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Isoperimetric Distributions of Loads in Elastostatics.

PIERO VILLAGGIO (*)

1. Introduction.

In the classical theory of elasticity it is customary to prescribe
the shape and the elastic moduli of a body and determine the dis-
placements produced by a given system of body forces and surface
tractions. In some cases, however, it is necessary to solve the inverse
problem: that is to find the forces able to engender a given state of
displacements. Inverse boundary-value problems in elastostatics have
long been appreciated and solved in the past, but only recently they
have been studied systematically.

In this paper I consider the following inverse problem in elasto-
statics. A homogeneous and isotropic infinite solid is loaded by a
constant distribution of body forces acting parallel to a given direc-
tion, which is taken to be the z-axis of a system of cartesian coor-
dinates x, y, z. If the forces act on a region of prescribed volume,
for what shape of the region is the elastic displacement w along the
z-axis, evaluated at the origin, a maximum? It might be imagined
that, if the domain of application of the forces is a figure of revolu-
tion about the z-axis and symmetric with respect the plane of x and y,
the displacement of the origin is a maximum for a sphere, but the
solution shows that this is not so.

The same problem can be formulated in plane elasticity. In a
state of plain strain parallel to the x, y-plane, constant body forces
are parallel to the x-axis and are applied at the points of a region of

(*) Indirizzo dell’A.: Istituto di Scienza delle Costruzioni dell’Università,
Pisa.
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prescribed area. The shape of the region is sought such that the dis-
placement of the origin along the x-axis is a maximum. Also in this
case the solution shows that a load region having the form of a circle
centered at the origin does not produce the greatest displacement
of the origin.

It may be useful to observe that similar problems-rather unusual
in elasticity-have been more widely studied within newtonian po-
tential theory (cf. MacMillan [1, ~ 41]).

2. The three-dimensional case.

Consider an indefinite elastic medium, homogeneous and isotropic,
characterized by Lame moduli It and A, satisfying the classical ine-
qualities

We denote the coordinates of the point occupied by a particle, in
the unstrained state, by (Fig. 1), and the components of dis-

Figure 1

placement on the axes by u, v, w. The body is loaded by a distribu-
tion of body forces of the type

(2.2) .~ = Y = 0 , 1 Z = constant ,
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acting on a bounded region D, of prescribed volume, so that they
are statically equivalent to a single constant force acting in the direc-
tion of z. If w(0, 0, 0) is the displacement of the origin 0 parallel to
the z-axis, we want to determine the position and the shape of D in
order that w(O, 0, 0) is a maximum.

Though we have no preliminary information about the nature of D,
it seems plausible to assume that D is a solid of revolution around
the z-axis and symmetric with respect to the x, y-plane. The explicit
solution will confirm that this conjecture is correct.

Under the above assumption it is easy to calculate che elastic

displacement 0, 0) due to the body forces Z = constant acting
in D. For this purpose consider a thin cross section of radius h(z)
and thickness dz at a distance z from the origin 0. The body force
applied at an element of the slice of volume dx dy dz is 
where ~Oo is the density of the material. The displacement of the
origin produced by the body forces applied at an element dx dy dz
of coordinates x, y, z has the form (cf. Love [2, § 131])

where and A, a are constants defined by

It may be useful to observe that the conditions (2.1) imply A &#x3E; 0,
a &#x3E; 1. The total displacement produced by the forces at D is thus

or, by the formula of reduction of triple integrals, y

where and H and - H are the z coordinates of the
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points where the axis pierces the surface. By integrating with respect
to e and observing that 0, 0) is an even function of z we obtain

The problem is to find a function h(z), the meridian section of
the surface of D, which makes 0, 0) a maximum for a given vol-
ume of D. This means that the condition

must also be satisfied.

By requiring that the first variation of the functional u~ - Âo Vo,
with lagrangean parameter Âo, should vanish we easily derive the
Euler equation of the variational problem, y namely, y

where

Disregarding the solution h(z) = 0 (which yields a minimum) we
obtain

or, since in spherical coordinates z = r cos 0,

The parameter Âo can be determined by the condition (2.7). In

spherical coordinates we have
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The integral on the right-hand side of (2.10) can be evaluated exactly, y
yielding

where we have set = a3 + a2 + § a + ~. It is easy to see that

p(a) &#x3E; 8/32/5.
Since equation ( 2 .11 ) gives the value of ~,o , the final form of (2.9)

becomes

and the meridian section of the solid is approximatively represented
in Fig. 1. The radius of the sphere of equal volume is ro = 

Inspection of the sign of the second variation of (2.6) confirms
that 0, 0) attains a local maximum.

3. The plane problem.

In a state of plane strain parallel to the x, y-plane the displace-
ment w vanishes, y and the displacements u, v are functions of the

coordinates x, y only. Assume the body forces have the form

and the former act inside a plane region D of prescribed area A,,. We
wish to find the domain D with prescribed area for which is a max-
imum at the origin.

We start from the hypothesis that D is symmetric with respect
to the x and y-axes, and y = h(x) is the equation of its boundary
in the first quadrant. If - H  x  H the condition of constant
area becomes



266

Figure 2

Since the displacement of the origin parallel to the x-agis produced
by a unit force concentrated at the point (x, y) is known (cf. Love [2,
§ 148]), the total displacement 0) due to the distribution of
forces X in D is

where po is the density and are the constants

It is useful to recall that the classical restrictions on A and a imply
B&#x3E;y&#x3E;0.

Using the formula of reduction for double integrals (3.2) yields
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If the first variation of u - ÀoAo is required to vanish, the result-
ing Euler equation is

where r + h2. Using polar coordinates x = r cos 0, h = r sin 0
this equation becomes

The parameter 2o is determined by (3.1):

The definite integral on the right-hand side can be evaluated exactly
by using properties of Bessel functions (cf. Gradshteyn and Ryzhik [3,
8.431])

where Io is the Bessel function of imaginary argument. Thus from

(3.7) and (3.8),

and (3.6) becomes

The radius of the circle of equal area is &#x3E;
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4. A comparison between the eccentricities.

If we define as the t eccentricity )&#x3E; of the figure of maximum dis-

placement the ratio

in both the cases considered above, it is immediately seen that 8 =
= 1/(1 + a) in three-dimensional elasticity and 8 = 1- exp [- 
in plane elasticity. Since a &#x3E; 1 and  1, the eccentricity is less
than -1 in the first case and greater than 1- exp [- 2] ~ 0,39347 in
the second. A property of this kind has been noticed in other iso-
perimetric problems (cf. P61ya and Szeg6 [4]).
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