RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIULIANO BRATTI

Generalizzazione di una proposizione di analisi funtoriale. Un'applicazione

Rendiconti del Seminario Matematico della Università di Padova, tome 46 (1971), p. 223-226

http://www.numdam.org/item?id=RSMUP_1971__46__223_0

© Rendiconti del Seminario Matematico della Università di Padova, 1971, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

GENERALIZZAZIONE DI UNA PROPOSIZIONE DI ANALISI FUNTORIALE. UN'APPLICAZIONE

GIULIANO BRATTI*)

§ 1. Oggetto di questo lavoro è di dare una generalizzazione della seguente proposizione di N. Popa, [3], pag. 673: se $A \in \mathcal{O}b(\mathfrak{LBC})$ $B \in \mathcal{O}b(\mathfrak{LBC})$ e se ε_A , ε_B : $\mathcal{K} \to \mathfrak{L}$, allora $b\{\varepsilon_A \to \varepsilon_B\} \simeq \operatorname{Hom}_b(A; B)$ e $c\{\varepsilon_A \to \varepsilon_B\} \simeq \operatorname{Hom}_c(A; B)$, mediante l'isomorfismo $T \to T_I$, I il corpo degli scalari, \mathcal{K} una sottocategoria piena di \mathfrak{LBC} .

Precisamente dimostrerò, nel § 2, questa proposizione: $sia\ F: \mathcal{K} \to \mathcal{L}$ un funtore tale che:

- a) esiste $\chi \in {}_b \{ \varepsilon_{c} \in {}_{F} \} \to F \}$, $(\varepsilon_c \{ \varepsilon_{c} \in {}_{F} \} \to F \})$, con la proprietà che $\chi^c : {}_b \{ \varepsilon_c \to F \} \to F(C)$, $\chi^c(S) = S^c(1 \otimes 1)$, $(\chi^c : {}_c \{ \varepsilon_c \to F \} \to F(C))$, è isomorfismo (algebrico e) topologico, $(C \ e \ il \ corpo \ complesso \ su \ cui \ e \ dato \ ogni \ spazio \ vettoriale topologico \ di \ \mathcal{L}$, $\chi^c \ e \ la \ C$ -esima componente del morfismo χ);
 - b) $F(C) \in \mathcal{O}b(\mathfrak{LQC})$.

In tali ipotesi, se $A \in \mathcal{O}b(\mathfrak{LSA})$, ${}_{b}\{\epsilon_{A} \to F\} \simeq \operatorname{Hom}_{b}(A, F(C))$, $({}_{c}\{\epsilon_{A} \to F\} \simeq \operatorname{Hom}_{c}(A; F(C))$.

Nel caso della proposizione di Popa è facile vedere che le condizioni a) e b) della generalizzazione sono soddisfatte: se $F = \varepsilon_B$, $B \in \mathcal{O}b(\mathfrak{LQC})$, $F(C) = B\varepsilon C \simeq B$,

$$_{b}\{\varepsilon_{C} \to F\} \simeq \operatorname{Hom}_{b}(C; B) \simeq B,$$

 $(_{c}\{\varepsilon_{C} \to F\} \simeq \operatorname{Hom}_{c}(C; B) \simeq B);$

^{*)} Indirizzo dell'A.: Seminario Matematico Università, 35100 Padova. Lavoro eseguito nell'ambito dei gruppi di ricerca matematica del C.N.R.

il χ di a), poi, è l'isomorfismo canonico. Che si tratti di una effettiva generalizzazione sarà visto mediante un esempio alla fine della dimostrazione della generalizzazione nell'osservazione 1; quest'esempio dà, pure, la risoluzione di un problema lasciato aperto dall'A. in un suo precedente lavoro, [1], pag. 326. I simboli usati sono sempre quelli di [3].

