RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

SALVATORE RIONERO

Continuous dependence and stability for non linear dispersive and dissipative waves

Rendiconti del Seminario Matematico della Università di Padova, tome 68 (1982), p. 269-277

http://www.numdam.org/item?id=RSMUP 1982 68 269 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1982, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Continuous Dependence and Stability For Non Linear Dispersive and Dissipative Waves.

SALVATORE RIONERO (*)

Introduction.

In this paper we give some continuous dependence and stability theorems for nonlinear dispersive and dissipative waves according to the Korteweg-de Vries-Burgers (K.d.V.B.) equation [1]. Our goal is to obtain the afore said theorems only by assumptions on the data and withouth assuming, a priori, on perturbations any kind of convergence at large spatial distance. To this end we use the weight function method [2], [3], [4] by which it is possible to remove from perturbation to the weight function the convergence conditions.

The paper is divided into four sections. In the first one—devoted to preliminaries—we obtain a weighted energy equality for the K.d.V.B. equation (lemma 1) and recall a pointwise estimates for functions with bounded first derivatives (lemma 2).

In section 2 we prove a L^2 energy inequality for solution u to the perturbed equation which, a priori, may grow polinomially at large spatial distance. As a consequence of the afore said L^2 energy inequality in sections 3, 4 we give two continuous dependence theorems (sec. 3) and two stability theorem both in the L^2 and in the pointwise norm.

Work performed under the auspices of G.N.F.M. (C.N.R.).

^(*) Indirizzo dell'A.: Istituto di Matematica «R. Caccioppoli », Università, via Mezzocannone 8, 80134 Napoli, Italy.

1. Preliminaries.

The initial value problem (I.V.P.) associated to the K.d.V.B. equation, as is well known, is:

$$\begin{cases} v_t + vv_x + \mu v_{xxx} = \varkappa v_{xx} + F & (x,t) \in R \times R^+ \\ v(x,0) = v_0(x) & x \in R \end{cases}$$

where $\mu \in R$ is the constant of dispersion and $\varkappa = \mathrm{const} > 0$ is a coefficient of viscosity. The therm F wich appear in the right hand side may represent some kind of forcing action on the physical sistem and may also be considered as a controll therm wich represent—in some sense—the net error entailed in equation (1) with F = 0 as an approximate model. In the sequel we shall consider F ascribed and depending by x and t. Denoting by v and v + u two classical solutions of the I.V.P. (1) and by $\{v_0, v_0 + u_0\}$, $\{F, F + f\}$ the initial data and the forces (the controlls), the perturbation u satisfies the following I.V.P.:

(2)
$$\begin{cases} u_t = -(v+u)u_x - uv_x - \mu u_{xxx} + \kappa u_{xx} + f \\ u(x,0) = u_0(x) . \end{cases}$$

Let g(x,t) > 0 be a generally differentiable «weight function» and denote by $\mathcal{E}^{\frac{1}{2}}$ the weighted $L^{2}(R)$ norm defined by

(3)
$$\xi = \|\sqrt{g}u\|^2 = \int_{\mathbb{R}} gu^2 dx .$$

DEFINITION 1. We shall say that a solution u to problem (2) is in the class Γ_r iff

$$\exists M,\ l>0\colon\ |v|,\ |v_x|,\ |u|,\ |u_x|,\ |u_{ux}|,\ |u_0|,\ |f|\leqslant M|x|^K$$

$$(K>0,\ |x|>l)\ .$$

LEMMA 1. If $u \in \Gamma_r$ then u verifies the weighted energy equality

(5)
$$\frac{d\mathcal{E}}{dt} = \int_{\mathcal{R}} \left\{ \left[g_t + g_x \left(v + \frac{2}{3} u \right) + (\varkappa g_{xx} + \mu g_{xxx}) - g v_x^2 \right] u^2 + \left(\varkappa g + \frac{3}{2} \mu g_x \right) u_x^2 + 2g f u \right\} dx$$

where

(6)
$$g = \exp\left[-\alpha(1+\varepsilon x)(t+t_0)^{\beta}\right]$$

with

(7)
$$\begin{cases} \alpha > 0; & t_0, \beta \geqslant 0 \\ \varepsilon = \begin{cases} 1 & x \geqslant 0 \\ -1 & x \leqslant 0 \end{cases}.$$

PROOF. Multiplying (2_1) by $g \cdot u$ and integrating, we easily get (5) (1). In the sequel we shall use the following lemma:

LEMMA 2. Let N be a fixed positive constant and let \mathfrak{I}_N be the class of functions:

$$\varphi\colon R o R$$
 , $\varphi\in C^1(R), \ |\varphi'|\leqslant N$.

