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Infinite Boundary Value Problems
for Surfaces of Prescribed Mean Curvature.

ERMANNA TOMAINI (*)

The Dirichlet problem for surfaces of prescribed mean curvature
consists in determining a function u E C2(Q) satisfying the equation

in a bounded domain and taking a given boundary value y on 8Q.
We consider Dirichlet problem where infinite boundary values are
admitted on subsets of the boundary. Jenkins and Serrin developed
an existence and uniqueness theory for this problem in the case I~ = 0

2 [9], while Spruck extended Jenkins-Serrin’s results to the
case H = constant and n = 2 [10].

In [1] Massari proved an existence and uniqueness theorem in the
case .g not constant, arbitrary n and the boundary value 99 is finite
in + oo in Ti, - oo in F2, where F1, r2 are open, disjoint
subsets of 8Q and To ~ 0. In this work we complete Massari’s results
studying the case ho = 0.

In the first section we recall some basic results of U. Massari [1], [2]
Giusti [3], Miranda [5], Emmer [4] which we shall use. In the second
section we prove an existence and uniqueness theorem for the following
Dirichlet problem

(*) Indirizzo dell’A. : Istituto di Matematica, Via Machiavelli, 44100 Fer-
rara, Italy.
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where 1~1 and I’2 are open, not empty and disjoint subsets of 3~3.
I wish to thank Professor U. Massari for his help and encouragement
during the preparation of this paper.

1. A) Let S2 be a bounded domain (i.e. open and connected) in
Rn with Lipschitz continuous boundary aS2 and

where -V,,, are open, not empty, disjoint C’ sets and N is a closed
set such that = 0.

B) Let Ao, A2 open disjoint sets with Lipschitz continuous
boundary such that

0) Let H a bounded Lipschitz continuous function in f0 such
that for every Caccioppoli set B c Q meas B # 0, meas B # meas S2
we have

where IIDcpBI is the perimeter of B; the total variation of the
Rn

vector valued measure Dgg,:

where is the mean curvature of 8Q at x.
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Under these hypotheses there exist minima for the functionals

for every q E Z1(CSZ). Such minima belong to C2~"(SZ) n B V(Q).
i[f 99 is a bounded function then the minimum is bounded; if

cp E C(7o) then the minimum takes the boundary value q in To.
(see [6], [7]).

Let be a sequence of smooth sets with

We need to recall the following results:

THEOREM 1.1 [I]. be a solution of equation L(u) = 0
such that

Then for every open set A with Lipschits continuous boundary such
that

we have

where ~ and v is the exterior normal to ~5~.

THEOREM 1.2 [1]. Let u E be a solution of .L(u) = 0 such
that
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Then for every open set A with Lipschitz continuous boundary such
that

we have

THEOREM 1.3 [1]. If T2 = .I’o ~ ~, 99: R is a bounded con-
tinuous function in .ho then the set P = U(X) == + mini-

mizes the functional

REMARK 1.1. If .I’1 = ~6, an analogous result is valid for the set
N= u(x) _ - oo}. In particular N minimizes the functional

THEOREM 1.4 [1]. Let q be continuous in minimizes the
functional ~) and t &#x3E; qJ(xo). Let 1~ &#x3E; 0 be such that

where B’ c RII-11 is an open set and 1p: B’ --~ R is a Lipschitz continuous
function. Then the set

minimizes the functional
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where A = Bn(xo, t) c and b is the following function

THEOREM 1.5 [1]. If 1-’2 = 0, .To ~ 0, R is a below bounded
continuous function and 0 is the unique minimum of then there
eXiStS U E C2(S~) such that

THEOREM 1.6 [1]. If 1-’1 = lil, lil, (p: To- R is an upper bounded
continuous function and if 0 is the unique minimum of :F2(B), then
there exists E C2(Q) such that

THEOREM 1.7 [1]. Let 99: R be a continuous function, To * 0.
Necessary and sufficient condition for the existence of a solution

u E C2(S~) to Dirichlet problem

is that the unique minimum of the functionals and !F2(B) is

the empty set.
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THEOREM 1.8 [1]. Let C2(Q) be two solutions of the problem

Then

i) if then in .~;

ii) if ho = ~ then U2 + constant in Q.

THEOREM 1.9 [2]. Let .E a set minimizing the functional

in an open set Q c R’~ with n ~ 2 and

p &#x3E; 0, then we have

THEOREM 1.10 [4]. If the set .E is a local minimum for the functiona

in the open set ,~ c R" with obstacle L and if 8L r1 Q is of class 01,
then there exists an open set Do c S~ with 8L n ~2 c Do such that
as n Do is of class C1.

We recall the definition of generalized solution, introduced by
M. Miranda (see [5]).

DEFINITION 1.1. A function ~c : ~ ---~ R is called a generalized solution
of equation
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if the set .E = y)  u(z)) minimizes the functional

in Q X R.
That means that for every set V c Q X R, coinciding with E outside

some compact set K c Q x R we have

We note that the function can take the values ± oo.
It follows from [8] theorem 2.3 that every classical solution of

div is a generalized solution and reciprocally, every local
bounded generalized solution is a classical solution of div 
We introduced the sets:

We have the following results

(1.7) the function u(x) is regular in G and is a classical solution of
div Tu - nH(x).

