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Two-Dimensional Constitutive Equations.

R. S. RIVLIN (*)

SUMMARY - Constitutive equations appropriate to the two-dimensional defor-
mation of isotropic materials with memory are developed from first prin-
ciples. These are, of course, considerably simpler than the corresponding
three-dimensional equations, from which they could also be derived.

1. Introduction.

In a series of three papers Green and Rivlin [1, 2] and Green,
Rivlin and Spencer [3] discussed the formulation of constitutive equa-
tions appropriate to the continuum mechanics of materials with mem-
ory. They took as their starting point the constitutive assumption
that the Cauchy stress a in an element of the material at an instant
of time, t say, depends on the history of the deformation gradient
matrix g(T) at times up to and including time t. In mathematical

terms, the Cauchy stress was assumed to be a functionals of the

history of the deformation gradient matrix.
It was shown, from a consideration of the effect on the stress of

superposing on the assumed deformation a rigid time-dependent rota-
tion, that the dependence of the stress on the deformation gradient
matrix must take the form

(*) Indirizzo dell’A.: Lehigh University, Bethlehm, Pa., U.S.A.
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where C(z) is the Cauchy strain at time T, ~ is a symmetric matrix
functional and the dagger denotes the transpose.

It was then shown how further restrictions resulting from sym-
metry, and particularly isotropy, of the material could be introduced
into the constitutive equation for the stress by solving an appropriate
invariant-theoretical problem. In [1, 2, 3] this was discussed in the
case when Ji;’ may be expressed as the sum of a number of multiple
integrals of the argument function. In [4] it was shown how a canon-
ical form can be obtained for ~ in the case when the material is iso-

tropic. Analogous results in the more general case when iX is an

arbitrary functional of C(-r) were obtained by Wineman and Pip-
kin [5].

In the present paper we discuss the analogous problem in the
case when the deformation is two-dimensional. The canonical forms
for the constitutive equation which are obtained are much simpler
than those for three-dimensional deformations. While the results
obtained here could, of course, be obtained by specialization of the
more general three-dimensional ones, they are derived here indepen-
dently. This enables us to avoid the need to appeal to the rather
complicated three-dimensional representation theorems for invariants
and to use the much simpler two-dimensional theorems.

In this paper we make the assumption that the deformation gra-
dients-and hence the Cauchy strain-are piece-wise continuous, hav-
ing at most a countably infinite number of salti, and have bounded
variation. This is a less general class of functions than that to which
the representation theorems of Wineman and Pipkin [5] apply. How-
ever, it is suffieiently general for the purposes for which one would
wish to use it. It has the merit that the appropriate representation
theorems are derived in a somewhat less abstract manner and in a
somewhat more explicit form than would be the case if the more

general class of functions employed in [5] were used. The same ad-

vantage could, of course, be obtained in the three-dimensional case.
We make the constitutive assumption that the stress is a con-

tinuous functional of the deformation gradient history for piece-wise
continuous histories of the type mentioned above. However, it may
well be that the material with which we are concerned does not admit
the production in it of discontinuities in the deformation gradients.
If this is the case, we embed the space of physically allowable defor-
mation gradient histories in the larger space considered here and
correspondingly enlarge the space of functionals so that they depend
continuously on the argument functions throughout the whole of this
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space. That this can, in fact, be done follows from the Hahn-Banach
theorem (see, for example, [6]). The resulting constitutive equation
is, of course, then applied only in the case when the deformation gra-
dient history is a physically possible one.

2. Restrictions on the constitutive equation.

In this section we discuss some restrictions which may be imposed
on the two-dimensional constitutive equations for plane strain of a
material with memory. We assume that the two-dimensional Cauchy
stress at time t, denoted a = a(t), depends on the history of the two-
dimensional deformation gradients. Let au = 1, 2) be the com-
ponents of a in a two-dimensional rectangular cartesian coordinate
system X.

