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On Integration of the Differential Equation
of Central Motion, I.

EUGENE LEIMANIS

SUMMARY - Assuming that the force acting on a particle is of the form 
the theory of infinitesimal transformations is applied to determine the
forms of f (r) and for which the differential equation of central motion
is integrable by quadratures or reducible to a first order differential

equation.

1. It is well known that the problem of motion under central
forces is always solvable by quadratures when the force f (r) is a func-
tion of the distance r only [13]. If we ask the further question, y in
which cases the integration can be effected in terms of known func-
tions, then Newton [10] showed that if the central force varies as

some positive or negative integral power of the distance, say the n-th,
the problem is solvable by circular functions in the cases n = 1, - 2
and - 3. The case n = - 3 was studied in detail by R. Cotes [3].
Next Legendre [5] showed that the integration can be effected by
means of elliptic functions for n = 0, 3, 5, - 4, - 5 and - 7. After-

wards Stader [12] investigated in great detail the cases n = - 3,
-4, -5, -6, -7, Karger [4] the case n = - 4 and Macmillan [9] the
case n = - 5. Finally Nobile [11] discussed the integration in the
cases when n is a negative integer, and in particular the cases n = - 2,
- 3, - 4, - ~, and when n is a rational fraction, in particular the cases
n = - 3/2 and - 5/2.

(*) Indirizzo dell’A.: 3839 Selkirk Street, Vancouver, B.C. V6H 2Z2, Ca-
nada.
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In what follows we shall assume that the force depends on both
variables r and 0, and that it can be written in the form of a product

Here r, 0 are the polar coordinates of the particle P with
respect to the center of force 0. Our aim is to determine the forms
of f (r) and g(6) for which the equation (1) is integrable by quadratures
or for which the integration can be reduced to some particular type
of differential equations. The method used is that of infinitesimal
transformations which I applied [6, 7, 8] some 35 years ago to the
particle problem of exterior ballistics. It is a well known fact, that
the knowledge of an infinitesimal transformation under which the

given system of differential equations remains invariant, can be used
to lower the order of the system. In our problem the integration of
the second order differential equation of the central motion will be
reduced to the integration of a first order differential equation, satisfied
by the invariants of the infinitesimal transformation used, and an
additional quadrature for the time.

2. Consider the motion of a particle P of mass one acted on by
a central force of the form Q(r, 0) = Then the differential

equation of the trajectory can be written in the form [13]

where = I/r, c2 =1/h2 (h is a constant which represents the angular
momentum of P about 0) and F(u) _ 

Let

be an infinitesimal transformation which leaves the system
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which is equivalent to equation (1), invariant. Let

be the trivial transformation. where ~. is an arbi-

trary function of u, v, 0, is also an infinitesimal transformation which
leaves system (3) invariant. If we put !l. _ - O, then to any trans-
formation (2) there corresponds a transformation

where

If u, v and ui, v, are the coordinates of two neighboring points
in the u, v-plane, then the equations

represent explicitly the infinitesimal transformation (4), and the con-
ditions to be satisfied in order that (4) leaves system (3) invariant are

In order to integrate system (6), let us rewrite the first equation
in the form

or

(7)

where
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Here the subscripts denote partial derivatives of U with respect to
the variables represented by the indices. If by means of (7) we cal-
culate substitute its expression into the second equation of
system (6) and arrange that equation according to the powers of c2,
then we obtain the equation

In order that the infinitesimal transformations (2) and (4) be

independent of c2, the functions U, TT, O and U must be independent
of c2. This implies that the quadratic equation (8) in c2 must vanish
identically. In other words, the coefficients of c4, c2 and c° must

vanish separately. Hence we must have

, Consequently U" = 99(u, 0) and

where 99 and are two functions to be determined later.

2) The coefhcient of c2, put equal to zero, gives the equation

or, interms and and their derivatives, the equation

Since 99 and V are independent of v, then we must have

and consequently 99 _ ~ ( 8 ) , y
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and

3) The coefficient of c°, equated to zero, leads to the equation

Since and y are independent of v, then in the last equation the
coefficients of the quadratic equation in v must vanish separately.
Hence first we must have

consequently

and

Second, we must have

and hence

(k is a constant of integration) .

