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Continuous Dependence and Stability
For Non Linear Dispersive and Dissipative Waves.

SALYATORE RIONERO (*)

Introduction.

In this paper we give some continuous dependence and stability
theorems for nonlinear dispersive and dissipative waves according to
the Korteweg-de Vries-Burgers (K.d.V.B.) equation [1]. Our goal is
to obtain the afore said theorems only by assumptions on the data
and withouth assuming, y a priori, y on perturbations any kind of con-
vergence at large spatial distance. To this end we use the weight
function method [2], [3], [4] by which it is possible to remove from
perturbation to the weight function the convergence conditions.

The paper is divided into four sections. In the first one-devoted
to preliminaries-we obtain a weighted energy equality for the K.d.v.B.
equation (lemma 1) and recall a pointwise estimates for functions with
bounded first derivatives (lemma 2).

In section 2 we prove a L2 energy inequality for solution to the
perturbed equation which, a priori, may grow polinomially at large
spatial distance. As a conseguence of the afore said .L2 energy ine-

quality in sections 3, 4 we give two continuous dependence theorems
(sec. 3) and two stability theorem both in the L2 and in the point-
wise norm.

(*) Indirizzo dell’A.: Istituto di Matematica « R. Caccioppoli », Università,
via Mezzocannone 8, 80134 Napoli, Italy.

Work performed under the auspices of G.N.F.M. (C.N.R.).
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1. Preliminaries.

The initial value problem (I.V.P.) associated to the K.d.V.B.

equation, as is well known, is:

where It is the constant of dispersion and x = const &#x3E; 0 is a coef-
ficient of viscosity. The therm F’ wich appear in the right hand side
may represent some kind of forcing action on the physical sistem and
may also be considered as a controll therm wich represent-in some
sense-the net error entailed in equation (1) with .F’ = 0 as an ap-
proximate model. In the sequel we shall consider .~’ ascribed and

depending by x and t. Denoting by v and v + u two classical solu-
tions of the I.V.P. (1) and by V, + {F, F + f ~ the initial data
and the forces (the controlls), the perturbation u satisfies the follow-
ing I.V.P.:

Let g(x, t) &#x3E; 0 be a generally differentiable « weight function» and
denote by 81 the weighted norm defined by

DEFINITION 1. We shall say that a solution u to problem (2) is in
the class Tv iff
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LEMMA 1. If u E 1~~ then u veri f ies the weighted energy equality

where

(6)
with

PROOF. Multiplying ( 21 ) by g - u and integrating, we easily get (5) ( 1 ) .
In the sequel we shall use the following lemma:

LEMMA 2. Let N be a f ixed positive constant and let IN be the class
of f unctions :

Then Vx,, c- Rand b’h E R+

(1) Take into account that:
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where K is a positive constant independent o f xo (2).

2. L2 energy inequality.

Let T be a positive constant. We have (3):

THEOREM 1. Let u E Tv with

Then

and moreover u obeys the L2 energy inequality ’

PROOF. Since

we have

(2) For the sake of completeness we shall sketch here the proof. We
have:

Integrating over (xo, xo + h) we obtain

(3) We denote by 11 - II the norm, as we already made in relation (3).
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and, for

Moreover, letting

for

and for the assumption made on vx we have

Therefore, taking into account (13)-(17) and the Cauchy inequality
2 f u c f 2 -~- u2, from (5) we obtain

with

Integrating (18) from 0 to we thus obtain (4)

Therefore, since by assumptions (10) the right hand side of (20) con-

(4) Take into account the following generalization of the Gronwall’s
lemma [6]:

1
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verges to a finite quantity as a ~ 0, by the monotone convergence
theorem we deduce

Let us come back now to identity (5). Taking into account (14) we
obtain

with

Letting 0153 ~ 0 in ( 22 ) , we obtain the inequality (11).

3. Continuous dependence theorems.

The inequality (20) allows to obtain immediately a continuous
dependence theorem upon the data uo and f for solutions wich may

grow spatially according (4)+(9).

THEOREM 2. Let and let (9) holds. Then

where A*(&#x3E; 0) is a constant indipendent 

PROOF. From (20), taking into account (19) and letting 0,
we obtain

wich proves the theorem.
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Starting from the theorem 2, wich in particular assures continuous
dependence in the norm of L2, it is possible to obtain continuous
dependence in the pointwise norm.

THEOREM 3. Let the assumptions of theorem 2 be satisfied with

Then

with A: constant indipendent 
From theorem 2 follows

with A* constant indipendent of 6. The theorem 3 follows easily
then from the lemma 2.

REMARK (Uniqueness). Let the assumptions of theorem 2 be sat-

isfied with f = 0. Then

4. Stability.

Starting from tb.e L2 energy inequality (11) and taking into ac-
count the lemma 2 it is possible to obtain a stability theorem in the
L2 norm and a stability theorem in the pointwise norm. ([5], n. 5).

Let

where 27 is the set of one time differentiable functions in R. The fol-

lowing theorem holds:
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THEOREM 4. Let the hypotheses of theorem 2 be satisfied with f = 0
and VT &#x3E; 0 . Then, if

the umperturbed solution v is stable in the L2 norm.

PROOF. From (29) and from (11), we obtain Vt &#x3E; 0

Therefore from (30)+(31) we deduce

THEOREM 5. Let the hypotheses of theorem 4 be satisfied. Then,
if ux is uniformly bounded in .R X R+ the solution v is pointwise stable.

PROOF. Starting from inequality (8) in lemma 2 and taking into
account (32) we thus obtain

from wich we deduce

wich proves the theorem.

REMARK 2. Since lemma 2 holds even in L2 (.1~), theorems 3
and 5 continue to hold substituting the hypothesis u., bounded with
2cx E L2(1-~).
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