RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ERMANNA TOMAINI

Infinite boundary value problems for surfaces of prescribed mean curvature

Rendiconti del Seminario Matematico della Università di Padova, tome 76 (1986), p. 59-74

http://www.numdam.org/item?id=RSMUP 1986 76 59 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1986, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Infinite Boundary Value Problems for Surfaces of Prescribed Mean Curvature.

ERMANNA TOMAINI (*)

The Dirichlet problem for surfaces of prescribed mean curvature consists in determining a function $u \in C^2(\Omega)$ satisfying the equation

$$L(u) = (1 + |Du|^2) \Delta u - \sum_{i,j=1}^{n} D_i u D_j u D_{ij} u - n H(x) (1 + |Du|^2)^{\frac{3}{2}} = 0$$

in a bounded domain Ω and taking a given boundary value φ on $\hat{c}\Omega$. We consider Dirichlet problem where infinite boundary values are admitted on subsets of the boundary. Jenkins and Serrin developed an existence and uniqueness theory for this problem in the case $H \equiv 0$ and n = 2 [9], while Spruck extended Jenkins-Serrin's results to the case H = constant and n = 2 [10].

In [1] Massari proved an existence and uniqueness theorem in the case H not constant, arbitrary n and the boundary value φ is finite in Γ_0 , $+\infty$ in Γ_1 , $-\infty$ in Γ_2 , where Γ_0 , Γ_1 , Γ_2 are open, disjoint subsets of $\partial \Omega$ and $\Gamma_0 \neq \emptyset$. In this work we complete Massari's results studying the case $\Gamma_0 = \emptyset$.

In the first section we recall some basic results of U. Massari [1], [2] Giusti [3], Miranda [5], Emmer [4] which we shall use. In the second section we prove an existence and uniqueness theorem for the following Dirichlet problem

$$egin{aligned} L(u) &= 0 & & ext{in } \ arOmega \ \lim_{y o x} u(y) &= + \infty & & orall x \in arGamma_1 \ \lim_{y o x} u(y) &= - \infty & & orall x \in arGamma_2 \end{aligned}$$

^(*) Indirizzo dell'A.: Istituto di Matematica, Via Machiavelli, 44100 Ferrara, Italy.

where Γ_1 and Γ_2 are open, not empty and disjoint subsets of $\partial \Omega$. I wish to thank Professor U. Massari for his help and encouragement during the preparation of this paper.

1. A) Let Ω be a bounded domain (i.e. open and connected) in \mathbb{R}^n with Lipschitz continuous boundary $\partial \Omega$ and

$$\partial \Omega = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup N$$

where Γ_0 , Γ_1 , Γ_2 are open, not empty, disjoint C^1 sets and N is a closed set such that $H_{n-1}(N) = 0$.

B) Let A_0 , A_1 , A_2 open disjoint sets with Lipschitz continuous boundary such that

$$H_{n-1}(\partial\Omega\cap\partial A_i)=0 \quad i=0,1,2.$$

C) Let H a bounded Lipschitz continuous function in $\overline{\Omega}$ such that for every Caccioppoli set $B \subset \Omega$ meas $B \neq 0$, meas $B \neq \text{meas } \Omega$ we have

$$\left| n \int_{B} H(x) \, dx \right| < \int_{\mathbb{R}^n} |D\varphi_B|$$

where $\int_{\mathbb{R}^n} |D\varphi_B|$ is the perimeter of B; *i.e.* the total variation of the vector valued measure $D\varphi_B$:

$$\int\limits_{\mathbb{R}^n}\!|Darphi_B|=\sup\left\{\int\!\!arphi_B\,\mathrm{div}\,g\,dx\colon g\in [\,C^1_0(\mathbb{R}^n)\,]^n\,|g|\!\leqslant\!1
ight\}$$

D) Let $\Omega_0 = \Omega \cup A_0$ be a connected set and

where $\Lambda(x)$ is the mean curvature of $\partial \Omega$ at x.

