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Generators of Hyperbolic Heat Equation
in Nonlinear Thermoelasticity.

TOMMASO RUGGERI (*)

1. Introduction.

Let $ a region of three-dimensional Euclidean space, referred to
an orthonormal basis x(X, t) be the position of the generic
particle in the deformed configuration at time t and X the position in
the undeformed reference configuration, u = x - X the displacement
vector. The field equations of continuum mechanics with finite de-
formations may be written as a first order quasi-linear systems:

conservation of momentum

balance of energy

where T = is the first Piola-Kirchof stress tensor, v = 
is the velocity, OAXi) is the gradient tensor, e is the spe-

(*) Indirizzo dell’A.: Istituto di Matematica Applicata, Università - Via
Vallescura 2 - .. 40136 Bologna, Italia.
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cific internal energy, y S the specific entropy, y ~Oo is the reference mass

density, Q = (Q,) is related to the usual heat flux vector q : Jqi = FIAQA y
J = det F, and s is the total energy:

To eqs. (1.1)-(1.3), the costitutive equations must be added; in
particular one has to determine the constitutive dependence of the heat
flux. In the classical approach this is the Fourier equation:

satisfying the entropy inequality:

with the entropy source (for an hyperelastic material)

provided the scalar function X (thermal conductivity) is positive (0 is
the absolute temperature).

As well known the presence of (1.5) destroys the hyperbolicity of
the field system with the consequence of infinite wave propagation
speed. Several authors proposed alternative equations in order to
eliminate the paradox and hyperbolize the system. Starting from
Maxwell’s idea and from the well known paper by Cattaneo [1] (in the
case of a rigid heat conductor), a large body of literature exists to which
one can objectively refer. Substantially two point of view are pre-
dominant (in particular in the context of fluid dynamics) one is the
« extended irreversible thermodynamics)&#x3E; (Muller [2]) and the other
one is the point of view of « rational thermodynamics » (see i.e., Cole-
man-Noll [3], Muller [4], y Gurtin-Pipkin [5], Green-Lindsay [6], Gri-
oli [7]). A comparison of the two points of view is in the review article
by Hutter ~8] . In [9] we have exposed some critical considerations on
the models alternative to Fourier system, in particular on the question
of hyperbolicity (generally not garanteed for all times) and on the lack
of conservative form for the new heat equation that prevents us from
establishing a weak formulation for the Cauchy problem, therefore
preventing us from studying shock waves. Moreover, we have made
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an attempt to unify this two type of approach (« extended » and « ra-
tional » thermodynamics) in the sense that we have taken the heat
flux as a field component that appears in the nonequilibrium entropy
as the extended thermodynamics approach, but we have determined
the evolution equation for q directly from an « entropy principle»
in the frame of « rational thermodynamics ». The entropy principle
we have used is however more restrictive than the usual one since « a

priori » we require to select those constitutive equations only, which
give partial differential equations in « conservative » from (dissipation
is present through the source terms) . The tecnique used is based on
some recent results for the quasi-linear partial differential systems
compatible with a supplementary equation (see [9] and references
quoted there).

Let us shortly sketch the methodology. One writes the indefinite
field equations and the heat equation as a one quasi-linear, conserva-
tive first order system of N scalar equations of the type:

where Fa- and f are column vectors of while the entropy law can
be put in the form of a scalar equation also quasi-linear and conservative

Fa, f, ha and g are dependent on the field U - U(x~), the unknown
R’-vector in the differential system (1.8); ce, fl = 0, 1, 2, 3 ; 8o== 

=1,2,3.
The system (1.8) compatible with (1.9) (which plays the role of

« entropy principle » once a definite sign for the source term is taken)
have a peculiar structure since it is possible to define for it the « gen-
erators » of the system, i. e. a set of 2N + 4 
named so in [9] since once they are know it is possible to identify
both the differential system (1.8) and the supplementary law ( 1.9 ) :
U’ (main field) is defined as the sets of multipliers such that

and (four-vector generator) as
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From (1.10) and (1.11), if the components of U’ are independent,
we obtain

If we suppose that the generators are known, we obtain from (1.12)
the system and from (1.11) and the latter of (1.10) the quantities ha
and g, i.e. the supplementary law.