Suppose that a particle, which initially at time í = 0 has vector
position X, with components X, (A = 1, 2) in the system x, moves
to vector position x(-r), with components at time 7:. Then our
basic constitutive assumption takes the form

where g(i) is the 2 X 2 deformation gradient matrix defined by

,A denotes the operator and -F is a 2 X 2 matrix functiona.l.
We now superpose on the assumed deformation X -+ x(i) a time-

dependent rigid rotation about an axis normal to the plane of the
strain, so that the resulting deformation is where a(1)
is a proper orthogonal 2 X 2 matrix. Then the corresponding stress
at time t is where the dagger denotes the transpose. It

follows that a must be expressible in the form

where g = g(t) and C(í), the Cauchy strain at time Ty is defined by
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If the material is isotropic in the plane of the deformation, the
functional ~ in ( 2. 3 ) , which is in general different from that in ( 2 .1 ) ,
must satisfy the relation

and S is an arbitrary orthogonal 2 X 2 matrix. We note that both 5v
and C(7:) are symmetric matrices. Accordingly, we may interpret the
relation (2.5) as stating that .5~7 is a symmetric second-order tensor-
valued functional of the symmetric second-order tensor function C(i)
which is form-invariant under the 2-dimensional full orthogonal group S.

In the next section we discuss how the restrictions imposed on
the form of :F, by the requirement that it satisfy the relation (2.5),
can be made explicit.

3. Canonical form.

The relation (2.5) can easily be converted into a scalar relation
by employing an auxiliary symmetric 2 X 2 matrix tp. We define tIJ by

Then, from (2.5) we obtain

and note that

The relations (3.2) state that 0 is a scalar-valued functional of
the second-order symmetric tensor function C(-r) and a linear scalar
function of the second-order symmetric tensor tp, invariant under the
full orthogonal group. We now show how these facts enable us to
obtain a canonical expression for 0 and hence, from (3.3), for ~ .
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We make the assumption that C(1) = 8 (the 2 X 2 unit matrix)
for say. Then the support of the argument function C(-r) in
the functional /X may be taken as [to , t] . We also suppose that C(1)
is piece-wise continuous, having at most a countably infinite number
of salti, and is of bounded variation ( 1) . We define

and suppose that ~ is a continuous functional of C(’r).
We now divide the interval [to, t] into /-l sub-intervals [T~-l’ T0153)

( a = 1, ... , ,u ) , where We construct a

symmetric second-order tensor-valued function such that

The times 7:a are so chosen that if a saltus exists in any one of the

components of C( z) it occurs at one of these times.
Since is assumed to be a continuous functional of its argu-

ment functions, ~ [C,~(z)] ~ ~ [C(z)] as p -+ cxJ and sup (7:a:- 7:a-l) -+ 0.
Correspondingly, 0 is a continuous scalar functional of C(T) and

where

and 0[t~, - C(z)] and sup (za- -r,,-,) --~ 0. Since

the relation (3.2) is valid with C(-r) replaced by Cp(-r), it follows that
is a scalar function of the p + 2 second-order symmetric

tensors (a = 0, 1, ...y~) and tp, invariant under the full ortho-
gonal group. It is, of course, linear in 1p. It follows that 0 must be

expressible as a function of the elements of an irreducible integrity
basis for the a + 2 argument tensors. Let 11, ... , Iv be the elements
in such a basis which are independent of 1p and let .Kx, ... , Ka be
those elements which are linear in. Then,

(1) Each of the components of C(z) is assumed to have these properties.



284

It follows that

I1, ... , h, may be taken [7] as the set of invariants

Again, y .g1, ... , may be taken as the set of invariants

In then follows from (3.8) that

where 8 is the 2 X 2 unit matrix.
We now oo and sup (za- T~_i) -~ 0. The function ~[C~(r)]

then becomes the functional ~[C(1’)] (1’ = [to, t]) and equation (3.11)
becomes

where

9 and ~ are tensor-valued and scalar-valued functionals respectively
of the indicated argument functions, 9 being linear in C(T). The

range of ~, ~1’ ~2 and T is [to , t].