Under these hypotheses there exist minima for the functionals

(1.1)
$$I(v,\varphi) = \int_{\Omega} \sqrt{1 + |\overline{Dv}|^2} + n \int_{\Omega} H(x)v(x) dx + \int_{\partial \Omega} |v - \varphi| dH_{n-1}$$

$$(1.2) I'(v,\varphi) = \int_{\Omega} \sqrt{1 + |Dv|^2} - n \int_{\Omega} H(x)v(x) dx + \int_{\partial \Omega} |v - \varphi| dH_{n-1}$$

for every $\varphi \in L^1(\partial\Omega)$. Such minima belong to $C^{2,\alpha}(\Omega) \cap BV(\Omega)$.

If φ is a bounded function then the minimum is bounded; if $\varphi \in C(\Gamma_0)$ then the minimum takes the boundary value φ in Γ_0 . (see [6], [7]).

Let $\{\Omega_h\}_{h\in\mathbb{N}}$ be a sequence of smooth sets with

$$\varOmega_1 \subset\subset \varOmega_2 \subset\subset \ldots; \quad \bigcup_{h=1}^\infty \, \varOmega_h = \, \varOmega\,; \quad \ H_{n-1}(\partial \varOmega) = \lim_{h \to \infty} H_{n-1}(\partial \varOmega_h) \;.$$

We need to recall the following results:

THEOREM 1.1 [1]. Let $u \in C^2(\Omega)$ be a solution of equation L(u) = 0 such that

$$\lim_{y\to x}u(y)=+\infty\quad\forall x\in\Gamma_1.$$

Then for every open set A with Lipschits continuous boundary such that

$$H_{r-1}(\partial A \cap \partial \Omega) = 0$$

we have

$$\lim_{h o\infty}\int\limits_{\partial\Omega\cap A} Tuv\,dH_{n-1}=H_{n-1}(arGamma_1) \quad \ arGamma_1=A\cap\partial\Omega$$

where $Tu = Du/\sqrt{1+|Du|^2}$ and ν is the exterior normal to $\partial \Omega$.

THEOREM 1.2 [1]. Let $u \in C^2(\Omega)$ be a solution of L(u) = 0 such that

$$\lim_{y\to x}u(y)=-\infty \quad \forall x\in\Gamma_2.$$

Then for every open set A with Lipschitz continuous boundary such that

$$H_{n-1}(\partial A \cap \partial \Omega) = 0$$

we have

THEOREM 1.3 [1]. If $\Gamma_2 = \emptyset$, $\Gamma_0 \neq \emptyset$, $\varphi \colon \Gamma_0 \to \mathbb{R}$ is a bounded continuous function in Γ_0 then the set $P = \{x \in \Omega \colon u(x) = +\infty\}$ minimizes the functional

$$(1.3) \qquad \mathcal{F}_1(B) = \int\limits_{\Omega} |D\varphi_B| + n \int\limits_{\Omega} H(x) \varphi_B(x) \, dx + \int\limits_{\partial \Omega} |\varphi_B - \varphi_{\Gamma_1}| \, dH_{n-1} \, .$$

REMARK 1.1. If $\Gamma_1 = \emptyset$, an analogous result is valid for the set $N = \{x \in \Omega : u(x) = -\infty\}$. In particular N minimizes the functional

$$(1.4) \qquad \mathcal{F}_{\mathbf{2}}(B) = \int\limits_{\Omega} |D\varphi_B| - n \int\limits_{\Omega} H(x) \varphi_B(x) \, dx + \int\limits_{\partial \Omega} |\varphi_B - \varphi_{\Gamma_{\mathbf{2}}}| \, dH_{n-1} \, .$$

THEOREM 1.4 [1]. Let φ be continuous in $x_0 \in \Gamma_0$, u minimizes the functional $I(v, \varphi)$ and $t > \varphi(x_0)$. Let R > 0 be such that

$$\varphi(x) < t - R \qquad \forall x \in B_R(x_0) \cap \partial \Omega$$

$$B_{\mathtt{R}}(x_{\mathtt{0}}) \cap \Omega = \{(x', x_{\mathtt{n}}) \in (B' \times \mathbf{R}) \cap B_{\mathtt{R}}(x_{\mathtt{0}}) \colon x_{\mathtt{n}} > \psi(x')\}$$

where $B' \subset \mathbb{R}^{n-1}$ is an open set and $\psi \colon B' \to \mathbb{R}$ is a Lipschitz continuous function. Then the set

