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A Generalization of Signorini’s Perturbation Method
Suggested by Two Problems of Grioli.

G. CAPRIZ (*) - P. PODIO-GUIDUGLI (**)

SUMMARY - Two problems proposed by Grioli induce us to generalize the
perturbation method for traction problems of non-linear elasticity dis-
cussed in [1], so as to apply to cases when either the loads depend on
the solution or the perturbation parameter is interpreted as a material
modulus whose vanishing narrows the solution class.

1. Introduction.

Recently Professor Grioli has proposed two problems in hyper-
elasticity which, though very different the one from the other, have
one feature in common: both are meant to be studied via a pertur-
bation process, but do not fit within the perturbation scheme of our
paper [1].

In that paper we start with a formal analysis of a functional

equation

where T is a mapping from a Banach space ~, where the solution p
is sought, to a Banach space M, where the datum I is assigned. We
suppose that I is developable as a power series of a real parameter s
and, as is usual in perturbation processes, we seek a solution which

(*) Istituto Matematico « L. Tonelli », University di Pisa.
(**) Istituto di Scienza delle Costruzioni, University di Pisa.
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is also expressed as a power series

Then we apply the results to the traction problem with dead loads
in hyperelasticity.

As we said, the two traction problems of Grioli do not fit into

the scheme: the first one (involving an « almost rigid » hyperelastic
body), because the operator T itself depends on the parameter e and,
furthermore, T is singular for E = 0; the second one (involving a
heavy hyperelastic body immersed in a fluid), because the loads are
« live », i.e. they, depend on the solution.

Here we generalize our approach to cover both problems, y again
considering at first, formally, y a functional equation

and seeking solutions of the type (1.1). Then we turn our attention
to the two problems.

It seems to us that our developments are not simply a formal
exercise: apart from some modest specific contributions, they let the
suggestions implicit in the two special problems emerge, and trigger
new ideas in the field of traction problems with  live » loads for

hyperelastic bodies subject to internal constraints.

2. The perturbation technique.

As our developments are strictly local, we require the operator T
to be defined only in a set JY’ X 13, where JW is a neighbourhood of
the element po of X and 13 is a neighbourhood of the origin in R,
possibly deprived of the origin itself. We suppose that: (i) a develop-
ment of T(p, 8) in a Laurent series in 8 exists for all p E .JY’; (ii) 0 is
at most a simple pole for T:

(iii) each one of the operators Tn(p) is analytic within N; (iv) po is a
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solution of (1.2) for s = 0 in the sense that

For e # 0, we seek solution expressed by a power series (1.1). Adapt-
ing notation from Section 2 of [1], we put, for all indices n,

with

(2.6)

and with

where P§l’ is the set of all permutations (Ml lX2, ... , ar) of the num-

bers taken r at a time with repetitions and such that



152

The equation for the n-th order approximation un of the solu-

tion p can be written as follows

where the n-th order depends at most on the approxima-
tions of order lower than n. More specifically, y

If the kernel of the operator L11 adjoint to L-1 is non-trivial,
then the « loads » must satisfy conditions of compatibility

In the cases that interest us, either the dimension of ker is

non-zero, finite and equal to the dimension of or L-1 is null.
In the former case, equation (2.9) determines un only to within a

linear combination of functions forming a basis for ker L_1; but then,
often, the compatibility conditions on 1* remove the indetermina-
tion. Details are in the next section.

In the latter case, T_1, and hence L-,, is null. Then (2.9) is sub-
stituted by

where

The compatibility conditions become

for each and for each n ~ 1 .

Notice that the first condition is now a direct restriction on T:
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The case studied in [1] can be considered as a special subcase,
where not only is null, but also, for n &#x3E; 1, all the operators Tn
do not depend on p (« dead loads ~&#x3E;).