The methodology presented in [9] (to which we refer for more
details) consists of the following steps: a) evaluation of the generators
in the classical theory by the Fourier equation; b) modification of the
generators by substituting the entropy density and the related thermo-
dynamic quantities with new functions to be determined, playing the
role of the same quantities but evaluated at non-equilibrium and to
be taken as dependent on the heat flug beside the usual variables;
c) from the modified generators determination of the new system and
the new entropy law; d) prove that hN (new h’°) is a convex function
of the vector Uv (new U’ ) ; such a convexity condition is sufficient to
guaranted that the new system obtained in this way is a « symmetric »
one in the sense of Friedrichs (see for example [10]) and then a con-
servative hyperbolic one for any field (see [11]-[13], [9]). The proce-
dure here sketched has been proved an efficient one for a thermoviscous
fluid and in [9] we have proved that it is possible to obtain a symmetric
hyperbolic conservative system form a unique constitutive function.
The aim of this short paper is to extend this methodology to the case
of a hyperelastic solid under finite deformations and to show that
even in this case where the equations in Lagrangian form are mate-
matically different, y it is possible to obtain a heat equation giving
finite propagation speeds and well-posed Cauchy problem.

2. - Generators of Fourier system.

The system (in the following named as Fourier system) given by
the equations (1.1), (1.2), (1.3), (1.5) to which we add the constitutive
relations for a hyperalstic material,
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where Y is the free energy

assumes the form (1.8) and the entropy law (1.6) the form (1.9) when
we choose:

(where 0, 0,, Oii (i, j = 1, 2, 3) respectively the null elements of a
scalar, a vector and a tensor; the free index i, B = 1, 2, 3 and T in-
dicated the transposition).

From (2.1)-(2.2) we obtain the Gibbs relation:

and from (1.4)

Taking into account (2.6), (2.7), (2.9) and (2.10) we have

By comparison with (2.11), (2.12) and (1.10), (2.3), (2.4), we get im-
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mediately the main field U’ :

From (1.11) instead we obtain the four-vector generator h’°~:

where G is the specific chemical potential:

The generators of the Fourier system are then U’ given by (2.13), h’°~
by (2.14)-(2.15) and the source f given by (2.5).

3. - The new system, deduced via « generators ».

In agreement with what said in the introduction, we assume now,
in the frame of extended thermodynamics, the entropy density at
non-equilibrium SN as dependent on the lagrangean heat flux Q,
besides on If iA and 6.

Since we want to modify the Fourier system as less as possible and
because only the thermodynamical variables G and 0 appear in the
« generators » deduced before, we assume that only the non-equilibrium
chemical potential G is affected by the dependence of ~N also on the
heat flux. Therefore, we are looking for a new system such that the
new generators are the same as before except that G must be replaced
by a new function GN, yet to be determined and to be interpreted as
the non-equilibrium chemical potential. In other words we assume
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as new «generators » ( 1 ) :

while quantities without an index are those of the Fourier system.
If we call

we have

From (1.12) we obtain

and then when a = 0

Since the conserved quantities in the indefinite equations must remani
the same, FN turns out to be of the form:

withWA as unknown vector.
Substituting (3.6) in ( 3 . 5 ) , we obtain

that implies for the function 8 a dependence only on Q* and

Observing the equation before last in (3.1) and the linear independence

(1) If we make a comparison with the case of a fluid [9], we notice a rele-
vant difference with the one of a solid since our approach gives there

U’ and h’o’ = h’", being G in the main field.
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for the components of dU’, we obtain from (3.4) when a = .A.:

The new system is then determined and given by the same field
equations (1.1)-(1.3) unchanged from the classical formulation, and
by the new equations substituting the Fourier equation

Let’s evaluate now the new supplementary law, the inequalities
for entropy in the new system. From (1.11) we obtain h~, = k’;
and from the second of (1.10)~== Taking into account (3.1 ),
(3.6), (3.8) and (3.2), we have

and since h) has to be interpreted as for analogy with (2.6),
we have the new entropy density at non-equilibrium :

Furthermore,

The new system gives than the following entropy balance:

with SN given by (3.11 ) .
In conclusion, having fixed the constitutive 

for a hyperelastic medium, heat conducting and under finite deforma-
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tions, y one obtain the following differential system:

with

The entropy density and the chemical potential at non-equilibrium
are given respectively by (3.11) and (3.2):

4. - Convexity and hyperbolicity.