$$E = \{(x, y) \in \Omega \times \mathbb{R} \colon y < u(x)\}$$

minimizes the functional

$$\int\limits_{A} |D\varphi_{F}| + n \int\limits_{A} \varphi_{F}(x, y) \hat{H}(x) dx dy$$

where $A = B_R(x_0, t) \in \mathbb{R}^{n+1}$ and \hat{H} is the following function

$$\widehat{H}(x',x_n) = \left\{egin{array}{ll} H(x',x_n) & ext{if} \ \ x_n\!\geqslant\!\psi(x') \ H(x',\psi(x')) & ext{if} \ \ x_n\!<\psi(x') \ . \end{array}
ight.$$

THEOREM 1.5 [1]. If $\Gamma_2 = \emptyset$, $\Gamma_0 \neq \emptyset$, $\varphi \colon \Gamma_0 \to \mathbb{R}$ is a below bounded continuous function and \emptyset is the unique minimum of $\mathcal{F}_1(B)$, then there exists $u \in C^2(\Omega)$ such that

$$L(u)=0 \quad ext{ in } \ arOmega$$
 $u=arphi \quad ext{ in } \ arGamma_0$ $\lim_{y o x} u(y)=+\infty \quad orall x\inarGamma_1$

THEOREM 1.6 [1]. If $\Gamma_1 = \emptyset$, $\Gamma_0 \neq \emptyset$, $\varphi \colon \Gamma_0 \to \mathbb{R}$ is an upper bounded continuous function and if \emptyset is the unique minimum of $\mathcal{F}_2(B)$, then there exists $u \in C^2(\Omega)$ such that

$$egin{aligned} L(u) &= 0 & & ext{in } arOmega \ u &= arphi & & ext{in } arGamma_0 \ & & \lim_{y o x} u(y) &= - \infty & & orall x \in arGamma_2 \ . \end{aligned}$$

THEOREM 1.7 [1]. Let $\varphi \colon \Gamma_0 \to \mathbb{R}$ be a continuous function, $\Gamma_0 \neq \emptyset$. Necessary and sufficient condition for the existence of a solution $u \in C^2(\Omega)$ to Dirichlet problem

$$egin{aligned} L(u) &= 0 & ext{in } \Omega \ u &= arphi & ext{in } arGamma_0 \ &\lim_{y o x} u(y) &= + \infty & orall x \in arGamma_1 \ &\lim_{y o x} u(y) &= - \infty & orall x \in arGamma_2 \end{aligned}$$

is that the unique minimum of the functionals $\mathcal{F}_1(B)$ and $\mathcal{F}_2(B)$ is the empty set.

THEOREM 1.8 [1]. Let $u_1, u_2 \in C^2(\Omega)$ be two solutions of the problem

$$egin{aligned} L(u) &= 0 & ext{in } arOmega \ u &= arphi & ext{in } arGamma_0 \ \ \lim_{y o x} u(y) &= + \infty & orall x \in arGamma_1 \ \lim_{y o x} u(y) &= - \infty & orall x \in arGamma_2 \ \end{aligned}$$

Then

- i) if $\Gamma_0 \neq \emptyset$ then $u_1 = u_2$ in Ω ;
- ii) if $\Gamma_0 = \emptyset$ then $u_1 = u_2 + \text{constant in } \Omega$.

THEOREM 1.9 [2]. Let E a set minimizing the functional

$$\int\limits_K |D\varphi_{\rm E}| + \int\limits_K \varphi_{\rm E}(x) A(x) \, dx$$

in an open set $\Omega \subset \mathbb{R}^n$ with $n \geqslant 2$ and $|A(x)| \leqslant A$. If $x \in \partial E$ and $\overline{B_{\varrho}(x)} \subset \Omega$, $\varrho > 0$, then we have

(1.5)
$$\varrho^{1-n} \int_{B_{n}(x)} |D\varphi_{\mathbb{B}}| + (n-1)A\omega_{n}\varrho \geqslant \omega_{n-1}$$

THEOREM 1.10 [4]. If the set E is a local minimum for the functiona

$$\mathfrak{L}(E) = \int \varphi_{E}(x) H(x) dx + \int |D\varphi_{E}|$$

in the open set $\Omega \subset \mathbb{R}^n$ with obstacle L and if $\partial L \cap \Omega$ is of class C^1 , then there exists an open set $\Omega_0 \subset \Omega$ with $\partial L \cap \Omega \subset \Omega_0$ such that $\partial E \cap \Omega_0$ is of class C^1 .