4. Integral representation.

We now consider the set of functions C(z) which consists of one
such function and all the functions which can be obtained from it

by time-independent orthogonal transformations. Such a set of func-
tions is called an orbit of any C(T) in the set. It is evident from their
definitions in (3.13) that Jx ( ~ ) and ~2 ) are the same for all func-
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tions C(7:) in a single orbit. Accordingly, for each orbite, 9 is a linear
functional of C(7:) and 3Q is a constant. Using the version of Riesz’s
theorem presented in [8] it follows that, on any specified orbit, 9
can be expressed in the form

The kernel f (t, r) in (4.1) depends, of course, on the particular choice
of orbit, i.e. on the values of the functions J,(~) and ~2). It is

accordingly a scalar functional of these functions.
From (4.1) and (3.12) we obtain

By substituting this expression in (2.3) we obtain the constitutive
equation for a. If a = 0 when the material undergoes no deforma-
tion, so that = g = 8 and tr C( ~) = tr ~C( ~1) C( ~2)~ = 2, then

If the material is incompressible,

where p is an arbitrary hydrostatic pressure and /X is given by an
expression of the form (4.2).

If the material is of the hereditary type, we may replace f(t, r)
in (4.1) by f (t - T) and correspondingly in (4.2) the dependence of f
on t and T is through t - T. Also, in (4.2) the functional dependence
of f and 3Q on J~ ( ~ ) and ~T2 ( ~1, ~2 ) is of the hereditary type.

It is convenient for our purposes to write

and we note that = 8, i.e. for zero deformation history, E(z) = 0.
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With (4.5) we may rewrite (4.2) in the form

where

5. Plane stress.

We consider a thin plane sheet of initial thickness h. We suppose
that the material of the sheet is either isotropic or has transverse
isotropy about an axis normal to it. We adopt a two-dimensional
rectangular cartesian reference system x in the mid-plane of the sheet.
We suppose that the sheet is deformed by forces applied to its edges
so that its mid-plane remains plane. We define the two-dimensional
Cauchy stress a = ~~ in the following manner. Gli is the resultant
force acting on an element of cross-sectional area which is normal

to the 1-axis in the deformed state and has unit length parallel to
the 2-axis in that state. a2i is analogously defined.

In the deformation a particle in the mid-plane which is initially
in vector position X moves to vector position x(z) at time z. The

deformation gradient matrix is then defined in terms of these
vectors by equations (2.2). As in the case of plane strain, we make
the constitutive assumption that the stress a at time t is a functional
of the deformation gradient history and so is given by an expression
of the form (2.1). Then, by an argument similar to that in §§ 2-4,
we arrive at expressions for a identical in form with those given by
(2.3) with (4.2) or (4.6). We note that these forms will be valid
whether or not the material is incompressible.

6, Small deformations.

Let u(z) be the displacement vector at time T. Then,
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We define the displacement gradient matrix y(i) by

and its norm by

We now suppose that norm y(i) 1. This implies that the exten-
sions undergone by linear elements of the material and the rotations
undergone by volume elements are small. We can then approximate
E(z) by

e(z) is, of course, the usual two-dimensional infinitesimal strain matrix.
With this approximation we may replace the factors g and gt

in (4.6) by 8 and dE(T) by 2 de(T) to obtain

We could, of course, also introduce the approximation (6.4) into the
expressions (4.7) for J1 and J2. However, we will not do this for
the moment.

We now suppose that ui and u2 depend on time in the same man-
ner, i . e .

where u is a time-independent vector and is a function of bounded
variation which has at most a countably infinite number of salti.
From (6.4) it follows that



288

Then, (6.5) becomes

From (6.9) we readily obtain

From (fi.10) it follows that

If we introduce the approximation norm Y(7:)« 1 into the ex-

pressions (4.7), we obtain

7. Polynomial functionals.

We now assume that in (2.3), the tensor-valued functional ~ is a
polynomial functional of C(~). It is evident that it may also be re-

garded as a polynomial functional of E(i) defined by (4.5). Then,

We assume that C(~), and hence E(z), is of bounded variation and

has, at most, a countably infinite number of salti.
Using a result analogous to that proven in [8] for the case of

three-dimensional constitutive equations, y we can express ~ as the
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sum of a number of multiple integrals thus:

where ~P is the matrix defined by

The isotropy condition (2.5) yields the result that WN is an isotropic
multilinear form in the tensors dE(íp) (P = 1, ... , N) .

