 or $m<+\infty$. For j sufficiently large, we have $\mathring{S}_{j-1}\supset S\setminus\overline{W}$. Then $u_{j|S\setminus\overline{W}}\in C^{m-2}_{(p,q)}(S\setminus\overline{W})$ and $\tilde{\partial}_b(u_{j|S\setminus\overline{W}})=f_{|S\setminus\overline{W}}$:

REMARK. Results similar to this have been obtained by Boggess [5] using an explicit integral formula for the solutions.

4) Finally, under the same hypotheses we consider the general Cauchy problem for $\bar{\partial}$:

(2)
$$\bar{\partial}u=f$$
, $u_{|\hat{S}}=g$

where f is a (p, q + 1)-form on $D \cup \mathring{S}$, g is a (p, q)-form on \mathring{S} and u is a (p, q)-form on $D \cup \mathring{S}$.

COROLLARY 4. Let $0 \leqslant q \leqslant n-3$, $f \in C^m_{(p,q+1)}(D \cup \mathring{S})$ and $g \in C^m_{(p,q)}(\mathring{S})$ $(2 \leqslant m \leqslant +\infty)$ such that $\tilde{\partial}f=0$ on D and $\tilde{\partial}_bb=f_{|\mathring{S}}$. Then

- (a) if q = 0 or q > 1 and $m = +\infty$, there exists a solution $u \in C^m_{(p,q)}(D \cup \mathring{S})$ of (2);
- (b) if q=1 or q>0 and $m<+\infty$, and W is an open neighbourhood of \overline{A} , there exists a form $u\in C^{m-2}_{(p,q)}((D\cup S)\setminus \overline{W})$ such that $\overline{\partial} u=f$ on $D\setminus \overline{W}$, $u_{|S}\setminus \overline{w}=g_{|S}\setminus \overline{w}$.

For q = 0 the solution is unique.

PROOF. Let $m=+\infty$. According to Theorem 2 of [13], we can find $w\in C^{\infty}_{(p,q)}(D\cup \mathring{S})$ such that $\bar{\partial}w=f$ on D. Then $\bar{\partial}_b(g-w_{|\mathring{S}})=0$.

If q=0, from Theorem 1 we can obtain an holomorphic extension $h \in C^{\infty}_{(x,0)}(D \cup \mathring{S})$ of $g-w_{|\mathring{S}}$ (see Proposition 0.10 of [2] and the remark following Theorem 2).

We set u:=w+h. Then we have $\bar{\partial}u=\bar{\partial}w=f$ on D and $u_{|\hat{S}}==w_{|\hat{S}}+h_{|\hat{S}}=g$.

If q > 1, from Corollary 3 we get a form $v \in C^{\infty}_{(p,q-1)}(\mathring{S})$ such that $\bar{\partial}_b v = g - w_{|\mathring{S}}$. Let \tilde{v} be a C^{∞} extension of v on $D \cup \mathring{S}$, and $u := w + \bar{\partial}\tilde{v}$. Then $\bar{\partial}u = \bar{\partial}w = f$ and $u_{|\mathring{S}} = g$.

Now take $m < + \infty$ or q = 1. For $j \in \mathbb{N}$, let D_j , S_j and D'_j be as in the proof of Corollary 3.

If q>0, take j such that $D_j\supset D\setminus W$, and let D' be a smooth strictly pseudoconvex domain such that $D_j\subset D'\subset D$. Let $W\in C^m_{(p,q)}(\overline{D'})$ be such that $\overline{\partial}w=f_{|D'}$. Then $\overline{\partial}_b(g_{|\overset{\circ}{S}_j}-w_{|\overset{\circ}{S}_j})=0$. According to Theorem 3, we can find a $\overline{\partial}$ -closed extension $v\in C^{m-2}_{(p,q)}((D\cup \overset{\circ}{S})\setminus \overline{W})$ of $(g-w)_{S\setminus \overline{W}}$.

Then $u:=w+v\in C^{m-2}_{(p,q)}((D\cup \mathring{S})\diagdown \overline{W}), \text{ and } \bar{\partial}u=f \text{ on } D\diagdown \overline{W}, u|_{S\searrow \overline{w}}=g|_{S\searrow \overline{w}}.$

Now suppose q=0. For any j, let $w_j \in C^m_{(p,0)}(\overline{D}'_j)$ be such that $\overline{\partial} w_j = f$ on D'_j .

