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REND. SEM. MaT. UN1v. PADOVA, Vol. 68 (1982)

Isoperimetric Distributions of Loads in Elastostatics.

PI1ERO VILLAGGIO (*)

1. Introduction.

In the classical theory of elasticity it is customary to prescribe
the shape and the elastic moduli of a body and determine the dis-
placements produced by a given system of body forces and surface
tractions. In some cases, however, it is necessary to solve the inverse
problem: that is to find the forces able to engender a given state of
displacements. Inverse boundary-value problems in elastostatics have
long been appreciated and solved in the past, but only recently they
have been studied systematically.

In this paper I consider the following inverse problem in elasto-
statics. A homogeneous and isotropic infinite solid is loaded by a
constant distribution of body forces acting parallel to a given direc-
tion, which is taken to be the z-axis of a system of cartesian coor-
dinates x, y,2. If the forces act on a region of prescribed volume,
for what shape of the region is the elastic displacement w along the
z-axis, evaluated at the origin, a maximum? It might be imagined
that, if the domain of application of the forces is a figure of revolu-
tion about the z-axis and symmetric with respect the plane of z and ¥,
the displacement of the origin is a maximum for a sphere, but the
solution shows that this is not so.

The same problem can be formulated in plane elasticity. In a
state of plain strain parallel to the x, y-plane, constant body forces
are parallel to the x-axis and are applied at the points of a region of

(*) Indirizzo dell’A.: Istituto di Scienza delle Costruzioni dell’Universita,
Pisa.
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prescribed area. The shape of the region is sought such that the dis-
placement of the origin along the z-axis is a maximum. Algo in this
case the solution shows that a load region having the form of a circle
centered at the origin does not produce the greatest displacement
of the origin.

It may be useful to observe that similar problems—rather unusual
in elasticity—have been more widely studied within newtonian po-
tential theory (cf. MacMillan [1, § 41]).

2. The three-dimensional case.

Congider an indefinite elastic medium, homogeneous and isotropic,
characterized by Lamé moduli x4 and A, satisfying the classical ine-
qualities

(2.1) ©>0, 2u-+31>0.

We denote the coordinates of the point occupied by a particle, in
the unstrained state, by «,y, 2 (Fig. 1), and the components of dis-

Figure 1

placement on the axes by u, v, w. The body is loaded by a distribu-
tion of body forces of the type

(2.2) X=Y=0, Z = constant,
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acting on a bounded region D, of prescribed volume, so that they
are statically equivalent to a single constant force acting in the direc-
tion of z. If w(0,0,0) is the displacement of the origin O parallel to
the z-axis, we want to determine the position and the shape of D in
order that w(0,0,0) is a maximum.

Though we have no preliminary information about the nature of D,
it seems plausible to assume that D is a solid of revolution around
the z-axis and symmetric with respect to the , y-plane. The explicit
solution will confirm that this conjecture is correct.

Under the above assumption it is easy to calculate che elastic
displacement w(0,0,0) due to the body forces Z = constant acting
in D. For this purpose consider a thin cross section of radius h(z)
and thickness dz at a distance z from the origin O. The body force
applied at an element of the slice of volume dx dy dz is g,Z dx dy dz,
where g, is the density of the material. The displacement w of the
origin produced by the body forces applied at an element dx dy dz
of coordinates «,y, 2 has the form (cf. Love [2, § 131])

2
(2.3) (0, 0,0) = 4% + a2\ o Zdwdydz ,
73 r

where r = Va2 4 y2 + 22 and A4, o are constants defined by

Atp _ A+ 3u

@4 Temuu A’ YT a4p

It may be useful to observe that the conditions (2.1) imply 4 > 0,
a> 1. The total displacement produced by the forces at D is thus

2
w(0, 0, 0) = QOZAHI(% + oc%)dxdydz,
D

or, by the formula of reduction of triple integrals,

H 1)

2 1
2.5 0,0, 0) = 2mp, ZA
(2.5)  w(0,0,0) = 2mp _fdzf((zz + o)t +o (2® - 92)%) ede,

where ¢ = V&2 + y?, and H and — H are the z coordinates of the
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points where the axis pierces the surface. By integrating with respect
to o and observing that w(0, 0, 0) is an even function of 2 we obtain

2

(2.6) w(0,0,0)= 4ﬂQ0ZAf [_(_z?—T—T“‘)*_ (¢ —1)2 4 o(2? + hz)i] dz .

The problem is to find a function h(2), the meridian section of
the surface of D, which makes w(0, 0, 0) a maximum for a given vol-
ume of D. This means that the condition

(2.7 f j f dr dy dz = ,‘Zyszh2 dz = V,= constant
D 0

must also be satisfied.