We recall the definition of generalized solution, introduced by M. Miranda (see [5]).

DEFINITION 1.1. A function $u\colon \mathcal{Q} \to \overline{\mathbb{R}}$ is called a generalized solution of equation

$$\operatorname{div} Tu = nH(x)$$

if the set $E = \{(x, y) \in \Omega \times \mathbb{R} : y < u(x)\}$ minimizes the functional

(1.6)
$$\int |D\varphi_E| + n \int H(x) \varphi_E(x, y) dx dy$$

in $\Omega \times \mathbf{R}$.

That means that for every set $V \subset \Omega \times \mathbb{R}$, coinciding with E outside some compact set $K \subset \Omega \times \mathbb{R}$ we have

$$\int\limits_K |D\varphi_E| + n \int\limits_K H(x) \varphi_E(x,y) \, dx \, dy \leqslant \int\limits_K |D\varphi_V| + n \int\limits_K H(x) \varphi_V(x,y) \, dx \, dy \, .$$

We note that the function u(x) can take the values $\pm \infty$.

It follows from [8] theorem 2.3 that every classical solution of div Tu = nH(x) is a generalized solution and reciprocally, every local bounded generalized solution is a classical solution of div Tu = nH(x). We introduced the sets:

$$P = \{x \in \Omega \colon u(x) = +\infty\}; \quad N = \{x \in \Omega \colon u(x) = -\infty\};$$

$$G = \Omega - (P \cup N) - \partial P \cap \partial N.$$

We have the following results

- (1.7) the function u(x) is regular in G and is a classical solution of div Tu = nH(x).
- (1.8) Let $\{u_k\}$ be a sequence of generalized solution of div Tu = nH(x) in Ω and let E_k be the corresponding domains (1.6). Then a subsequence of E_k will converge in $L^1_{loc}(\Omega \times \mathbb{R})$ to a set $E = \{(x,y) \in \Omega \times \mathbb{R} \colon y < u(x)\}$ and u(x) is a generalized solution of div Tu = nH(x). We say in this case that a subsequence of $\{u_k\}$ converges locally to u(x).

THEOREM 1.11 [3]. Let u, v be two C^2 -functions in Ω such that $\operatorname{div} Tu \leqslant \operatorname{div} Tv$ in Ω . Suppose that $\partial \Omega = \Gamma_1 \cup \Gamma_2$ with Γ_1 open set in $\partial \Omega$ and that $u, v \in C(\Omega \cup \Gamma_1)$, $u(x) \geqslant v(x)$ in Γ_1 and

$$\lim_{t \to 0^+} \int\limits_{\partial \Omega_t - A} (1 - Tu \cdot r) dH_{n-1} = 0$$

for every open set $A \supset \Gamma_1$. Then

- a) if $\Gamma_1 \neq \emptyset$ then $u \geqslant v$ in Ω ;
- b) if $\Gamma_1 = \emptyset$ then $u = v + \text{constant in } \Omega$.
- **2.** THEOREM 2.1. We suppose that $\Gamma_0 = \emptyset$, $\Gamma_1 \neq \emptyset$, $\Gamma_2 \neq \emptyset$. If \emptyset and Ω are the unique minima for the functionals

$$egin{aligned} \mathcal{F}_{\mathbf{1}}(B) &= \int\limits_{\Omega} |D arphi_B| + n \int\limits_{\Omega} H(x) arphi_B(x) \, dx + \int\limits_{\partial \Omega} |arphi_B - arphi_{arGamma_1}| \, dH_{n-1} \ \\ \mathcal{F}_{\mathbf{2}}(B) &= \int\limits_{\Omega} |D arphi_B| - n \int\limits_{\Omega} H(x) arphi_B(x) \, dx + \int\limits_{\partial \Omega} |arphi_B - arphi_{arGamma_1}| \, dH_{n-1} \end{aligned}$$

then there exists a solution to the Dirichlet problem

$$egin{aligned} \operatorname{div} Tu &= nH(x) & ext{in } \Omega \ &\lim_{y o x} u(y) &= +\infty & orall x\in arGamma_1 \ &\lim_{y o x} u(y) &= -\infty & orall x\in arGamma_2 \ \end{aligned}$$