Then $\forall x_0 \in R \text{ and } \forall h \in R^+$

(8)
$$\varphi \in \mathfrak{I}_{N} \Rightarrow |\varphi(x_{0})| \leqslant K \left[\int_{x_{0}}^{x_{0}+h} \varphi^{2} dt + \left(\int_{x_{0}}^{x_{0}+h} \varphi^{2} dt \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}$$

(1) Take into account that:

$$\begin{cases} guu_t = \frac{1}{2} \, (gu^2)_t - \frac{1}{2} \, g_t u^2 \,, & guu_x = \frac{1}{2} \, (gu^2)_x - \frac{1}{2} \, g_x u^2 \\ \\ (v+u) \, guu_x = \left(\frac{1}{2} \, vgu^2 + \frac{1}{3} \, gu^3\right)_x - \frac{1}{2} \, g_x \left(v + \frac{2}{3} \, u\right) u^2 - \frac{1}{2} \, gv_x u^2 \\ \\ guu_{xx} = \left(guu_x - g_x \frac{u^2}{2}\right)_x + g_{xx} \frac{u^2}{2} - gu_x^2 \\ \\ guu_{xxx} = \left(guu_{xx} - g_x uu_x - g \frac{u_x^2}{2} + g_{xx} \frac{u^2}{2}\right)_x - g_{xxx} \frac{u^2}{2} + \frac{3}{2} \, g_x u_x^2 \,. \end{cases}$$

where K is a positive constant independent of x_0 (2).

2. L^2 energy inequality.

Let T be a positive constant. We have (3):

THEOREM 1. Let $u \in \Gamma_{\nu}$ with

(9)
$$|v|, |u| \leq M(1 + |x|), \quad |v_x| \leq M.$$

Then

$$(10) \qquad \begin{cases} u_0 \in L^2(R) \\ f \in L^2(R \times [0, T)] \end{cases} \Rightarrow \begin{cases} u \in L^2(R) \quad \nabla t > 0 \\ u_x \in L^2(R \times [0, T]) \end{cases}$$

and moreover u obeys the L^2 energy inequality $\forall t \leqslant T$, i.e.

(11)
$$||u(t)||^2 \leq ||u_0||^2 - \int_0^t ds \int_R (V_x u^2 + 2\kappa u_x^2 - 2fu) \ dx \ .$$

PROOF. Since

$$(12) \begin{array}{l} \left\{ \begin{array}{l} g_t = -\alpha\beta (1+|x|)(t+t_0)^{\beta-1}g\,, \quad g_x = -\alpha\varepsilon (t+t_0)^\beta g \\ \\ g_{xx} = \alpha^2 (t+t_0)^{2\beta}g\,, \qquad \qquad g_{xxx} = -\alpha^3\varepsilon (t+t_0)^{3\beta}g \end{array} \right. \end{array}$$

we have

(13)
$$\varkappa g_{xx} + \mu g_{xxx} \leqslant \alpha^2 (T + t_0)^2 [\varkappa + |\mu| \alpha (T + t_0)] g$$

(2) For the sake of completeness we shall sketch here the proof. We have:

$$\varphi^2(x_0) = \, \varphi^2(x) - \!\!\! \int\limits_{x_0}^{x_0 + h} \!\! \frac{d}{dt} \, \varphi^2 \, dt \leqslant \varphi^2(x) \, + \, N h^{\frac{1}{2}} \bigg(\int\limits_{x_0}^{x_0 + h} \!\! \varphi^2 \, dt \bigg)^{\!\frac{1}{2}}$$

Integrating over $(x_0, x_0 + h)$ we obtain

(3) We denote by $\|\cdot\|$ the $L^2(R)$ norm, as we already made in relation (3).

and, for $\beta > \frac{5}{3}M(T + t_0)$

(14)
$$g_t + \left(v + \frac{2}{3}u\right)g_x \leq \alpha g(1+|x|)(t+t_0)^{\beta}\left(\frac{5}{3}M - \frac{\beta}{T+t_0}\right) < 0$$
.

