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On the Behaviour of the Surfaces of Equilibrium
in the Capillary Tubes when Gravity Goes to Zero.

MICHELE EMMER (*) (**)

Introduction.

In a previous work I have studied by a variational method the
problem of the surfaces of equilibrium of a fluid in a capillary tube
considering also the gravity force [1].

The functional of the energy is the following:

where S~ is an open and bounded set in Rn, and

is the capillary constant, with e = density difference across the free
surface, g = gravitational acceleration, a = surface tension; v is also
a constant depending only on physical conditions. The first integral
in (0.1) represents the surface tension, the second the gravity and
the third the force of adhesion to the wall of the tube.

(*) Indirizzo dell’A.: Istituto Matematico «G. Castelnuovo », Citth Uni-
versitaria, Piazzale delle Scienze 5, 00185 Roma.

(**) During the preparation of this paper the author was at the Universite
de Paris Sud, Bat. Mat. 425, Orsay, partially supported by a grant CNR-NATO.
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Moreover t(x) is the free surface of the fluid in the tube whose
section is Q.

In [1] I have proved a theorem of existence and unicity for the
minimum of the functional Y(f) in the class of functions with
the following hypotheses:

i) 8Q lipschitz;

where L is the lipschitz constant of aS~.
I have also proved a regularity theorem for the solution of the

problem.
I recall these results in the following chapter.
In this work I will consider the behaviour of the surfaces of equili-

brium in a capillary tube when the gravity goes to zero.
For each c &#x3E; 0 let fs minimize the functional

REMARK 0.1. Obviously we have

(0.4)

where

It easily follows

Hence it has no meaning to look for a function minimizing the
functional :Fo(f) without any other condition. Many authors have
studied by different methods this problem for the functional 
with a volume constraint, that is with the condition
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In this work instead of considering a volume constraint I shall
examine the behaviour of the free surface when the gravity goes to
zero.

The intuitive fact that the surfaces fs rise in the tube as the

gravity decreases, is first confirmed by the following remark:

So it obviously follows that

that is the volume of the fluid continues to increase.
The proof of the previous well known remark is recalled in the

following chapter.
To prove the monotonicity of the family ~e I will use a strong

maximum principle for the minimal surfaces operator, analogous to
the results of P. Concus and R. Finn [12], and a comparison theorem
between the solutions of the minimum problem for the functional

with two different gravities.
Finally I can prove that

that is the liquid rises at every point of ~2; in other words I can say
that when the gravity goes to zero we do not obtain a limit surface.

To prove (0.10) I use a technique introduced by E. Gonzalez,
U. Massari and I. Tamanini [13] in the study of sets minimizing peri-
meter and containing an assigned volume.

In my problem I do not consider a volume constraint but a mean
curvature term so the technique is simplified.

I prove the result in various steps; first I suppose that (0.11) is

not satisfied, that is it exists a number L E .R such that
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Then I prove Lemma 3.1 which states

where

and

Then by defining

it follows that for a sufficiently small e &#x3E; 0 there exists a point 7:* E

E [ao, bo] such that (Proposition 3.2)

To prove Proposition 3.2 I first prove a technical Lemma.
I shall study in a following paper the problem of the behaviour

of the surfaces of equilibrium in a capillary tube when the gravity
goes to zero together with a volume constraint.

I want to thank M. Miranda and E. Gonzalez for the useful talks
on the subject.

1. Let

i) ,S2 be an open and bounded set in Rn (n &#x3E; 2) and M2 be his
boundary;

ii) aD be locally lipschitz, i.e. for every x E aSZ there exists a

sphere such that 8Q r1 Be(z) is the graph of a function u: 
J A - R where A is an open set and a lipschitz function.

iii) L be the maximum of the lipschitz constants for the func-
tions u.

The functional will be considered in the natural space for varia-
tional problems of this kind:
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i.e. the space of functions f E whose derivatives

D1 f , ... , Dn f in the sense of distributions are finite Radon meas-
ures on Q. For functions f c it is possible by a result of
M. Miranda [14] to define the trace on and is a function
in 

_____

The symbol fV1 -f- IDI12 will indicate the total variation of the
vector measures whose components are the Lebesgue measure and the
measures D1 f , ... , Dn f, i.e.

Let us suppose the tube be made of an omogeneous material; this
fact implies that v is a constant. Physically v represents the cosine
of the angle between the exterior normal to the walls of the capillary
tube and the normal to the free surface of the liquid [15].

Then it is clear that v E [-1, 1].
Let us consider the case v &#x3E; 0 and therefore f (x) &#x3E; 0. For ê E R,

ê &#x3E; 0 let us consider the new functional

where the last integral represents the gravitational potential energy.
In [1] the author has demonstrated, using the following estimate,

where is a constant depending on the geometry of S~, the following
result:

THEOREM [1]. i) If 0 C v ~ 1~1~1 -~- Z2 then
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ii) If 0  v  -~- L2, then every minimizing sequence is com-
pact. Moreover the functional is lower semicontinuous.

Hence for every 8 &#x3E; 0 there exists a solution for the problem

In the same work [1] it was also demonstrated the uniqueness and
regularity of the solution using the regularity methods of U. Mas-
sari [16]. L. Pepe [17] has then proved that the solution is analytic
in S2 in every dimension (see also [18]).

