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On Stability Problem of a Top.

V. V. RUMJANTSEV (*)

This paper deals with the stability of a heavy gyrostate [1] on a
horizontal plane. The gyrostate is considered as a rigid body with a
rotor rotating freely (without friction) about an axis invariably con-
nected with the body leaning on a plane by a convex surface, i.e. the
top in a broad sence of this word. For mechanician the top is a symple
and principal object of study [2] attracting investigators’ attention.

1. Let $ql be the fixed coordinate system with the origin in some
point of a horizontal plane and vertically up directed axis I with unit
vector y; OXIX2Xa is the coordinate system rigidly connected with
the body with the origin in centre of mass of gyrostate and axis ~3
coincided with one of its principal central axes of inertia. Two another
axes x1 and x, are parallel to the directions of the main curvatures of
the body surface for the point P of intersection of the negative semi-
axis x3 with this surface tangent plane to which in the point P is sup-
posed perpendicular to the axis ~3.

It is possible to write the equations of motion of the top, for ex-
ample, in the form of the laws of a momentum and of angular momen-
tum and also of a constancy of the vector y.

These equations contain the reaction of a plane R for expression
of which it is necessary to make a supposition about the character of
an interaction of the top with the plane. In the case of an ideal
smooth plane

(*) Indirizzo dell’A.: Vyc. Centr., ul. Vavilova 40, Moscow 117333, U.S.S.R.
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In the case of an ideal rough plane the velocity of the contact

point of the top with the plane

Here v and w are the vectors of the velocity of the centre of mass and
of momentary body angular velocity, r is the radius-vector of the
contact point.

In the case of a plane with sliding friction

independently from the hypothesis on character of sliding friction.
For all these cases the mechanical energy of the top does not increase

being constant in the first and second cases. Here 0 is the central tensor
of inertia of the transformed body [3],.M’ is the mass of the top, g is
the gravitational acceleration, lo = - r ~ y is the vertical coordinate of
the centre of mass. The relation between the vectors r and y defines

by the equation of the body surface, so [4]

Here li are the main radii of curvature of the body surface in the
point is the distance between the points 0 and P, Wi are the
projections of the vector on axes r; (i = 1, 2, 3), dots denote terms
of more high order. It follows from the (1.5) that

Accordingly Lyapunov’s stability theorem from the (1.4) and (1.6)
we get the sufficient conditions of stability
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on the equilibrium of a heavy gyrostate

on a horizontal plane with respect to the values v, ca, y.
The inequalities (1.7) are also the necessary stability conditions of

equilibrium of the top with not rotating rotor [4].
In the case (1.1) the equations of motion have the integral of the

angular momentum

and also the integral of constancy of the projection of momentary
angular velocity

if the gyrostate has dynamical and geometrical symmetry about the
axis x3 and gyrostatic moment k = const is parallel to this axis
(k1= k2= 0, k3 = k).

If the surface of axisymmetrical gyrostate in the neighbourhood
of the point P is spherical with the centre on the axis ~3 then the equa-
tions of motion in the general case (1.3) of sliding friction have the
integral [5]

In all these cases the equations of motion have the solution

describing the permanent rotation of the gyrostate about vertical
axis ~3 with arbitrary angular velocity w, if the gyrostatic moment k
is parallel to this axis (k1 = k2 = 0). If the k is not parallel to the
axis ~3 then the solution (1.12) is possible only for w = 0.

On the motion (1.12) the top leans on a plane by the point
x2 = 0, x3 = - 1) and the reaction R = gy.

Consider the stability of the solution (1.12) using the integral
relation (1.4) and first integrals (1.9)-(1.11) for construction the Lya-
punov’s function.
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2. We start from simplest case (1.1) of an ideal smouth plane.
In this case only vertical force (R - g)y acts on the gyrostate, so
the projection of the velocity of the mass centre on a horizontal plane
remaines constant. Without restriction of generality we shall consider
this projection be equal to zero, i.e. the mass centre of gyrostate moves
only on immobile vertical.