Moreover, letting

(15)
$$\bar{\varkappa} = \varkappa - \frac{3}{2} |\mu| \alpha (T + t_0)^{\beta}$$

for

(16)
$$0 < \alpha < \frac{2\varkappa}{3|\mu|(T+t_0)^{\beta}}$$

and for the assumption made on v_x we have

Therefore, taking into account (13)-(17) and the Cauchy inequality $2fu \le f^2 + u^2$, from (5) we obtain

(18)
$$\frac{d\mathcal{E}}{dt} \leqslant A\mathcal{E} + \int_{\mathcal{R}} g(f^2 - 2\bar{\kappa}u_x^2) dx$$

with

(19)
$$A = \alpha^2 (T + t_0)^2 [\varkappa + |\mu| \alpha (T + t_0)] + 1 + M.$$

Integrating (18) from 0 to $t \leq T$ we thus obtain (4)

(20)
$$2\bar{\varkappa} \int_{0}^{t} \int_{R} g u_{x}^{2} dx ds + \xi(t) \leqslant \exp\left(AT\right) \left[\xi(0) + \int_{0}^{T} ds \int_{R} g f^{2} dx\right].$$

Therefore, since by assumptions (10) the right hand side of (20) con-

(4) Take into account the following generalization of the Gronwall's lemma [6]:

$$\begin{split} y(t) < &K(t) + \int\limits_0^t x(s) \, y(s) \, ds, \ t > 0 \Rightarrow \\ \Rightarrow & y(t) < K(0) \, \exp\int\limits_0^t x(s) \, ds + \exp\int\limits_0^t x(s) \, ds \cdot \int\limits_0^t K'(s) \, \exp\left[-\int\limits_0^s y(\xi) \, d\xi\right] \cdot ds \; . \end{split}$$

verges to a finite quantity as $\alpha \to 0$, by the monotone convergence theorem we deduce

(21)
$$\int_0^t ds \int_R u_x^2 dx + \int_R u^2 dx < \infty, \quad \forall t \leqslant T.$$

Let us come back now to identity (5). Taking into account (14) we obtain

(22)
$$\delta(t) \leq \delta_0 + \int_0^t ds \int_R g[(\alpha^2 A_1 - v_x) u^2 - 2\bar{\varkappa} u_x^2 + 2fu] dx$$

with

(23)
$$A_1 = (T + t_0)^2 [\varkappa + |\mu| \alpha (T + t_0)].$$

Letting $\alpha \to 0$ in (22), we obtain the inequality (11).

3. Continuous dependence theorems.

The inequality (20) allows to obtain immediately a continuous dependence theorem upon the data u_0 and f for solutions wich may grow spatially according (4)+(9).

THEOREM 2. Let $u \in \Gamma_{r}$ and let (9) holds. Then

$$(24) \quad \|u_0\|^2 + \int_0^T \|f\|^2 \, ds < \delta \Rightarrow \int_0^T \|u_x\|^2 \, ds \, + \, \|u\|^2 \leqslant A^*\delta \,\,, \qquad \forall t \in [0, \, T]$$

where $A^*(>0)$ is a constant indipendent of δ .

Proof. From (20), taking into account (19) and letting $\alpha \to 0$, we obtain

$$(25) \qquad 2h \int_{0}^{T} \|u_{x}\|^{2} ds + \|u\|^{2} \leqslant \exp\left[\left(1 + M\right)T\right] - \left[\|u_{0}\|^{2} + \int_{0}^{T} \|f\|^{2} ds\right], \\ \forall t \in [0, T]$$

wich proves the theorem.

Starting from the theorem 2, wich in particular assures continuous dependence in the norm of L^2 , it is possible to obtain continuous dependence in the pointwise norm.