For other conditions on the domain for the existence of solutions
see also I. Tamanini [19], R. Finn-C. Gerhardt [20].

For a discussion of the physical meaning see P. Concus - R. Finn [12].
For an history of capillarity phenomena see [15], [21].

2. Let us now examine the properties of the 
First of all, as I have already said in the Introduction, I notice

that

In fact from the Eulei equation of /e we obtain

and (2.1) follows.

REMARK 2.1. The integral (2.2) represents the volume of the

liquid which rises in the capillary tube.
I will now prove a strong maximum principle for the minimal

surfaces operator; I will use this principle to demonstrate the mono-
tonicity of the sequence {fe}.

PROP. 2.1. Let 1VI be the minimal surfaces operator. If we have
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then we necessarily obtain either

PROOF. From (2.3) and (2.4) we have, for every function § &#x3E; 0,
~

and then

Let us choose now § = We consider the case f (x) &#x3E;

&#x3E; g(x) ; then we have

and, by the convexity of the area functional, we obtain

and then

the connected components of ,5~. Moreover

as the set where (2.11) is valid must be simultaneously closed and
open.

Let us now prove that when the gravity decreases the free surfaces
of the fluid rise inside the tube, that is that the family of functions
(fs) is monotone.
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PROPOSITION 2.2. Let /1 be the solution of the problem inf 
and f, be the solution of the problem Let be
such that

then

DIM. We know from Proposition 2.1 that we can have

Now, because minimizes the functional we obtain

In the same way we have

From (2.10), (2.11) we obtain

and from (2.10), (2.12) it follows
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Then by (2.13) we obtain

and by (2.14)

Then, as c &#x3E; 0, e, &#x3E; 0 we have a contradiction. So the only
possibility is the following:

So we have demonstrated that

together with

3. I can now prove that not only the volume of the liquid rises
but also that the free surface of the liquid rises at every point of S~.

As I have already said in the Introduction, in the proof I will
use a technique introduced by E. Gonzalez, U. Massari and I. Tama-
nini [13].

The main result is the following:
THEOREM 3.1. In the previous hypothesis we obtain the following

behaviour for the free surface

We shall prove the theorem by several steps.
Let us suppose that there exists a number L E R such that
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Let us define

The first step is to prove a Lemma which gives an estimate about
the overgraph of fs when e goes to zero. More precisely

LEMMA 3.1. Let

then

DIM.

OBS. 3.1. It is obvious by the hypothesis (3.2) that

Let us define

As minimizes the functional 5;",(f) we obtain

where = is the characteristic function of a set A,
is the perimeter of the set .E in the open set A, A) [2 2 ] .

A

Now as
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and also

we have

Let now B(R, c) be a sphere whose radius is R and the center is
(0, ... , c), c &#x3E; 0 and such that

REMARK 3.2.

By conditions (3.12) on the sphere we have

Moreover it is obvious that

then, by (3.12)
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Moreover by (3.11 ), (3.14) we obtain

By (3.15) we also obtain, recalling (3.12),

Then finally

In the end we obtain

By the definition of vE (3.12) we have

So Lemma 3.1 is proved.
We must now prove a technical Lemma. Let us first define

Let us consider three points ti, t2, t3 s.t.
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and let us define

where

Let

We now demonstrate the following:

LEMMA 3.2. There exists a constant Cl such that

where

PROOF. Let

We now consider two spheres B1, B2 c s.t.

By the isoperimetric property of the sphere we obtain
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By adding the two relationships (3.31) for i = 1, 2, we have

REMARK 3.3. The set I’E is the complementary set of Ee, then
by the minimizing property of Es we obtain that realizes the
minimum for the following functional:

among all the overgraphs F such that + oo) .
Then by Remark 3.3 we obtain

and then

Now by the fact that

we also have

From (3.31), (3.37), and also considering that 1, we
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obtain

and then

Obviously we have

Moreover t C .L --~- 1; then, by considering (3.29), (3.40) and the
definition of v, we obtain

and finally

where

So we have proved Lemma 3.3.
I can now prove Theorem 3.1; by the regularity of the functions t e

it is sufficient to prove the following:

PROPOSITION 3.1. Let B &#x3E; 0 be sufficiently small, then there exists
t* E bo~ such that
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PROOF. We shall construct the point t* as the limit of two se-
quences and ~b3~, the first one increasing and the second one
decreasing towards t* and also such that

In order to construct the two sequences and we shall use
an iterative method starting with ao = L -~- 2 , bo = L + 1.

Let us now suppose to have constructed aj and bj with j &#x3E; 0 and
let us define

Let now be h e (0, we can find three points ti (i = 1, 2, 3) s.t.

and moreover

Let us define

Obviously from (3.48) we have
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Let

By Lemma 3.2 we have

as h,  1. Let us now define the points 1

Now we want to estimate the quantities (3.46), (3.49), (3.50). We have

Moreover by (3.53) we obtain

then by (3.51), (3.56) we obtain

Let us now choose

It remains now to such that
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By the estimate (3.55) we have

then, remembering (3.58)

Let us put k = 9 and then

We have now to prove that

Now by (3.57), (3.63) we have

and then

where

then

Remembering the Lemma 3.1 we have



161

and then

So Theorem 3.1 is proved.
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