REMARK 2.1. It follows from the hypothesis on the functionals $\mathcal{F}_1(B)$ and $\mathcal{F}_2(B)$ that

(2.1)
$$n \int_{\Omega} H(x) dx + H_{n-1}(\Gamma_2) = H_{n-1}(\Gamma_1)$$

REMARK 2.2. It follows from theorem 1.8 that the solution of the problem is unique up to an additive constant.

We prove theorem 2.1 in two steps.

1st step. Let u_h be the solution of the problem

$$\operatorname{div} Tu_h = nH(x) \quad \text{in } \Omega$$
 $u_h(x) = h \quad \text{in } \Gamma_1$ $u_h(x) = 0 \quad \text{in } \Gamma_2$.

For every $h \in \mathcal{A}$ we can find a constant c_h with $0 < c_h < h$ such that

$$\left\{ \begin{array}{l} \operatorname{meas} \left(\left\{x \in \varOmega \colon u_{\scriptscriptstyle h}(x) \geqslant c_{\scriptscriptstyle h}\right\}\right) \geqslant \frac{|\varOmega|}{4} \\ \\ \operatorname{meas} \left(\left\{x \in \varOmega \colon u_{\scriptscriptstyle h}(x) \leqslant c_{\scriptscriptstyle h}\right\}\right) \geqslant \frac{|\varOmega|}{4} \end{array} \right. .$$

We set $v_h = u_h - c_h$ then v_h is a generalized solution of

$$egin{aligned} \operatorname{div} T v_h &= n H(x) & & \operatorname{in} \ arOmega \ v_h &= h - c_h & & \operatorname{in} \ arGamma_1 \ v_h &= - c_h & & \operatorname{in} \ arGamma_2 \ \end{aligned}$$

It follows from (1.8) that a subsequence of $\{v_{\hbar}\}$ will converge locally to a generalized solution v(x) of

$$(2.3) div Tv = nH(x).$$

We prove that the sets P_v and N_v are empty and hence the set G is Ω . Then v is a locally bounded function in Ω and it is a classical solution of (2.3). First we prove that

$$a)\lim_{h\to\infty}c_h=+\infty$$

b)
$$\lim_{h\to\infty} (h-c_h) = +\infty$$
.

a) If $\lim_{h\to\infty} c_h = c_0$ with $c_0 \in \mathbb{R}$, then passing possibly to a subsequence we can suppose that $v_h \to u$, solution of the problem

(2.4)
$$\begin{cases} \operatorname{div} Tu = nH(x) & \text{in } \Omega \\ \lim_{y \to x} u(y) = +\infty & \forall x \in \Gamma_1 \\ u = -c_0 & \text{in } \Gamma_2 . \end{cases}$$

Let $\{\Omega_{h}\}$ be a sequence of smooth open sets with

$$\Omega_1\subset\subset\Omega_2\subset\subset...;\quad arOmega=igcup_{h=1}^\infty\Omega_h;\quad H_{n-1}(\partial\Omega)=\lim_{h o\infty}H_{n-1}(\partial\Omega_h)\;.$$

If we integrate (2.4) in Ω_h we get

(2.5)
$$n \int_{\Omega_h} H(x) dx = \int_{\partial \Omega_h \cap A_1} Tu \cdot v dH_{n-1} + \int_{\partial \Omega_h \cap A_2} Tu \cdot v dH_{n-1}.$$

This is possible because u is solution of problem (2.4) and from theorem 1.3 the set P_u minimizes the functional $\mathcal{F}_1(B)$, hence $P_u = \emptyset$ or $P_u = \Omega$ But from (2.2)

$$\left\{egin{array}{l} ext{meas} \ \left(\left\{x\in\varOmega\colon v_{\scriptscriptstyle h}(x)\!\geqslant\!0
ight\}
ight)\!\geqslant\!rac{|arOmega|}{4} \ \ ext{meas} \ \left(\left\{x\in\varOmega\colon v_{\scriptscriptstyle h}(x)\!\leqslant\!0
ight\}
ight)\!\geqslant\!rac{|arOmega|}{4} \end{array}
ight.$$

so we get $P_u \neq \Omega$ that is $P_u = \emptyset$.