§ 2. Sia ψ : Hom_b $(A; b\{\varepsilon_C \to F\}) \to b\{\varepsilon_A \to F\}$ la mappa lineare tale che: $\psi(T) = \chi \circ (T\varepsilon 1)$ dove χ è il morfismo funtoriale di a) e $T\varepsilon 1: \varepsilon_A \to \varepsilon_b(\varepsilon_C \to F)$ con $(T\varepsilon 1)^E = T\varepsilon 1_E: A\varepsilon E \to b\{\varepsilon_C \to F\}\varepsilon E$.

1) ψ è iniettiva:

se per $T \in \operatorname{Hom}_b(A; {}_b\{\varepsilon_C \to F\})$ con $T \neq 0$ fosse $\psi(T) \equiv 0$ si avrebbe $\psi(T)^c \equiv 0$. Poichè esiste $a \in A$ con $T(a) \neq 0$ è anche $T(a)^c \neq 0$; allora:

$$\chi^{c} \circ (T \in 1_{c})[a \otimes 1] = \psi^{c}(T)[a \otimes 1] =$$
$$= \chi^{c}[T(a) \otimes 1] = T(a)^{c}(1 \otimes 1) \neq 0.$$

Assurdo, poichè $\psi(T)^c \equiv 0$.

2) ψ è suriettiva:

sia $\varphi: {}_{b}\{\varepsilon_{A} \to F\} \to \operatorname{Hom}_{b}(A\varepsilon G; F(C))$ la mappa lineare tale che $\varphi(T) = T^{c}$. φ è iniettiva poichè se $T^{c} = 0$ e $T^{e} \neq 0$ esisterebbe $a \otimes e \in A \otimes_{\varepsilon} E$, denso in $A\varepsilon E$, [4], pag. 46, con $T^{E}(a \otimes e) \neq 0$. Se $\eta_{e}: C \to E$ è la mappa (lineare e continua) tale che $n_{e}(\gamma) = \gamma e$, $\gamma \in C$, $e \in E$,

$$F(\eta_e) \circ T^c [a \otimes 1] = 0 = T^E(a \otimes e).$$

Assurdo. Quindi se $T^c = 0$, $T^E = 0$ $\forall E \in \mathcal{O}b(\mathcal{K})$. Indicato con η l'isomorfismo,

$$\eta: \operatorname{Hom}_b(A \in C; F(C)) \to \operatorname{Hom}_b(A; F(C)), \eta(l)[a] = l(a \otimes 1)$$

e con η' l'isomorfismo,

$$\eta': \operatorname{Hom}_b(A; F(C)) \to \operatorname{Hom}_b(A; b\{\varepsilon_C \to F\}), \eta'(l') = (\chi^C)^{-1} \circ l',$$

le mappe ψ e η' · η · φ sono l'una l'inversa dell'altra, (da cui la surietti-

vità di ψ). Si ha, infatti, se $T \in {}_{b} \{ \varepsilon_{A} \to F \}$,

$$\varphi \circ (\eta' \circ \eta \circ \varphi)[T] = \chi \circ [\{(\chi^C)^{-1} \circ \eta(I^C)\}\varepsilon 1].$$

La C-componente di quest'ultima è la $\chi^c \circ [\{(\chi^c)^{-1} \circ \eta(T^c)\} \in 1_c]$ che coincide con T^c poichè:

$$\chi^{c} \circ \lceil \{(\chi^{c})^{-1} \circ \eta(T^{c})\} \in 1_{c} \rceil \lceil a \otimes 1 \rceil = \chi^{c} \lceil \{(\chi^{c})^{-1} \lceil T^{c}(a \otimes 1) \rceil \} \otimes 1 \rceil.$$

 $(\chi^c)^{-1}[T^c(a \otimes 1)] = S \in_b \{ \varepsilon_C \to F \}$ con $S^c(1 \otimes 1) = T^c(a \otimes 1)$. Allora $\chi^c(S \otimes 1) = S^c(1 \otimes 1) = T^c(a \otimes 1)$. Risulta facile verificare che anche le *E*-componenti, $\forall E \in \mathcal{O}b(\mathcal{K})$, dei morfismi $T \in \chi \circ [\{(\chi^c)^{-1} \circ \eta(T^c)\}\epsilon 1]$ coincidono.