It has to be noticed that the system (3.15) is in conservative form;
since it is of the form (1.8) with jF~ = choosing as field the
main field U’, it becomes:

As a consequence all the matrices multiplying the derivatives of U’
are hessian ones and then symmetrical; in order to show that the
system (4.1) is « symmetric » in the sense of Friedrichs, it has to be
verified that is positive definite. For this reason we

prove the following proposition:

STATEMENT 1. Necessary and sufficient condition for the system (3.1~ )
to be a symmetric hyperbolic one is that the specz f ic internal energy
e = e(FiA’ S) and the constitutive function 8 --- S(Q*) are convex 
tions on a convex domacin Ð.

PROOF. We evaluate the quadratic form
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and we check under which condition it is positive for any d U’, with U’
belonging at convex domain D C RN. We observe that FN = 
and then so that from (3.6), (2.3) and (2.13), after

simple manipolations we obtain:

Taking into account (2.10) first and then (2.9) one obtains

At least noticing that from = 0 = aelas-, it f olloWs

and then the statement. This prove in the purely mechanical case it
has already been obtained by a different procedure in [14].

The physical meaning of convexity of 8 is the same of the one in
fluid dynamics and is equivalent to the following result on thermo-
dynamical stability:

STATEMENT 2. The convexity condition for 8 --- ~ ( Q* ) with 8(0) = 0
is equivalent to the condition of thermodynamic stability, z. e. that the

entropy density at equilibrium is maximum :

PROOF. The prove is straitforward, noticing that for the choice
8( ) = 0, the convexity condition for 8 can be written also in the fol-
lowing way &#x3E; 0 0 and then from ( 3 .11 ) the
proposition follows.
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5. - Consequences and conclusions.

Interesting consequences, both on mathematical and physical stand-
point, arise from the conservative and symmetric hyperbolic structure
of our system. Let us examine some problems:

i) Cauchy problem. For a symmetric system a general theorem
given by Fischer and Marsden [15] on the well-position (locally) of
the Cauchy problem, holds, ensuring existence and uniqueness of the
solution with the same regularity of the initial data in a neighborhood
of the initial manifold, when the initial data are chosen in a Sobolev
space Hs, with s ~ 4.

ii) Shock waves. The conservative form of our system makes
possible to define weak solutions in the usual way and, in particular,
to study shock waves. Moreover the properties of shock waves shown
in [11], [16], [12], hold: a) entropy increases across the shock wave-
front, b) the jump of entropy determines the knowledge of the jumps
of all the main field variables, c) the shock propagation speeds are
bounded between the smallest and the largest characteristic speeds.

iii) Acceleration waves. Acceleration waves (weak discontinuities)
propagate with real and finite speeds. Furthermore it is possible to
show that anisotropy appears because of the presence of heat flow;
anisotropy disappears when propagation takes place across a constant
state. The latter property is not present when Cattaneo’s type heat
equation is employed, while it is present in the model proposed by
Grioli [7], which, even if deduced starting from a different view point,
formally looks like the model exposed in the present paper.

iv) Special case. Since 8 = 0 gives Fourier equation, it is rea-
sonable to assume 8 very small. But 8 must be convex with 8(0) = 0;
then it is natural to analyze the special case: 8 = aQ *2 /2, a = const.
Then the heat equation becomes:

which is different form Cattaneo’s type equation. The mentioned

anisotropy in propagation is introduced because of the term all in
the I.h.s.
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v) Objectivity principle. The heat equation (3.10), as the ana-
logous law for the fluid (in Eulerian f orm ) , do not fulfil the objectivity
principle, generally required for constitutive equations; however
our equations are invariant under Galilean transformations. It is
known that such circumstance characterizes the models of the extended

thermodynamics. Several authors introduced «ad hoc » terms to

restore objectivity (e.g. [17]). We think that, to be coherent with
our approach the principle must not be fulfilled by the heat equation.
In fact, by requiring that the heat equation is conservative, and the
heat flux is a field variable, in order to have a hyperbolic conservative
system, we require that the heat law is a field equation, playing the
some role of the remaining equations of the system. This claim is

equivalent to the assumption for the conservative heat equation to
be of the same type, e.g., of momentum equation (but, with a dissi-
pative source), i.e. of the form:

in which plays the role of  thermal momentum)) and 0 that of
« thermal stress ». This starting hypothesis is equivalent to consider
the heat equation as a balance equation (which is reasonable to

think, coming it from a principle); the quantities w and 0 are related
to the fields variables through constitutive relations which must fulfil
the principle of objectivity. The entropy principle here adopted shows
the special structure: ?,v = 0 = 01. The only claim is that 8
is a scalar function of Q*, i.e. a function of its square modulus.
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