Moreover $N_u = \emptyset$ because in problem (2.4) $\Gamma_2 = \emptyset$. We have

$$\lim_{y o x}u(y)=+\infty \quad orall x\in arGamma_1$$
 $\partial arOmega\cap A_1=arGamma_1: \quad H_{x_1}(\partial arOmega\cap \partial A_1)=0$

and from theorem 1.1 we get

On the other hand

In fact if

it follows from theorem 1.11 that every solution w of equation

$$\operatorname{div} Tw = -nH(x) \quad \text{in } \Omega$$

with

$$w \leqslant -u \quad \text{in } \partial \Omega \setminus \Gamma_s$$

must be

$$w \leqslant -u \quad \text{in } \Omega$$

This is a contradiction because for every boundary value $\varphi \in C(\Gamma_2)$ a minimum of $I'(v, \varphi)$ takes it. Passing to the limit as $h \to \infty$ we have

This contradicts (2.1).

b) We prove that
$$\lim_{h\to\infty} (h-c_h) = +\infty$$

If $\lim_{h\to\infty} (h-c_h) = \gamma_0$ with $\gamma_0 \in \mathbb{R}$, then passing possibly to a subsequence we can suppose that $v_h \to u$, solution of the problem

(2.7)
$$\begin{cases} \operatorname{div} Tu = nH(x) & \text{in } \Omega \\ u = \gamma_0 & \text{in } \Gamma_1 \\ \lim_{y \to x} u(y) = -\infty & \forall x \in \Gamma_2 . \end{cases}$$

Arguing the same way of (a) we get

$$n\int\limits_{\Omega} \! H(x)\, dx < H_{n-1}(arGamma_1) - H_{n-1}(arGamma_2)$$

contradicting (2.1).

It follows that a subsequence of $\{v_h\}$ will converge locally to a generalized solution v of problem

$$egin{aligned} \operatorname{div} Tv &= nH(x) & & \operatorname{in} \ \varOmega \ & \lim_{y o x} v(y) &= + \infty & & orall x \in arGamma_1 \ & \lim_{y o x} v(y) &= - \infty & & orall x \in arGamma_2 \ \end{aligned}$$

From theorem 1.3 the set $P = \{x \in \Omega : v(x) = +\infty\}$ minimizes the functional $\mathcal{F}_1(B)$ nad the set $N = \{x \in \Omega : v(x) = -\infty\}$ the functional $\mathcal{F}_2(B)$. Therefore P and N are \emptyset or Ω , but

meas (
$$\{x \in \Omega : v_h(x) > 0\}$$
) $> \frac{|\Omega|}{4}$

meas
$$(\{x \in \Omega: v_h(x) \leqslant 0\}) \geqslant \frac{|\Omega|}{4}$$

and hence $P = N = \emptyset$.

We get $G = \Omega$ and v is a classical solution of the equation

$$\operatorname{div} Tv = nH(x) \quad \text{in } \Omega.$$

2nd step. We prove that the function v takes on the required boundary value, more precisely we prove

- i) $\lim_{y\to x} v(y) = +\infty \ \forall x \in \Gamma_1$
- ii) $\lim_{y\to x} v(y) = -\infty \ \forall x \in \Gamma_2$
- i) Let $x_0 \in \Gamma_1$ and let $\{x_h\}$ be a sequence of points in Ω such that $x_h \xrightarrow[h \to \infty]{} x_0$. We suppose that $v(x_h) \xrightarrow[h \to \infty]{} t \in \mathbb{R}$. The function $v_h = u_h c_h$ minimizes $I(v, \varphi_h)$ where

$$arphi_h(x) = \left\{ egin{array}{ll} h - c_h & ext{if } x \in arGamma_1 \ - c_h & ext{if } x \in arGamma_2 \,. \end{array}
ight.$$

Then $-v_h$ minimizes the functional $I'(v, -\varphi_h)$. Let r > 0 such that

$$h-c_h>t+r$$
.