3) ψ è isomorfismo (algebrico e) topologico:

l'inversa della ψ , $\eta' \circ \eta \circ \varphi$, è continua poichè su ${}_b\{\epsilon_A \to F\}$ vi è la topologia relativa dalla topologia di $X\{\text{Hom}_b(A\epsilon E; F(E)), \forall E \in \mathcal{O}b(\mathcal{K})\}$, [2], pag. 150. Resta allora da dimostrare che la ψ è continua per il che è sufficiente dimostrare, [2], pag. 150, che le

$$\psi^{E}: \operatorname{Hom}_{b}(A; {}_{b}\{\varepsilon_{A} \to F\}) \to \operatorname{Hom}_{b}(A\varepsilon e; F(E)),$$

 $\psi^{E}(T) = \chi^{E} \circ (T \varepsilon 1_{E})$ sono continue $\forall E \in \mathcal{O}b(\mathfrak{K})$. Poichè il funtore ε_{E} è fortemente continuo su \mathfrak{L} (e compatto-continuo su $\mathfrak{K} \subseteq (\mathfrak{LQC})$, [3], pag. 672, e poichè la χ^{E} è continua, le ψ^{E} sono senz'altro tutte continue. La generalizzazione è dimostrata.

OSSERVAZIONE 1. Sia (B) la categoria degli spazi di Banach e ()**: (B) \rightarrow (B) il funtore biduale forte che associa ad ogni $E \in \mathcal{O}b(B)$ E^{**} biduale forte di E e ad ogni $\varphi \in \operatorname{Hom}_b(E_1; E_2)$ " $\varphi \in \operatorname{Hom}_b(E_1^{**}; F_2^{**})$ bi-trasposta della φ . La verifica che ()** è fortemente continuo è facile, che ()** non sia funtore di Schwartz è dimostrato in [1]. Risulta: ${}_b\{\varepsilon_C \rightarrow$ ()**} $\cong C$; infatti, se ${}_v \in {}_b\{\varepsilon_C \rightarrow$ ()**} è l'elemento tale che ${}_v \in {}_c \in$

$$T^{E}(1 \otimes e) = T^{E} \circ (1 \otimes_{\varepsilon} \varphi_{e})(1 \otimes 1) =$$

$$= {}^{tt}\varphi_{e} \circ (yv^{C})(1 \otimes 1) = {}^{tt}\varphi_{e}(v_{y}) = v_{ye} = (yv^{E})(1 \otimes e)$$

se $\varphi_e: C \to E$ è la mappa (lineare e) continua con $\varphi_e(x) = xe$. L'ipotesi b) resta soddisfatta; la χ di a), in questo caso, è la seguente:

$$\forall E \in \mathcal{O}b(B), \ \chi^E : {}_b \{ \varepsilon_C \to ()^{**} \} \varepsilon E \to F(E) = E^{**}, \ \chi^E [xv \otimes e] = v_{xe}.$$

BIBLIOGRAFIA

- [1] Bratti, G.: Distribuzioni funtoriali in una variabile quasi periodiche, Rend. Sem. Mat. Università di Padova, 1971.
- [2] KELLEY, J. L., NAMIOKA, I.: Linear topological spaces, D. Van Nostrand Company, 1963.
- [3] Popa, N.: Quelques applications de la théorie des catégories dans la théorie des distributions, Rev. Roum. Math. Pures et Appl., Tomo 13, N. 5, pp. 671-682, 1968.
- [4] Schwartz, L.: Théories des distributions a valeurs vectorielles, Ann. Ist. Fourier, Tomo 7, 1967.

Manoscritto pervenuto in redazione l'1 giugno 1971.