By requiring that the first variation of the functional w— A,7,,
with lagrangean parameter A,, should vanish we easily derive the
Euler equation of the variational problem, namely,

22 o Ao .
@8 (5 %)~ sz =0

where r = Vh? + 22
Disregarding the solution h(z) = 0 (which yields a minimum) we
obtain

2 Ao
RN TN

or, gince in spherical coordinates z = r cos 0,

,— 20,ZA

(2.9) T

(¢4 cos20) with 0<O<m.

The parameter 4, can be determined by the condition (2.7). In
spherical coordinates we have

7 r(0)

27
(2.10) fffdwdydz: d fdefgz sinfdp =
D [} 0 0

s £
(2@0ZA) f(“ + cos20)*sinf df = V,.
o

)

_23'5
3
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The integral on the right-hand side of (2.10) can be evaluated exactly,
yielding

47t (20,ZA\
(2.11) Vo= —37—’( @; ) p(a),
0

where we have set p(a) = a® + a? + 3« 4 3. It is easy to see that
p(a) > 58.

Since equation (2.11) gives the value of 4,, the final form of (2.9)
becomes

3
— Vo 2 i
(2.12) T_V%np(oc) (o« + cos?20) with 0<O<m,

and the meridian section of the solid is approximatively represented

in Fig. 1. The radius of the sphere of equal volume is r, = v/ Vo/3m.
Inspection of the sign of the second variation of (2.6) confirms
that w(0, 0, 0) attains a local maximum.

3. The plane problem.

In a state of plane strain parallel to the x, y-plane the displace-
ment w vanishes, and the displacements %, v are functions of the
coordinates x,y only. Assume the body forces have the form

X = constant, Y =0,

and the former act inside a plane region D of prescribed area 4,. We
wish to find the domain D with prescribed area for which # is a max-
imum at the origin.

We start from the hypothesis that D is symmetric with respect
to the # and y-axes, and y = h(x) is the equation of its boundary
in the first quadrant. If — H <o < H the condition of constant
area becomes

(3.1) J' J' do dy = 4th(a:) dw — A, — constant .

D 0
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Figure 2

Since the displacement of the origin parallel to the x-axis produced
by a unit force concentrated at the point (z, y) is known (cf. Love [2,
§ 148]), the total displacement «(0,0) due to the distribution of
forces X in D is

(3.2)  u(0,0) = —goxff(ﬂ InVa? 4 y2 4 yﬁ) dzedy ,

where g, is the density and S,y are the constants

A+ 3u A+ p
3.3 L __tTe
33 4 tu(t2w)’ 7T T2+ 2u)
It is useful to recall that the classical restrictions on 4 and yx imply
g>y>0.

Using the formula of reduction for double integrals (3.2) yields

H hlx)

(38.4)  u(0,0) = — 490dewf(ﬁ InVa? + g2+ p - v 2) dy =

+y

T 400Xf [ﬂh InVa? 4+ 1% — (B —y)h + (B — y)w arctan z] .
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If the first variation of 4 — 4,4, is required to vanish, the result-
ing Euler equation is

h2 2?2 Ao .
(3.5) ﬁlnr—l—ﬁ—r—z—(ﬂ—‘?)—l—(ﬂ—)’)ﬁ"‘gox_o’

where r = Va? + h2. Using polar coordinates # = r cos 6, h = rsin 0
this equation becomes

_ - Ao Y . .
(3.6) r= exp[ @_oﬁ] exp [—B sin? 0] with 0<0<2x.

The parameter 4, i3 determined by (3.1):

nf2  r(0)

(3.7) 4,= fdwdyzéidefgdg:
D L) )

/2
= 2 exp [— 902%(] ~fexp [—%;—} sin? 0] o .

0

The definite integral on the right-hand side can be evaluated exactly
by using properties of Bessel functions (cf. Gradshteyn and Ryzhik [3,
8.431])

n/2 nf2

(3.8) fexp [—% gin? 0] af = % exp [— %] fexp [Il; cos 20] a(20) =

T (Y

=530 (3):
where I, is the Bessel function of imaginary argument. Thus from
(8.7) and (3.8),

ool o] 2]

and (3.6) becomes

0

A Y . .
3.9 = V © _ex [— sin 20] with 0<0<2x.
(5:5) LyiB) <P |28

The radius of the circle of equal area is r,= v Aln.
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4. A comparison between the eccentricities.

If we define as the «eccentricity » of the figure of maximum dis-
placement the ratio

max — T'min

7

max

E =

in both the cases considered above, it is immediately seen that ¢ =
=1/(1 4+ «) in three-dimensional elasticity and ¢ = 1 — exp [— 9/2f]
in plane elasticity. Since > 1 and p/f <1, the eccentricity is less
than } in the first case and greater than 1 — exp [— %] ~ 0,39347 in
the second. A property of this kind has been noticed in other iso-
perimetric problems (cf. Pélya and Szegé [4]).
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