Third, the equation

must be satisfied. This implies that

If we eliminate ga’(8) from equations (14) and (15), then we obtain
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for the differential equation

the general solution of which is

where C and a are two constants of integration. Since

and q(0) satisfies the same differential equation as y then

Finally equation (10) can be rewritten in the form

In order that the variables u and 0 be separable in (20), or 1fJ2(O)
must vanish identically. If yi(0) = 0, then also q’(0) = q(0) = 0
(since C = 1~ = 0) and equation (20) reduces to = 0. Hence

1) F’(u) = 0, or 2) g(O) = 0. The second case is of no interest. In
the first case F(u) = const., say equal to one, f(r) =1 /r2 and g(O)
remains arbitrary. This is the case discovered by Armeflini [2]. If

1fJ2(O) = 0 which represents the trivial solution of (16), then

where m is an arbitrary constant. Hence

(D is a constant which without any loss of generality can be assumed
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equal to one),

(23)

and

or

Accordingly U assumes the expression

and

Then from formulas (5) and (7) it follows that

Hence, by comparison of the coefficients we obtain that

and



56

Since by (5) U = U - vl9, then

Hence we have determined the three coefficient functions U, V
and 0 of the infinitesimal transformation (2). They contain three
arbitrary constants C, a and 1~. If we put C = a = 0, k =1 or

k = a = 0, C =1, then we obtain two infinitesimal transformations
which leave system (3) invariant. A fourth arbitrary constant m
enters formulas (23) and (24) which give the functions f(r) and g(O).

Let us consider now the two special cases just mentioned.

3. Case I: 1~=a=0, C=1.
In this case we have

and the invariants and Y of the infinitesimal transformation, de-
termined by the equations

are

is given by (22) and from (24) it follows that

The derivatives of the invariants with respect to 0, taking into ac-
count formulas (3), (22) and (30), satisfy the equations
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Hence by division we obtain the equation

or, if ’we put Y2 = Z, the equation

The general solution of (32) is

( C1 is a constant of integration) and hence

From the first equation of (31) it then follows that

and after integration ~=~(0). Then by (33) also

and the first formula of (29) gives us

In order that the integral I on the left of (34) could be evaluated
in terms of circular functions, must be a polynomial of at most
the second degree. This condition is fulfilled in the following three
cases:
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In fact, in the first two cases G(X) is a polynomial of degree two
in X and in the third case Gl(Xl) is quadratic in Xi = X2 and
I = (1/2) f dXl/Ý Gl(Xl). Hence the integrability in terms of circular

functions, first considered by Newton f or n =1, - 2, - 3, can be ex-
tended to the above first two more general cases.

Next, let us list the cases in which the integration on the lef t
of (34) can be effected by means of elliptic integrals. For this it is

necessary that G(X) be of the third or fourth degree in ~. This con-
dition is fulfilled in the following six cases:

In fact, it is easy to verify that in the above six cases the integral I
is of the form

where is a polynomial of degree three or four, or of the form

where G(X) is a polynomial of degree four in X, or it can be reduced
to one of the integrals 11 or I2 in terms of Xi = X2.

Hence the integrability in terms of elliptic functions, first con-
sidered by Legendre for n = 5, 3, 0, - 4, - 5, - 7, can also be ex-

tended to the above six more general cases.

4. Case II: 
As before F(u) is given by (22) and g(O) is defined by (24). By in-

tegration we obtain that
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Further we have

and the invariants of the infinitesimal transformation y determined by
the equations

are

Their derivatives with respect to 8 satisfy the equations

and hence, by division we obtain the equation

If we put r==2013~/2-2013~ then equation (38) becomes

where

If m = 0, then
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and equations (37) can be easily integrated. Their integrals are

where A and B are two constants of integration. From the first for-
mula of (36) it then follows that

This is the general solution of equation (1) for F(u) =1. Since
in this particular case equation (1) is linear, its solution (41) can also
be obtained by direct integration.

For m = I, we have F(u) = u, f (r) = 1/r3, g(o) and the

general solution of (38) is

On the other hand for m == 1 we have by (40) for P(X) the expression

It is interesting to note that for this particular case Abel [1] has given
an integrating factor for equation (39). In general, however, this

equation cannot be solved by quadratures.
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