Then $\tilde{\partial}_b((g-w_j)|_{\dot{S}_{j-1}}^\circ)=0$, and from Theorem 1 we get an holomorphic extension $h_j\in C^m_{(p,0)}(D_{j-1}\cup \overset{\circ}{S}_{j-1})$ of $(g-w_j)|_{|\overset{\circ}{S}_{j-1}}$.

Let $u_j := w_j + h_j \in C^{(p,0)}_{(p,0)}(D_{j-1} \cup \mathring{S}_{j-1})$. Then $\tilde{\delta}u_j = f$ on D_{j-1} and $u_j|_{S_{j-1}}^s = g|_{S_{j-1}}^s$.

We have $\bar{\partial}(u_j - u_{j+1|D_{j-1}}) = 0$ and $(u_j - u_{j+1})_{|\mathring{S}_{j-1}} = 0$. Then $u_{j+1|D_{j-1} \cup \mathring{S}_{j-1}} = u_j$, and setting $u_{|D_{j-1} \cup \mathring{S}_{j-1}} := u_j$ we obtain the solution $u \in C^m_{(p,0)}(D \cup \mathring{S})$.

If $u_1, u_2 \in C^m_{(p,0)}(D \cup \mathring{S})$ are two solutions of (2), then $u_1 \equiv u_2$, since $\bar{\partial}(u_1 - u_2) = 0$ and $(u_1 - u_2)|_{\mathring{S}} = 0$.

REMARK. For C^{∞} forms, these results are contained in those of Andreotti and Hill (Proposition 4.1 of [4] part I).

REFERENCES

[1] L. A. AYZENBERG - SH. A. DAUTOV, Differential forms orthogonal to holomorphic functions of forms, and their properties, Providence, A.M.S. 1983.

- [2] L. A. Aĭzenberg A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Procidence, A.M.S., 1983.
- [3] A. Andreotti H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-255.
- [4] A. ANDREOTTI C. D. HILL, E. E. Levi convexity and the H. Lewy problem, Part I: Ann, SNS, 26 (1972), pp. 325-363. Part II: Ann. SNS, 26 (1972), 747-806.
- [5] A. Boggess, Kernels for the tangential Cauchy-Riemann equations, Trans. of Amer. Math. Soc., Vol. 262, No. 1 (1980), pp. 1-49.
- [6] G. M. Henkin J. Leiterer, Theory of functions on complex manifolds, Birkhäuser, 1984.
- [7] L. Hörmander, An introduction to complex analysis in several variables, Princeton, N.J., Van Nostrand, 1966.
- [8] J. J. Kohn H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math., (2) 81 (1965), 451-472.
- [9] M. LANDUCCI, Solutions with precise compact support of $\delta u = t$, Bulldes Sc. Math. (2) 104 (1970), No. 3, pp. 273-299.
- [10] H. Lewy, On the local character of the solution of an atypical linear-differential equation in three variables and a related theorem for regular functions of two variables, Ann. of Math., 64 (1956), pp. 514-522.
- [11] G. Lupacciolu G. Tomassini, Un teorema di estensione per le CR-funzioni, Ann. di Mat. Pura e Appl. (IV), 87 (1984), pp. 257-263.
- [12] M. NACINOVICH G. VALLI, Tangential Cauchy-Riemann complexes on distributions, to appear in Ann. di Mat. Pura e Appl.
- [13] G. Tomassini, Extension d'objects CR, to appear on Lecture Notes in Mathematics.
- [14] G. Tomassini, Extension of CR-functions, to appear.
- [15] G. Tomassini, Sur les algèbres $A^0(\overline{D})$ et $A^{\infty}(\overline{D})$ d'un domaine pseudo-convexe non borné, Ann. SNS serie IV, 10, No. 2 (1983), pp. 243-256.
- [16] G. VIGNA SURIA, q-pseudoconvex and q-complete domains, Comp. Math., 53 (1984), pp. 105-111.

Manoscritto pervenuto in redazione il 15 ottobre 1985.