3. Conditions of orthogonality.

Firstly, suppose that ker L-1 and ker L* 1 have both dimension r
and suppose that is a basis for ker L-1 and ~v= ~i a basis for
ker .L *~ . Then, U1 is given by

where y’ (i = 1, 2, ..., r) are, for the moment, arbitrary coefficients,
and condition (2.11) for n = 2 can be written

i. e. , 9 it takes the form of an algebraic system in the coefficients YI:

where

If (3.2) admits a real solution (j7%)§, the first-order approxima-
tion ~1 is correspondingly specified and one can proceed to the next
system, whose solution is again determined to within a linear combina-
tion of the functions vz :
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U2 is any solution of the non-homogeneous equation for ’U2 and the

coefficients y’ 2 are restricted by the second condition (2.11), which
can be written as follows

where the coefficients akii and 6~ are the same as before and ck2 need
not be given explicitly here. This system is linear in y2’ and the matrix
is the jacobian matrix of the left-hand side of (3.2) calculated for

yi1 = yj1.
Thus, when the determinant of the system is different from zero

(so that the solution j7( of (3.2) is isolated), a unique solution of (3.4)
can also be found. The process can be carried forward, all successive
systems being linear with the same matrix of coefficients.

The situation appears formally to be very similar in the second
case considered in Section 2, if the assumptions are accepted on Leo
which were made previously on E-1; however, y a trait of distinction
is that the compatibility condition (2.15) must be satisfied now by
the first order loads. The coefficients akii in the system that takes
the place of (3.2) have an obvious definition; the coe,flicients bki and
Ckl are more complex because ~1 already is not simply a linear com-
bination of the functions vi, but rather

as a consequence,

We have written these expressions explicitly also to allow a comparison
with formulae (3.11) of [1].
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4. The traction problem in elasticity.

We identify a continuous body with a given regular region 930
of a three-dimensional Euclidean space; B0 has interior part 930
and boundary with outer unit normal no. We let po denote the

position vector of a point x of $0 with respect to a fixed origin q:

furthermore, we let p be the position vector of the same point in the
current placement J’~ of so that

is the displacement vector,

is the displacement gradient, y

is the position gradient.
We assume that ~3o is hyperelastic, with stored-energy function

cr = a(F), and write the constitutive equation for S, the Piola-Kirch-
hoff stress tensor, in the form

We formulate a traction problem of equilibrium as follows:

where b is the body force and s the surface traction. The loads b
and s may depend on p and .F’; moreover, they and the function
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involve a parameter e:

the dependence on e is such that (of. (2.2))

Thus, the problem can be considered as a special case of the general
problem (1.2), with

0

the terms between brackets being defined in 93o and 81So , respectively.
We do not write here the consequences of the perturbation pro-

cedure when applied to (4.6) (for the case when Y does not depend
directly on s, and b, s do not depend on p and F, such consequences
are detailed in Sections 5 and 6 of [1]). Rather, in the following two
sections we study the two problems posed by Grioli: in the first one,
Y has a simple pole for 8 = 0; in the second one, Y does not depend
explicitly on s, but s depends on p and .~.

5. The first problem.

The first problem proposed by Grioli raises the question as to
how a process of successive approximations can be set up for a trac-
tion problem in hyperelasticity, under the presumption that the body
can be considered as rigid to within the first approximation.

We interpret Grioli’s proposal as follows. We assume that the
constitutive equation itself depends on the parameter c in the same
way as was stipulated for the operator T in Section 2 (cf . equation (2.1)) :
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As to the loads, we take them to be infinitesimal with e and, for
simplicity, of the dead type:

Then we seek a solution of problem (4.7) of the type (1.1), with finite
stress for B = 0 (so that we must require ~-1(1) = 0).

By substitution in (5.1), we get series expansions which are the
direct counterparts of (2.4), (2.5) and (2.8), respectively:

with

The successive displacement gradients Hk satisfy the equations

Thus, we have set up a perturbation process which is similar to
the one sketched in Section 2 and we can make use of the correspond-
ing formal developments.