(1.8) Let be a sequence of generalized solution of div Tu = 
in S,~ and let j6~ be the corresponding domains (1.6). Then a

subsequence of .Ek will converge in to a set E =
- ~(x, y) E S~ &#x3E;C R: y C ~c(x)~ and u(x) is a generalized solution
of div Tu = n.H(x). We say in this case that a subsequence
of converges locally to 

THEOREM 1.11 [3]. Let u, v be two C2-functions in Q such that
div Tu  div Tv in ,~. Suppose that aD = u r2 with r1 open set
in 8Q and that u, v E U F,), in r1 and
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for every open set A D Then

2. THEOREM 2.1. We suppose that 1-’a = 0, 0, 1~~ ~ 0. If 0
and ,Q are the unique minima for the functionals

then there exists a solution to the Dirichlet problem

REMARK 2.1. It follows from the hypothesis on the functionals
and :F2(B) that

REMARK 2.2. It follows from theorem 1.8 that the solution of the

problem is unique up to an additive constant. "

We prove theorem 2.1 in two steps.

1s~ step. Let Un be the solution of the problem! &#x3E;
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For every h we can find a constant c~ with 0  c,  h such that

We set vh = then is a generalized solution of

It follows from (1.8) that a subsequence of will converge locally
to a generalized solution v(x) of

We prove that the sets Pv and Nv are empty and hence the set G is Q.
Then v is a locally bounded function in S~ and it is a classical solution
of (2.3). First we prove that

a) If lim co with co E R, then passing possibly to a sub-
h-oo

sequence we can suppose that solution of the problem

Let be a sequence of smooth open sets with
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If we integrate (2.4) in Qh we get

This is possible because u is solution of problem (2.4) and from theorem
1.3 the set Pu minimizes the functional hence Put = 0 or Pv = Q
But from (2.2)

so W e get S~ that is Pu = 0.
Moreover Nu = ~ because in problem (2.4) F2 _ 0. We have

and from theorem 1.1 we get

On the other hand

In fact if

it follows from theorem 1.11 that every solution w of equation
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with

must be

This is a contradiction because for every boundary value q E a

minimum of I ‘ (v, g~) takes it. Passing to the limit as h --~ oo we have

This contradicts (2.1).

If ]
J¡

with yo E It, then passing possibly to a sub-

sequence we can suppose that Vh-¿’ u, solution of the problem

Arguing the same way of we get

contradicting (2.1).
It follows that a subsequence of will converge locally to a

generalized solution v of problem
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From theorem 1.3 the set P = v(x) _ + oo} minimizes the
functional nad the set N = {x v(x) _ - oo~ the functional
.~ 2(B). Therefore P and N or SZ, but

and hence P = N = 0. ,

We get G = S~ and v is a classical solution of the’ equation 
’

2nd step. We prove that the function v takes on the required
boundary value, y more precisely we prove , 

,

i) Let xo E I~ and let be a sequence of points in ,Q such that
We suppose that v(xh) -th-oo E R. The function vh =

- un - c, minimizes I(v, rph) where

Then - vh minimizes the functional I’(v, - rph). Let r &#x3E; 0 such that

It follows from theorem 1.4 that the set

minimizes the functional
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in Â==Br(xo,-t) in the class 

The same minimal property is true for limit set

For r small enough (C’f2 XR) r1 A is of class C1, it follows from theorem
1.10 that has boundary of class C’ in a neighborhood of X R) r1 A
and PE and (8QxR) have the same normal in the contact points.
Making smaller the open set we can suppose

where B’c Rn in an open set, x’= (x,, ..., Xn-l)’ E Gl(B’). In every

point of Ti mean curvature is

The weak form of (2.9) is that for every y E C’(B’)

On the other hand we have for every

Hence

Subtracting (2.12) and (2.10) we get

for every
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Therefore g - V) is a supersolution of an elliptic equation and
g - ~ ~ 0 in = 0 in the contact points.

It follows from maximum principle that g - tp = 0 in B’ and

8E = aD &#x3E;C gt : a contradiction because

We suppose now that

Let r &#x3E; 0 be such that

from theorem 1.4 the set .Ek = ~(x, y) E  - minimizes

the functional

we get

and Eh,k minimizes (2.15) in B,(x,, 0).
Passing to the limit as k -~ -f- oo, the 

minimizes (2.15) in Br(xo, 0).
Because xh h-~ xo, choose (0, r/2) there exists ho &#x3E; 0 such

that for every h ~ ho

and for these h we get
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On the other hand from the theorem 1.9 we have for every 0  t  r

From the minimal property of with

from (2.14)

Integrating between 0 and a we get

while it is

Hence

ii) Let xo E F, and let be a sequence of points in S2 such
that Arguing the same way of (i) we can prove that
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