RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

TUDOR ZAMFIRESCU

On k-path hamiltonian graphs and line-graphs

Rendiconti del Seminario Matematico della Università di Padova, tome 46 (1971), p. 385-389

http://www.numdam.org/item?id=RSMUP 1971 46 385 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1971, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON k-PATH HAMILTONIAN GRAPHS AND LINE-GRAPHS

Tudor Zamfirescu *)

1. Throughout this paper, the word graph will be used for an undirected connected graph, without loops or multiple edges.

If G is a graph, P(G) will denote the point-set of G and E(G) its edge-set.

A graph is called:

- the line-graph L(G) of the graph G if P(L(G)) can be put in one-to-one correspondence with E(G) in such a way that two points of L(G) are adjacent if and only if the corresponding lines of G are adjacent,
- the subgraph G' of the graph G if $P(G') \subset P(G)$ and each line in E(G) joining points in P(G') also belongs to E(G'),
- of type T_1 in G if its point-set \overline{P} and its edge-set \overline{E} respectively are subsets of P(G) and E(G), and it has at least three common lines with every complete subgraph on 4 points of the subgraph G' of G with $P(G') = \overline{P}$.
- of type T_2 in G if it is of type T_1 in G and no point not from its point-set is adjacent to more than one point in its point-set,
 - hamiltonian if it possesses a hamiltonian circuit,
- hamiltonian-connected if every pair of distinct points is connected by a hamiltonian path,

^{*)} Mathematisches Institut der Universität, Dortmund, Rep. Federale Tedesca.

- randomly hamiltonian if every path is contained in a hamiltonian circuit,
- k-path hamiltonian ($0 \le k \le p-2$, where p is the number of vertices) if every path of length not exceeding k is contained in a hamiltonian circuit (for k=0 it is meant a hamiltonian graph, and for k=p-2 one obtains a randomly hamiltonian graph),
- weakly k-path hamiltonian if every path of length not exceeding k and of type T_2 is contained in a hamiltonian circuit.

If M is a subset of the point-set of a graph then the number of all points not in M each of which is adjacent to some point of M is called the degree of M. If a is a point of a graph, then $\rho(a)$ denotes the degree of $\{a\}$.

- 2. Let G be a graph on p points.
- G. Chartrand and H. Kronk [3] gave necessary and sufficient conditions for G to be (p-2)-path hamiltonian (randomly hamiltonian).

Results of O. Ore ([5], [6], [7]) giving sufficient conditions for the graph G to be hamiltonian have been extended in the following ways to provide sufficient conditions for G to be k-path hamiltonian $(0 \le k \le p-3)$.

PROPOSITION 1 (H. Kronk [4]). G is k-path hamiltonian if for any pair of non-adjacent vertices a and b,

$$\rho(a) + \rho(b) \ge p + k$$
.

PROPOSITION 2 (H. Kronk [4]). G is k-path hamiltonian if it has at least $\frac{1}{2}(p-1)(p-2)+k+2$ edges.

Theorem 1 will give another sufficient condition for a graph to be k-path hamiltonian.

The next two Propositions contain sufficient conditions for a graph such that its (iterated) line-graph is hamiltonian.

PROPOSITION 3 (G. Chartrand [1], [2]). G is sequential if and only if L(G) is hamiltonian.

PROPOSITION 4 (G. Chartrand [1], [2]). If G is not a path, then $L^{p+k-3}(G)$ is hamiltonian for all $k \ge 0$.

Theorems 2 and 2a will give necessary conditions for a graph to be k-path hamiltonian, and Theorem 3 together with its Corollaries will complete some results in [2].

3. Theorem 1. If each subgraph of G on at least p-k+1 vertices is hamiltonian-connected, then G is k-path hamiltonian *).

PROOF. Let K be a k-path (a path of length at most k) in G, of endpoints a, b. Since the subgraph G' of G with $P(G')=(P(G))-P(K))\cup\{a,b\}$ is hamiltonian-connected, a and b are joined by a hamiltonian path Π in G'. Then $K\cup\Pi$ is a hamiltonian circuit of G.