At first consider the case when the axis of rotor is parallel to the
axis xl (kl = k, k2 = k3 = 0) and the solution (1.12) is possible only
for w = 0. Using the integrals of energy (1.4) and of angular mo-
mentum (1.9) we constract Lyapunov’s function

Here are moments of inertia of the gyrostate about the axes z,
(i = 2, 3 ) , A1-moment of inertia of the body about axis xl F-centrifugal
moment of inertia for axes x, and X2’ Â = const. Obviously, = 0.

The conditions for the positive definiteness of the function (2.1)
are reduced to the inequalities

which accordingly to Lyapunov’s theorem are sufficient stability con-
ditions of the equilibrium (1.8) of gyrostate with gyrostatic moment
parallel to the axis xl with respect to variables Wi’ yi (i = 1, 2, 3) and

It is possible to show [4] that the equilibrium is unstable for
opposite sign in one of the inequalities (2.2).

The conditions (2.2) contain as particular cases the conditions of
stability [5] of Gervat’s gyroscop with flat rectilinear support
(l2 = 00, Il = 0) and with flat circular support of radius p (l2 = e, 1 = 0).
It follows from the conditions (2.2) that unstable for l1  I position
of the equilibrium of the top is stabilized by rotation of rotor with
gyroscopic moment k satisfying to the second condition of the ine-
qualities (2.2).

Consider the stability of the gyrostate with the dynamical and
geometrical symmetry about the axis ~3 when = Iz,
k~ = k2 = 0.
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We shall define the orientation of the gyrostate about its centre
of mass by Euler’s angles 0, and the position of a rotor with the
axis parallel to the axis x, about the body by an angle a. It is easily
to see [4] that coordinates y, p and Lx are cyclic, and the first integrals
of Lagrange’s equations

correspond to them.
Eliminating the variables and ~ from integral energy (1.4), rep-

resent it in the form

is the transformed potential energy; , = f ( 8 ) is the function defining
by the shape of the surface of rotation about the axis x, bounding the
body, .A.1 is the central equatorial moment of inertia of
gyrostat, As is the axial moment of inertia of the body, 
are constants of the integration.

The equation

defines for 6 ~ 0, ~ the two-parametrical family of solutions

describing the regular precessions of a heavy gyrostate on a plane.
These motions are stable if
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and are unstable if the inequality (2.6) has the opposite sign [6].
In the case 0=0 from (2.3) we have H and the function

(2.5) has the next form

The equation W’(0) = 0 holds for any value H and 8 = 0 if f’(0) = 0;
this solution is similar to the solution (1.12). It is stable if

and unstable if the inequality (2.7) has the opposite sign [4].
In the case W"(0) = 0 the solution of stability problem of mo-

tion (1.12) depends on members of more high order in the expansion
of the in Macloren’s serie. So if f "’ ( o ) ~ 0 then the motion is
unstable; if

then the motion (1.12) is stable. Therefore

is necessary and sufficient stability condition of motion (1.12) of axis-
symmetrical gyrostate on a plane if the (2.8) holds. For example,
in the case of a gyrostate leaning on a plane by a needle ( Z1= 0) when
f (0) = l cos 0 the conditions (2.8) hold and the inequality (2.9) takes
the form

The condition (2.10) has the form of necessary and sufficient

stability condition of rotation of a heavy gyrostate with a fixed point
about vertical in which however Ai denotes the moment of inertia for
a fixed point whereas in the (2.10) this value denotes the moment of
inertia for the centre of mass. The last is less than the first by M12,
so stability of a gyrostate on a plane is required (with another equale
conditions) smaller value of cinetic moment H than stability of a
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gyrostate with a fixed point. This difference is due to the fact that the
mass centre of gyrostate on a plane rather then the point of support
plays the role of a «fixed » point for the steady motion. In the case
of equilibrium of gyrostate (m = 0) on a plane the condition (2.9)
takes the form of the inequality

Comparing the (2.11) with the (2.2) we see that for stabilization of
unstable equilibrium of gyrostate in the case k2 = 0, k3 = k the
value k must be twice as much than in the case kl = k, k2 = k, = o,
provided the value .A1 in (2.11) is equal to the value A3 in (2.2).

