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Crystal Lattices and Sub-Lattices.

J. L. ERICKSEN (*)

1. Introduction.

Various molecular theories of crystal elasticity employ a common
assumption, introduced by Born [1], to relate changes in molecular
configurations to macroscopic deformation. Briefly, we select as a
reference some homogeneous configuration of a crystal, together with
a choice of reference lattice vectors B. ( a = 1, 2, 3). If the crystal
undergoes a homogeneous deformation, with deformation gradient F,
the assumption is that the vectors ea, given by

are a possible set of lattice vectors for the deformed crystal. In some
types of phase transitions, the assumption fails, if we adhere to a strict
interpretation of the phrase « lattice vectors ». Illustrative examples
of some of the subtleties which can occur are covered by Parry [2],
for example. In the transitions which he treats, and various others,
one can continue to use (2), by adopting a more liberal interpretation
of « lattice vectors ». With some reason, crystallographers tend to
be somewhat finicky about terminology, so it seems preferable to
introduce another name for the vectors which have some, but not
all the properties of lattice vectors; I will refer to them as ~c sub-lattice

(*) Indirizzo dell’A.: Department of Aerospace Engineering and Me-
chanics, University, of Minnesota, Minneapolis, Minnesota, U.S.A.
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vectors ». My purpose is to explain what they are, and to present some
elementary theory of relations between different sets of lattice and
sub-lattice vectors.

2. The vectors.

For purposes of illustration, we accept the classical idea of a crystal
configuration of a body filling all of space. As a matter of definition,
it must have a periodic structure, describable by a translation group T.
That is, if ro is the position vector of any point, T generates a coun-
table set of points which are physically indistinguishable from it.

Here, T is representable as follows: for some choice of constant and
linearly independent (lattice) vectors ea, the points generated are those
whichlcan be represented in the form

where we use the summation convention. The components na must
be integers, and every choice of integers is to be included. Two trans-
lation groups are equivalent if they generate exactly same points.
It then follows easily, and is well-known that, for this, it is necessary
and sufficient that these exist integers mt, with

such that the corresponding lattice vectors are related by

As a matter of convention, the lower index will label rows, in such
matrices. Such matrices form a group under matrix multiplication
or, if you prefer, under composition of mappings of the form (4). Since
G consists of sets of integers, it is discrete. That it is infinite and not
compact follows from that fact that it includes all matrices of the form

where n is any integer.
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Any set of lattice vectors determines a (maximal) point group P,
a subgroup of the orthogonal group. An orthogonal transformation Q
is included in it, provided that there exists some m E G such that

Subgroups of P are also counted as point groups. All this is standard,
used in Seitz’s [3] discussion of the crystallographic groups, for example.
As is discussed by Ericksen [4], every point group is conjugate to a
finite subgroup of G and vice versa.

In the above discussion, something is left unsaid, although some
might consider it to be understood. For the rather idealistic homo-

geneous amorphous solid, our translation groups would serve to gene-
rate physically equivalent points, for any choice of the ea, and the

crystallographer does not mean to include such things. Roughly,
what he has in mind is that our translation groups should be maximal,
in some sense. For simplicity, I ignore modern attempts to relax
definitions to include odd materials which have some type of crystal-
linity, but don’t fit the classical definition of crystals, such as some
of the smectic liquid crystals. To see how to make this more precise,
we presume that there is a preferred equivalence class of translation
groups, related by G, the maximal groups. Let f a be a set of vectors
which generates some translation group, so that, as before,

generates points physically equivalent to the (arbitrary) point ra.
The idea is that a maximal group should generate all of these points,
and possibly more. Let ea be the lattice vectors for a maximal group.
Then rN, given by [7] must also be representable in the form

In (7), the n~, must include all possible integers, but n’; need not take
on all such values. By choosing special values of n~, , we see that we
must have, for some integers pa

where p = IIp: II is a matrix of integers, not necessarily in G, but with
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non-zero determinant, since the f a are to be linearly independent.
Also, if (9) holds, we have

giving integers §i§ for every choice of integer n3 , so no other conditions
need hold. When p is unimodular, hence included in G, we stay in
the aforementioned equivalence class. When f a does not generate a
maximal group, that is when Idet pI&#x3E; 1, it and f a generate the same
point sets, if they are related by G. I expect that crystallographers
would object to calling all such vectors lattice vectors, and such ter-
minology could well cause confusion. Thus, I will call them sub-lattice
vectors. With this background, we restate these propositions:

i) Lattice vectors ea, ëa, I ete. generate the equivalence class C
of maximal translation groups. We can generate C by applying all
transformations in G to one set of lattice vectors, in the manner indi-
cated by (4).

ii) Sub-lattice vectors f a can be obtained by applying a transfor-
mation of the type (9) to any set of lattice vectors, with I det p I &#x3E; 1.
Sub-lattice vectors f a and f a are regarded as equivalent, when one can
be obtained from the other by applying a transformation in G.