That Theorem 1 may be used in cases in which Propositions 1 and 2 fail to apply, it can be seen from the following example:

Let G be the graph obtained by joining each point of the edgeless graph E_4 on 4 points with each point of the complete graph K_7 on 7 points and also joining another point v with 5 vertices of K_7 . G does not satisfy the sufficient conditions of Proposition 1 for being 1-path hamiltonian, because for some vertex w of E_4

$$\rho(v) + \rho(w) = 12$$
,

while p+k=13. Also, G fails to satisfy the sufficient conditions of Proposition 2 because its number of edges is 54, while $\frac{1}{2}(p-1)(p-2)+$ +k+2=58. By applying Theorem 1, G is even 3-path hamiltonian. (We note that for k=1 Theorem 1, though not false, is uninteresting since hamiltonian-connectedness directly implies the property of being 1-path hamiltonian).

^{*)} It can be proved that this theorem is stronger than Theorem 8 of C. Berge in «Graphes et hypergraphes», Dunod 1970, p. 197 (regarded as a sufficient condition for a graph to be k-path hamiltonian), and that both Propositions 1 and 2 are weaker than the mentioned result of C. Berge.

4. THEOREM 2. If G is k-path hamiltonian, then L(G) is weakly (k+1)-path hamiltonian.

PROOF. Let Λ be a (k+1)-path of type T_2 in L(G). The edges in E(G) corresponding to the vertices of Λ form a set

$$V = \{v_0, ..., v_{k+1}\}$$

such that v_i and v_{i+1} are adjacent (i=0, ..., k). Let

$$\{v_0, v_{n_1}, ..., v_{n_l}, v_{k+1}\}$$
 $(n_1 < ... < n_l)$

be a subset of V forming a path of maximal length. Evidently, each edge v_i (i=0, ..., k+1) is adjacent to some edge of the path K generated by

$$\{v_{n_1}, ..., v_{n_l}\}.$$

Since $l \le k$, K may be extended to a hamiltonian circuit C in G. Each edge of G not in V is adjacent to some edge of E(C)-V. Now, all the edges in E(G)-V may be arranged in an obvious manner to form a sequence

$$\{a_1, ..., a_m\}$$

such that v_{n_1} and a_1 are adjacent, a_i and a_{i+1} are adjacent (i=1, ..., m-1), and a_m and v_{n_1} are adjacent. The points in L(G) corresponding to the cycle of edges

$$\{v_0, \ldots, v_{k+1}, a_1, \ldots, a_m, v_0\}$$

are consecutively adjacent, thus providing a hamiltonian circuit which includes Λ .

The proof of Theorem 2 suggests the following improvement of its statement.

THEOREM 2 a. If G is k-path hamiltonian, then each (k+1)-path of type T_1 in L(G) whose (k-1)-subpath obtained by removing its endpoints (and adjacent edges) is of type T_2 in L(G), is extendable to a hamiltonian circuit of L(G).

Using Theorem 2 a it can be seen that for k=0, 1, Theorem 2 may be stated in the following stronger form:

THEOREM 3. If G is k-path hamiltonian, then L(G) is (k+1)-path hamiltonian (k=0 or 1).

COROLLARY 1. If G is hamiltonian, then L(G) is 1-path hamiltonian and $L^n(G)$ is 2-path hamiltonian for every $n \ge 2$.

The above corollary improves Corollary 1 B in [2].

Proposition 3 together with Corollary 1 imply:

COROLLARY 2. If G is sequential, then $L^2(G)$ is 1-path hamiltonian and $L^n(G)$ is 2-path hamiltonian for every $n \ge 3$.

Proposition 4 together with Corollary 1 yield the following improvement of Proposition 4.

COROLLARY 3. If G is not a path, then $L^{p+k-3}(G)$ is min $\{2, k\}$ -path hamiltonian $(k \ge 0)$.

REFERENCES

- [1] CHARTRAND, G.: The existence of complete cycles in repeated line-graphs, Bull. Amer. Math. Soc. 71 (1965) 668-670.
- [2] CHARTRAND, G.: On hamiltonian line-graphs, Trans. Amer. Math. Soc. 134 (1968) 559-566.
- [3] CHARTRAND, G. and Kronk, H.: Randomly traceable graphs, SIAM J. Appl. Math. 16 (1968) 696-700.
- [4] Kronk, H.: A note on k-path hamiltonian graphs, J. Combinatorial Theory 7 (1969) 104-106.
- [5] ORE, O.: Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [6] ORE, O.: Arc coverings of graphs, Ann. Mat. Pura Appl. 55 (1961) 315-322.
- [7] ORE, O.: Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.

Manoscritto pervenuto in redazione l'1 settembre 1971.