It follows from theorem 1.4 that the set

$$E_{\hbar} = \{(x, y) \in \Omega \times \mathbb{R} \colon y < -v_{\hbar}(x)\}$$

minimizes the functional

(2.8)
$$\int_{A} |D\varphi_{F}| - n \int_{A} \varphi_{F}(x, y) H(x) dx dy$$

in $A = B_r(x_0, -t)$ in the class $\{F \in \mathbb{R}^{n+1} : F \in \Omega \times \mathbb{R} \ F \ \Delta E_h \subset A\}$. The same minimal property is true for limit set

$$E = \{(x, y) \in \Omega \times \mathbb{R} : y < -v(x)\}$$
.

For r small enough $(\partial \Omega \times \mathbb{R}) \cap A$ is of class C^1 , it follows from theorem 1.10 that E has boundary of class C^1 in a neighborhood of $(\partial \Omega \times \mathbb{R}) \cap A$ and ∂E and $(\partial \Omega \times \mathbb{R})$ have the same normal in the contact points. Making smaller the open set we can suppose

$$(\Omega \times \mathbb{R}) \cap A = \{(x', x_n) \in (B' \times \mathbb{R}) \cap A : x_n > \psi(x')\}$$

$$E \cap A = \{(x', x_n) \in (B' \times \mathbb{R}) \cap A : x_n > g(x')\}$$

where $B' \subset \mathbb{R}^n$ in an open set, $x' = (x_1, ..., x_{n-1}), g, \psi \in C^1(B')$. In every point of Γ_1 mean curvature is

$$A(x) = \frac{nH(x)}{n-1}.$$

The weak form of (2.9) is that for every $\chi \in C_0^1(B')$

(2.10)
$$\int\limits_{B'} \frac{D\psi \cdot D\chi}{\sqrt{1 + |D\psi|^2}} \, dx' + n \!\! \int\limits_{B'} \!\! H(x', \psi(x')) \, \chi(x') \, dx' = 0$$

On the other hand we have for every $\chi \in C_0^1(B')$, $\chi \geqslant 0$

$$(2.11) \qquad \frac{d}{dt} \left[\int_{B'} \sqrt{1 + |D(g + t\chi)|^2} \, dx' - n \int_{B'} dx' \int_{g + t\chi} H(x', x_n) \, dx_n \right]_{t=0} \geqslant 0.$$

Hence

$$(2.12) \qquad \int\limits_{R'} \frac{Dg \cdot D\chi}{\sqrt{1 + |Dg|^2}} \, dx' + n \int\limits_{R'} H(x', g(x')) \, \chi(x') \, dx' > 0 \, .$$

Subtracting (2.12) and (2.10) we get

for every $\chi \in C_0^1(B')$, $\chi \geqslant 0$.

Therefore $g - \psi$ is a supersolution of an elliptic equation and $g - \psi \geqslant 0$ in B'; $g - \psi = 0$ in the contact points.

It follows from maximum principle that $g-\psi=0$ in B' and $\partial E=\partial \Omega imes \mathbf{R}$: a contradiction because

$$(x_h, -v(x_h)) \in \partial E \cap (\Omega \times \mathbb{R})$$
.

We suppose now that $v(x_h) \xrightarrow[h\to\infty]{} -\infty$.

Let r > 0 be such that

$$v(x_h) < (k - c_k) - r$$

from theorem 1.4 the set $E_k = \{(x,y) \in \Omega \times \mathbb{R} \colon y < -v_k(x)\}$ minimizes the functional

(2.13)
$$\int_{A} |D\varphi_{F}| - n \int_{A} H(x) \varphi_{F}(x, y) dx dy$$

in $A = B_r(x_0, -v(x_h))$. Set

$$E_{h,k} = \{(x, y) \in \Omega \times \mathbb{R} \colon y < -v_k(x) + v(x_h)\}$$

we get

$$\int\limits_{B_r(x_0,-v(x_h))} |D\varphi_{E_k}| - n \int\limits_{B_r(x_0,-v(x_h))} H(x) \varphi_{E_k}(x,y) \, dy \, dx = \int\limits_{B_r(x_0,0)} |D\varphi_{E_{h,k}}| - n \int\limits_{B_r(x_0,0)} H(x) \varphi_{E_{h,k}}(x,y) \, dx \, dy$$

and $E_{h,k}$ minimizes (2.15) in $B_r(x_0, 0)$.