Actually, practice is somewhat variable, and sub-lattice vectors
are, on occasion, used as lattice vectors. For example, a monatomic
crystal might be described as being a body-centered cubic, suggesting
lattice vectors which are orthogonal, identifiable with the edges of
the cube. In our terminology, these are sub-lattice vectors. A set of
lattice vectors can be obtained by using two of the edges issuing from
one corner, plus the vector connecting the corner to the center of the
cube.

It is easy to see, and known, that the maximal point group for a
set of lattice or sub-lattice vectors is not changed, if we replace the
vectors by an equivalent set. In the example just mentioned, the
indicated lattice and sub-lattice vectors generate the same point
group. However, in general, the point group for a set of lattice vectors
differs from that for a set of sublattice vectors. For example, if we
have orthogonal lattice vectors with Ilell! ~~ = IIe211 ~~ - ~~ e3 ~~ , P includes
the 900 rotation
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A possible set of sub-lattice vectors is

Applying to these, we get

and, because of the occurrence of the factor - ~, this is not in the
point group determined by f a . Similarly, the point group for a set of
sublattice vectors can include orthogonal transformations not belong-
ing too the point group for lattice vectors. It is reasonable to expect
that lattice vectors give a better estimate of the true symmetry of
a crystal, and I know no reason to doubt this. Thus, some dangers
are involved, in blurring the distinction between lattice and sub-
lattice vectors.

To restate remarks made in the introduction, there are cases where
the kinematical assumption (1) fails to apply if we use lattice vectors,
but applies if we use selected subsets of sub-lattice vectors. Clearly,
one then must use care, in properly accounting for crystal symmetries.

3. Simple observations.

In the following, we consider any fixed configuration of a crystal,
so the equivalence class C of lattice vectors is fixed. In describing the
relations between different sets of sub-lattice and lattice vectors, we
encounter another group, the group R of non-singular matrices which
are rational numbers. Its significance is made clear by the following
easy

THEOREM 1. If f a and jfa are any two sets of sub-lattice vectors, we have

Conversely, if r E .R, there exist two sets of sub-lattice vectors such that (14)
holds.

PROOF. If 1,, and f a are sub-lattice vectors, and ea is any set of
lattice vectors, we have matrices of integers p and p, with Idet iii &#x3E; I
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and ~det p ~ &#x3E; ~ I such that

eliminating ea between these equations gives (14), with

Conversely, y if r E .R, we can write its entries in the form

where fit and q are integers, since a set of rationals has a common
denominator. By multiplying numerator and denominator by an
integer, if necessary, we can arrange that q &#x3E; 1 and det llj5"Il &#x3E; 1.

Then, if ea is any set of lattice vectors,

and

give two sets of sub-lattice vectors, with

For a crystal with atomic structure, it might be easy to spot a
set of sub-lattice vectors, not immediately obvious whether these are
lattice vectors. In dealing with such questions, I have found useful
some classical theorems in algebra, adopted below.

THEOREM 2. Suppose fa are sub-lattice vectors. Then there exists a
set of lattice vectors ëa such that

where the n’s are integers, with
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PROOF. If ea are any set of lattice vectors, there is an integer matrix
such that

If eb is another set of lattice vectors, we have

It then follows that

(20)

where

It then remains to show that, given p, we can find m E G so that p
takes the form indicated by ( 17 ) . This follows from a result attributed
to Hermite by Mac Duffee [4, Theorems 103.4 and 103.5]. QED.

Essentially the same proof yields.

THEOREM 3. Suppose ea and fa are given sets of lattice and sub-lattice
vectors. Then, there exists a set of sub-lattice vectors 1 a which are equi-
valent to f a, such that

with In?-I  In11, 
Somewhat similar is

THEOREM 4. Suppose ea and fa are lattice and sub-lattice vectors.
T hen there exist lattice vectors eb and sub-Zacttice vectors f a which are equi-
valent to fa, with

where the n’s are integers such that n1 is a divisor of na and na is a divisor
of na.
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PROOF. From the hypothesis, we must have

where p is a matrix of integers. The conclusion follows if we can show
that there exist matrices m and m, both in (~, such that mpm has the
indicated diagonal form. This follows immediately from Mac Duf-
fee’s [5] Theorem 105.2. QED.

If we modify (1), to allow use of sub-lattice vectors, it would take
the form

F,, referring to some reference set. If we replace .F’a by an equivalent
set

then it becomes

with

equivalent to f a . Using Theorem 4, we can find reference lattice vector
Ea such that

if the I’a are properly chosen. We can then rewrite (24) in the equi-
valent form

and one can use Theorem 1 to introduce lattice vectors ea which are
rather simply related to f a . In the particular cases treated by Parry [2],
the final relations can be put in the form

For J taking the crystals from a body-centered phase, to a phase
which is not body-centered.
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