Suppose for instance that we specify e) so that (5.6) admits
as solutions only the infinitesimal isometries
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with some arbitrary constant vector and W1 some arbitrary con-
stant skew tensor. Then we may interpret our body as rigid to the
first order of approximation; in principle, the stress field in $0 can
be determined by solving a sequence of linear systems, each of which
is usually simpler than the one of classical elasticity.

The first system is obtained by inserting Wi for He in the right-
hand side of (5.7). Wl does not remain arbitrary in general, as it

must satisfy the orthogonality condition

for each skew tensor W.
Notice that the successive approximations So, Si, ... of the stress

field in 93o are influenced by increasingly many of the functions ~,~
which specify the choice of the complete constitutive equation (4.5).

EXAMPLE. The so-called St. Venant-Kirchhoff material (of. [3],
Section 94) corresponds to the following prescription for the stress

where the two material moduli A and f-l have constant values. If we

set

then we have from (5.1) and (5.10) that

with
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Performing the differentiations indicated in (5.4), we obtain

Thus, in view of (5.11)3 and (5.5), we have that problem (5.6) now
reads

An easy argument based on integration by parts shows that ~c1 solves
(5.14) only if it is an infinitesimal isometry of the form (5.8). Indeed,
(5.14) coincides with the homogeneous traction problem of classical
isotropic elasticity for = 0 (1), whose solutions are of course rigid
infinitesimal displacement fields.

Moreover, in view also of (5.13)2,3

so that problem (5.7) becomes simply

(and (5.9) is automatically satisfied).
REMARK. To follow Grioli’s original suggestion, we have mentioned

sofar only cases where the body is « approximately rigid)). However,
the procedure lends itself to the analysis of other constraints. One
can study, for instance, bodies which are « approximately incompres-
sible ~.

We do not dwell on the matter in general; rather, we illustrate
in a very special case the type of developments one encounters. Set

(1) Recall that the St. Venant - Kirchhoff material is isotropic.
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c = in (5.10). Then, in view of (5.1), and in place of (5.11), we
now have

As

the traction problem of lowest order becomes

As

the conclusion is that the first-order displacement field U1 is solenoidal
over 

6. - The second problem.

Consider a hyperelastic heavy body immersed in a homogeneous
incompressible fluid. If e is a unit vector pointing downwards, pB is

the reference density of the fluid, and 8 is the acceleration due to

gravity, the loads in (4.8) become

An easy computation shows that the successive terms in the series
four 8 are:
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On the other hand, the successive terms in the series four 8 are (cf . [1],
Section 5):

Let now the body be at ease in the reference placement (so that
in and set (cf . (2.11) and (2.12), respectively)

Thus, a sequence of linear problems of type (2.11) is obtained, each
with dead loads: although the original problem is one of live loads,
the approximating problems have a simpler character (2).

If we assume further that ker .Lo coincide with the set of infini-
tesimal isometries, then Proposition 1 in Section 7 of [1] can be taken
over as it stands: the set of Fredholm conditions can be summarized
in the two equilibrium equations for the body in the present place-
ment, y i. e. ,

These equations split into the compatibility conditions on the first,-
order loads (cf . (2.14)):

(2) The linear problem considered in [2] is relevant for techniques of suc-
cessive approximations only if the loads are not infinitesimal with s.
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and the linear conditions (3)

The formal coincidence with the developments of Section 7 of [1]
should not blur the differences in substance: here the first equilibrium
equation is not automatically valid and, consequently, y (6.9) impose
restrictions which are not easily satisfied (e.g., at the first order one
must require that

the fact that an infinitesimal rotation is left undetermined in the
solution of the first-order system does not help here).

(3) The conditions here are all linear, as the hypotheses accepted on the
material behaviour (hyperelasticity and contents of imply that the
coefficients akii vanish.
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