RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

OSCAR STEFANI ALESSANDRA ZANARDO

Un'osservazione su una sottoalgebra di C(X)

Rendiconti del Seminario Matematico della Università di Padova, tome 53 (1975), p. 327-328

http://www.numdam.org/item?id=RSMUP 1975 53 327 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1975, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Un'osservazione su una sottoalgebra di C(X).

OSCAR STEFANI e ALESSANDRA ZANARDO (*)

Sia C(X) (risp. $C^*(X)$) l'anello delle funzioni continue (risp. continue e limitate) di uno spazio topologico X completamente regolare e T_2 in R. In [N.R.] si definisce $C^{\sharp}(X)$ come il sottoinsieme di $C^*(X)$ formato dalle funzioni f tali che M(f) è reale per ogni ideale massimale M di C(X).

Si verifica facilmente che $C^{\#}(X)$ è una sottoalgebra di $C^{*}(X)$ reticolarmente ordinata e con unità. È noto che ad una sottoalgebra A di $C^{*}(X)$ è associata una compattificazione di X se e solo se A contiene le funzioni costanti e determina la topologia di X. Perciò a $C^{\#}(X)$ è associata una compattificazione di X se e solo se $C^{\#}(X)$ separa punti e chiusi.

Per terminologia e notazioni si fa riferimento a [G. J.].

In questa nota daremo un esempio di uno spazio in cui, contrariamente a quanto implicitamente affermato in [N. R.], a $C^{\#}$ non è associata una compattificazione. Detto E il prodotto di \aleph_0 copie di R con la topologia usuale, dimostriamo infatti la seguente

Proposizione. Ogni funzione di $C^{\#}(E)$ è costante.

LEMMA 1. Se S è C-immerso in X ed $f \in C^{\#}(X)$, allora $f/S \in C^{\#}(S)$.

DIM. Poichè S è C-immerso, l'omomorfismo di restrizione $\varphi: f \to f/S$ è una suriezione di C(X) su C(S). Pertanto, se M è un ideale massimale di C(S), $\tilde{M} = \varphi^{\leftarrow}[M]$ è un ideale massimale di C(X). Se $f \in C^{\sharp}(X)$, esiste un $r \in R$ tale che $f - r \in \tilde{M}$ e quindi $(f - r)/S \in M$, cioè M(f/S) = r.

^(*) Indirizzo degli A.A.: Istituto di Matematica Applicata - Via Belzoni 7 - 35100 Padova.

LEMMA 2. Per $n \ge 2$, $C^{\#}(R^n)$ è costituito dalle funzioni di $C(R^n)$ costanti al di fuori di un compatto.

La dimostrazione si trova in [N. R.].

DIMOSTRAZIONE DELLA PROPOSIZIONE. Sia $f \in C^\#(E)$, $E_n = \{x = (x_i)_{i \in \mathbb{N}} \in E : x_i = 0, \ i > n\}$, $f_n = f/E_n$. Poichè E_n è C-immerso in E, il Lemma 1 implica che $f_n \in C^\#(E_n)$. Essendo E_n chiaramente omeomorfo a R^n , per ogni n > 2 esistono $a_n > 0$ e $r_n \in R$ tali che, posto $K_n = \{x \in E_n : |x_i| \leqslant a_n, \ 1 \leqslant i \leqslant n\}$, $f[E_n \setminus K_n] = r_n(*)$; si può anzi supporre a_n minimo fra quelli che hanno tale proprietà. Poichè $f_{n+1}/E_n = f_n$ per ogni n, segue che $K_n \subset K_{n+1}$ e inoltre $r_{n+1} = r_n$ per ogni n > 2; quindi $r_n = r_2 = r$ per ogni n > 2. Dimostriamo che f è costantemente uguale a r.

Sia $x \in E$ $(x = (x_i)_{i \in \mathbb{N}})$; $\forall \varepsilon > 0$, esiste un intorno A di x tale che $|f(x) - f(y)| < \varepsilon \ \forall y \in A$. Faremo ora vedere che esiste un $y \in A$ tale che f(y) = r, da cui seguirà che $|f(x) - r| < \varepsilon \ \forall \varepsilon > 0$ e quindi f(x) = r.

Possiamo assumere $A = \bigcap_{1 \leqslant i \leqslant m} \pi_i^{\leftarrow}[A_i]$, dove gli A_i sono intorni aperti in R di x_i , $1 \leqslant i \leqslant m$. Prendiamo $y = (y_i)_{i \in \mathbb{N}}$, con $y_i = x_i$ per $1 \leqslant i \leqslant m$, $|y_{m+1}| > a_{m+1}$, $y_i = 0$ per i > m+1. Allora $y \in E_{m+1} \setminus K_{m+1}$, $y \in A$ e $f(y) = f_{m+1}(y) = r$. C.V.D.

BIBLIOGRAFIA

- [G.J.] L. GILLMAN M. JERISON, Rings of continuous functions, Van Nostrand, New York (1960).
- [N.R.] L. D. Nel D. Riordan, Note on a subalgebra of C(X), Canad. Math. Bull., (4) 5 (1972), pp. 607-608.

Manoscritto pervenuto in redazione il 26 maggio 1975.

^(*) Vedi Lemma 2.