Passing to the limit as $k \to +\infty$, the set $E_h = \{(x, y) \in \Omega \times \mathbb{R}: y < -v(x) + v(x_h)\}$ minimizes (2.15) in $B_r(x_0, 0)$.

Because $x_h \xrightarrow[h \to \infty]{} x_0$, choose $\sigma \in (0, r/2)$ there exists $h_0 > 0$ such that for every $h \geqslant h_0$

$$|x_{h}-x_{0}|<\sigma$$

and for these h we get

meas
$$(B_{\sigma}(x_h, 0) \cap E_h) \leq \max (B_{r}(x_0, 0) \cap E_h)$$
.

On the other hand from the theorem 1.9 we have for every 0 < t < r

(2.14)
$$t^{-n} \int_{B_t(x_h,0)} |D\varphi_{B_h}| + nt ||H||_{L^{\infty}(B_t(x_h,0))} \geqslant \omega_n .$$

From the minimal property of E_h with $F = E_h - B_t(x_h, 0)$ we get

$$\int\limits_{B_t(x_h,0)} |D\varphi_{\mathcal{B}_h}| - n \int\limits_{B_t(x_h,0)} H(x) \varphi_{\mathcal{B}_h}(x,y) \, dx \, dy \leqslant \int\limits_{\partial B_t(x_h,0)} |D\varphi_{\mathcal{F}}| - \int\limits_{\partial B_t(x_h,0)} |D\varphi_{\mathcal{B}_h}| \leqslant \int\limits_{\partial B_t(x_h,0)} \varphi_{\mathcal{B}_h} \, dH_n$$

from (2.14)

Integrating between 0 and σ we get

while it is

$$\varphi_{\mathcal{B}_h}(x,\,y) \to 0$$
 a.e. $(x,\,y) \in \mathbb{R}^{n+1}$.

Hence

$$v(x_h) \xrightarrow[h\to\infty]{} + \infty$$
.

ii) Let $x_0 \in \Gamma_2$ and let $\{x_n\}$ be a sequence of points in Ω such that $x_n \xrightarrow[h \to \infty]{} x_0$. Arguing the same way of (i) we can prove that

$$\lim_{h\to\infty}v(x_h)=-\infty.$$

REFERENCES

[1] U. MASSARI, Problema di Dirichlet per l'equazione delle superfici di curvatura media assegnata con dati infiniti, Ann. Univ. Ferrara, Sez. VII Sc. Mat., 23 (1977), pp. 111-141.

- [2] U. MASSARI, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata, Arch. Rational Mech. Anal., 55 (1974), pp. 357-382.
- [3] E. Giusti, On the equation of surface of prescribed mean curvature, Inv. Math., 36 (1978), pp. 111-137.
- [4] M. Emmer, Superfici di curvatura media assegnata con ostacolo, Ann. Mat. Pura Appl., 40, (1976), pp. 371-389.
- [5] M. MIRANDA, Superfici minime illimitate, Ann. Sc. Norm. Sup. Pisa, (4) 4 (1977), pp. 313-322.
- [6] E. GIUSTI, Boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann. Sc. Norm. Sup. Pisa, (4) 3 (1976), pp. 501-548.
- [7] M. GIAQUINTA, Regolarità delle superfici $BV(\Omega)$ con curvatura media assegnata, Boll. Un. Mat. It., 8 (1973), pp. 567-578.
- [8] M. MIRANDA, Superfici cartesiane ed insiemi di perimetro finito sui prodotti cartesiani, Ann. Sc. Norm. Sup. Pisa, 48 (1964), pp. 515-542.
- [9] H. Jenkins J. Serrin, Variational problems of minimal surfaces type II: Boundary value problems for minimal surface equation, Arch. Rational Mech. Anal., 24 (1965-66), pp. 321-342.
- [10] J. SPRUCK, Infinite boundary value problems for surfaces of constant mean curvature, ¹ Arch. Rational Mech. Anal., 48 (1972), pp. 1-31.

Manoscritto pervenuto in redazione il 24 gennaio 1985.