Note that formulae (2.3)-(2.11) remain correct in the case of va-
riable angular velocity of rotor [4].

3. Consider the rotation (1.12) of nonsymmetric gyrostate with
constant gyrostatic moment k (k1= k2 = 0, k) on an ideal rough
plane (1.2). Putting co + ~, y3 = 1- r~ it is possible to wrote
the equations of perturbed motion in the form [4].

Here A = M12, 1 B = Å2 + .lVh2 and nonlinear members X,
(s = 1, ..., 4) vanish for ya = 0 (i = 1, 2).

The characteristic equation for linearized equations (3.1)

has two zero-roots and four roots with negative real part if
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Here

Accordingly Lyapunov-Malkin’s theorem [7] the motion (1.12) is
stable with respect to the variables (~==1,2,3) and asymp-
totic stable with respect to the variables WB (s = 1, 2), yz provided the
conditions (3.3). The motion (1.12) will be unstable accordingly Lya-
punov’s theorem on instability by first approximation when extremely
one of the unequalities (3.3) has the opposite sign.

It has place partial asymptotic stability under the conditions (3.3)
though the system is conservative one and there are no external dissi-
pative forces. Partial asymptotic stability is caused by nonholonomic
constraint (1.2); the gyrostate is subjected (in first approximation)
by potential, dissipative-accelerating and gyroscopic forces (see (3.1));
the stability depends on spin direction: the first from the inequalities
(3.3) (see (3.4)) holds only if

two another inequalities (3.3) restrict the values co and k in the stable
motion.

It is interesting to note, that the motion (1.12) with very small
velocity oi = s and k = 0 will unstable even in the case of static

stability, y when the conditions (1.7) hold: the third from the condi-
tions (3.3) will have the opposite sign. Instability is explained by the
action of accelerating forces; gyroscopic stabilization has no place
when gyroscopic forces are weak.
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If extremely one from the conditions

holds then a, = 0 and the conditions (3.3) have no place; partical
asymptotic stability is not possible in this case. The necessary simple
stability conditions are reduced to the inequalities

4. Consider at last the stability of the rotation (1.12) of axisym-
metrical gyrostate leaning on a plane with friction (1.3) by spherical
support of radius e with the centre on the axis x3. The coordinate of
the sphere centre is equal to e - I and coordinates of sphere contact
point with the plane and the high of centre of mass are

Under + ~, Ya = 1- ’YJ the energetic correlation (1.4) and the
integrals (1.11) and y 2 = 1 take the form

Consider the function

where

It is easily to see that the function (4.1) will be positive definite
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when [5]

and Therefore the (4.2) is the sufficient stability condition
of the motion of an axisymmetrical gyrostate with spherical support
for every law of friction of form (1.3) with respect to the variables
v, m, y. Similarly [2] it is possible to show that this condition is neces-
sary for stability in the case of viscous friction. So in the last case the
inequality (4.2) is the necessary and sufficient stability condition with
respect to all variables and asymptotic stability condition with respect
to the variables Ws ( s = 1, 2) because all conditions Lyapunov-
Malkin’s theorem hold.

In the case k = 0, H = the inequality (4.2) becomes the

stability condition of the rotation alone rigid body. Comparing it
with (4.2) we conclude that it is possible to make the motion (1.12)
of the gyrostate for given value a) =1= 0 to be stable or unstable by
wishing under proper choice of the value and the sign of the gyrostatic
moment k independently from stability or instability of alone rigid body.
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