THEOREM 3. Let the assumptions of theorem 2 be satisfied with

$$(26) |u_x| \leqslant N (N = \text{const} > 0).$$

Then

(27)
$$||u_0||^2 + \int_0^T ||f||^2 ds < \delta \Rightarrow \sup_{R \times [0,T]} |u| < A_1^* \delta^p \quad (p > 0)$$

with A_1^* constant indipendent of δ .

From theorem 2 follows

$$||u||^2 \leqslant A * \delta$$
, $\forall t \in [0, T]$

with A^* constant indipendent of δ . The theorem 3 follows easily then from the lemma 2.

Remark (Uniqueness). Let the assumptions of theorem 2 be satisfied with f=0. Then

(28)
$$u_0 = 0 \Rightarrow u = 0, \quad \forall (x, t) \in \mathbb{R} \times \mathbb{R}^+.$$

4. Stability.

Starting from the L^2 energy inequality (11) and taking into account the lemma 2 it is possible to obtain a stability theorem in the L^2 norm and a stability theorem in the pointwise norm. ([5], n. 5). Let

(29)
$$\varkappa^* = \frac{1}{2} \sup_{t \in [0,\infty)} \left[\sup_{w \in \Sigma} \frac{-\int_{\mathbb{R}} v_x w^2 dx}{\int_{\mathbb{R}} w_x^2 dx} \right]$$

where Σ is the set of one time differentiable functions in R. The following theorem holds:

THEOREM 4. Let the hypotheses of theorem 2 be satisfied with f=0 and $\forall T>0$. Then, if

$$(30) \varkappa^* < \varkappa$$

the umperturbed solution v is stable in the L^2 norm.

PROOF. From (29) and from (11), we obtain $\forall t > 0$

(31)
$$||u(t)||^2 \leq ||u_0||^2 + 2(r^* - r) \int_0^t ds \int_R u_x^2 dx .$$

Therefore from (30)+(31) we deduce

$$||u_0||^2 < \delta \Rightarrow ||u(t)||^2 \leqslant \delta, \quad \forall t \geqslant 0.$$

THEOREM 5. Let the hypotheses of theorem 4 be satisfied. Then, if u_x is uniformly bounded in $R \times R^+$ the solution v is pointwise stable.

PROOF. Starting from inequality (8) in lemma 2 and taking into account (32) we thus obtain

$$|u(x,t)| \leqslant K(\delta + \delta^{\frac{1}{2}})^{\frac{1}{2}}, \quad \forall t \geqslant 0$$

from wich we deduce

(34)
$$\|u_0\|^2 < \delta \Rightarrow \sup_{R \times R^+} |u| < K\delta^p \qquad (p > 0)$$

wich proves the theorem.

REMARK 2. Since lemma 2 holds even in $C(R) \cap L_2(R)$, theorems 3 and 5 continue to hold substituting the hypothesis u_x bounded with $u_x \in L_2(R)$.

REFERENCES

[1] A. Jeffrey - T. Kakutani, Nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation, SIAM Review, 14, no. 4 (1972), pp. 582-643.

- [2] S. RIONERO G. P. GALDI, The weight function approach to uniqueness of viscous flows in unbounded domains, Arch. Rat. Mech. Anal., 69 (1979), pp. 37-52.
- [3] G.P. GALDI S. RIONERO, Continuous dependence theorems for Navier-Stokes equations in unbounded domains by the weight-function method, Quart. J. Mech. Appl., Math., 32, part 2 (1979), pp. 149-161.
- [4] G. P. GALDI S. RIONERO, A priori estimates, continuous dependence and stability for solutions to Navier-Stokes equations on exterior domains, Riv. Mat. Univ. Parma, (4), 5 (1979), pp. 533-556.
- [5] G. P. GALDI S. RIONERO, Local estimates and stability of viscous flows in an exterior domain, Arch. Rat. Mech. Anal. (in press).
- [6] L. C. PICCININI G. STAMPACCHIA, Equazioni differenziali ordinarie in Rⁿ Liguori, Napoli, pp. 32-36.

Manoscritto pervenuto in redazione il 24 luglio 1982.