Let Y be an arbitrary symmetric tensor. We define the scalar

~~, by

0., is a multilinear isotropic invariant of the N -E- 1 symmetric ten-
sors t~, (P = 1, ... , N) . It can then be expressed as a linear
combination of products of the elements of an isotropic integrity
basis for the N + 1 tensors. Each of these products is linear in each
of the tensors and has a coefficient which is a function of t, TI ... , TN.

The elements of an isotropic integrity basis for the N + 1 ten80rs w
and dE( zp ) (P = 1, ... , N) which are linear in ~ are

Those which are independent of tp and linear in their argument
tensors are

Thus, 0, may be expressed in the form
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a and are linear combinations of products of invariants chosen
from (7.7) with coefficients which are functions of t, ..., z~,. Each
of the products in the expression for a is multilinear in dE(zp)
( j = 1, ... , P) and each of the products in the expression for ap is
multilinear in dE(TQ) (Q = 1, ... , N ; Q ~ P). From (7.5) and (7.8) we
have

Introducing (7.9) into (7.2) it is easily seen that ~ can be expressed
in the form

where

PH is a linear combination of products of the form L1L2 ... LpmP+1,P+2 ... *
with coefficients which are functions of t, T1’ ... , and yN

is a linear combination of products of the form Z1L2 ... LpMp+1,P+2 ...
....~p_~,~y_1 with coefficients which are functions of t, i, T l’ ... , 

Thus,
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The connection between these results and that given in (4.6) can
easily be established by partial integration. For example, with the
assumption that ~10 is differentiable with respect to 7:, we have from

(7.12)~,

Similar partial integrations of the expressions for ~z?~3? etc. yield
with (7.10) an expression for ~ of the form (4.6) in which f and ~
are polynomial functionals of J1 ( ~ ) and 

If is sufficiently small, the expressions, ~ 1, ~1 + ~’2?’" pro-
vide a hierarchy of approximations to ~ . If the displacement gra-
dients y(i) defined in (6.2) are such that norm y(i) « 1, then we may
further approximate E( z ) by 2e(í), defined in (6.4), and we may
replace g by 8 in the corresponding expressions for a. In the case
when the material is incompressible, we can then absorb the terms
involving 8 in (7.12) in the arbitrary hydrostatic pressure term. Then
the successive approximates to a are

where

8. Simple fluids.

For plane flow of an incompressible simple fluid, the initial con-
stitutive assumption (2.1) is replaced by
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where g,(T) is the two-dimensional deformation gradient measured
with respect to the current configuration at time t. Then,

Correspondingly, the constitutive relation (4.4) is replaced by

where

Alternatively we may write

where (cf. (4.5))

Isotropy of the fluid then yields a restriction on the form of ~
given by (4.6) and (4.7) with E(r) repelaced by 

If in (8.5) /X is a polynomial functional of E,(r) , then /X may be
expressed in the form ( 7.10 ), where is given by ( 7.11 ), with 
replaced by both in (7.11) and in the expressions (7.7) for Lp
and With this replacement we obtain from (7.10), (7.11) and (8.5)

Here the term in (7.11) involving 8 has been absorbed into the ar-
bitrary hydrostatic pressure.

If Et( 7:) is differentiable, then dEt( 7:) may be replaced in (8.7) and
in the expressions for YN by Et(z) d7:, where = dEt(z)/dz. (We
note that Et(z) is necessarily differentiable if the fluid does not ex-
hibit instantaneous elasticity). Then, (8.7) may be rewritten as
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If E§(1) is sufficiently small, a hierarchy of slow flow approximations
may be easily read off from this equation. This assumption is, of

course, equivalent to the assumption that the velocity gradients are
small.
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