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ON THE ASYMPTOTIC BEHAVIOR OF THE ONE-SIDED GREEN’S
FUNCTION FOR A DIFFERENTIAL OPERATOR
NEAR A SINGULARITY

STEVEN BANK *)

1. Introduction.

In this paper we consider ny order linear differential operators £,
whose coefficients are complex functions defined and analytic in un-
bounded sectorial regions, and have asymptotic expansions, as the com-
plex variable x — oo in such regions, in terms of real (but not necessarily
integral) powers of x and/or functions which are of smaller rate of
growth (<) than all powers of x as x —>o. (We are using here the
concept of asymptotic equivalence (~) as x —> o, and the order relation
« < » introduced in [8; § 13]. (A summary of the necessary definitions
from [8] appears in § 2 below.) However, it should be noted
(see [8; § 128 (g)] that the class of operators treated here includ-
es, as a special case, those operators whose coefficients are analytic and
possess asymptotic expansions (in the customary sense) of the form
¢~ with \; real and \; —+ oo as j—>o0). More specifically, we are
concerned here with the asymptotic behavior of the one-sided Green’s
function H(x, ) for the operator Q (see [7; p. 33] or § 3 below), near
the singular point at eo. This function plays a major role in determining
the asymptotic behavior near oo of solutions of the non-homogeneous
equation Q(y)={f (for functions f analytic in a sectoral region D), since
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the function y(x)= f H(x, 0)f(¢)dC is a solution of Q(y)=/ satisfying

zero initial conditions at the point xo in D. (The proof of this fact for
the real domain given in [7; p. 34] is easily seen to be valid for the
complexsimply-connected region D, where of course, the contour of
integration is any rectifiable path in D from xo to x).

If {$1, ..., ¢} is a fundamental set of solutions for Q(y)=0, then

the Green’s function H(x, €) is a function of the form ¥ Y{x)w;({). In
=1

this paper, we determine the asymptotic behavior of H(x, {) by deter-
mining the asymptotic behavior near oo of the functions w;({), when
{d1, ..., U} is a particular fundamental set whose existence was proved
in [1, 2] and whose asymptotic behavior in subsectorial regions is
known. The asymptotic behavior of {{;, ..., .} is as follows: Asso-
ciated with Q is a polynomial P(a) of degree p<n ([2; § 3 (e)]). If
o, ..., & are the distinct roots of P(a) with &; of multiplicity m; , then
Y1, .., Y, are solutions of Q(y)=0 where each {; is ~ to a constant
multiple of a distinct function of the form x*(log x)"~!, where 1 <m<m,; .
For the remaining solutions Y11, ..., U, each i is ~ to a function
of the form exp [ Vi where each Vi is ~ to a function of the form
cax % for d>0 and complex non-zero cx. (The functions cix~1*9k
involved can be determined in advance by an algorithm. For a complete
discussion, see § 4 below).

If the above fundamental set {1, ..., U} is used to calculate the

Green’s function, H(x, {)= X $ij(x)w;({), directly from the definition
=1

of H(x, {) (see § 3 below), the asymptotic behavior of the functions
w;i(€) is difficult to determine since each w; depends on the quotient
of the Wronskian of {{, ..., 4.} —{{;} by the Wronskian of {{y, ...,
U».}. However, in this paper we do succeeed in determining the asymp-
totic behavior of the functions w;({) by taking advantage of a factorization
result proved in [1]. It was shown in [1; § 7] that under a simple change
of dependent variable and multiplication by a suitable function, the ope-
rator £ is transformed into an operator ® which possesses an exact fac-
torization into first order operators f; of the form f{(y)=y—(y’/f,), where
the asymptotic behavior of the functions fi, ..., f. involved is known
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precisely. Since the Green’s functions K(x, ) for a factored operator
O=0,D, is related to the Green’s functions K; and K, for ®; and @,
respectively, by K(x, Q)= sz(x, s)Ki(s, Q)ds (see [7; p. 41] for the
A

proof in the real domain and § 8 B below for the proof in the complex
domain), we are in a position to use an inductive proof to determine
the behavior of the Green’s function for ® (see § 6 below), and this
easily leads to a result for Q. In this connection, we make use of results
in [3, 4] in determining the asymptotic behavior of the integrals which
arise.

Our main result (§ 5) states that if { has been suitably normalized
by dividing through by a known function of the form cx?, and if the
distinct roots o, ..., &, of P(a) also have distinct real parts, then there
exists a fundamental set of solutions {{, ..., Un} for Q(y)=0 having
the asymptotic behavior which was previously described such that the
asymptotic behavior of each function wj({), in the Green’s function

H(x, O)= ¥ $i(x)wi(Q) for Q, is related to the asymptotic behavior of
i=1

the corresponding function ;(x) as follows: If 1<j<p, we know ;(x)
is ~ to a function of the form ax%(log x)"! where 1<m<m; and
a; is a constant. We prove that wj({) is ~ to a constant multiple of
{1-%(logQ)™—™. For p+1<k=<n, we know Yi(x) is ~ to a function

of the form exp f Vi. We prove that wi(C) is ~ to a function of the

S

form exp f Ui, where Uy~ —V;, and in fact, we obtain more detailed

information on Ux. (The condition concerning distinctness of the real
parts of the o; is needed in the proof since it guarantees that any two
of the functions ¢y, ..., ¥, are comparable with respect to the order
relation « < » (see § 2(b))). Since the functions w;, ..., w, comprise a
fundamental set of solutions of the equation Q*(y)=0 where Q" is the
adjoint of Q (see [7; p. 381), we have therefore succeeded in also
determining the asymptotic behavior of a fundamental set of solutions
of the adjoint equation Q*(y)=0.

In § 8, we prove certain results which are needed in the proof of
the main theorem.
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2. Concepts from [5] and [8].

(@) [8; § 94]. Let —m<a<b=<mx. For each non-negative real
valued function g on (0, (b—a)/2), let E(g) be the union (over 6€(0,
(b—a)/2)) of all sectors, a+8<arg(x—h(8)<b—38 where h(d)=
=g(8) exp (i(a+b)/2). The set of all E(g) (for all choices of g) is de-
noted F(a, b) and is a filter base which converges to . Each E(g) is
simply-connected by [8; § 93]. If V(x) is analytic in E(g) then the

symbolf V will stand for a primitive of V(x) in E(g). A statement is

said to hold except in finitely many directions (briefly e.f.d.) in F(a, b)
if there are finitely many points ri<r< ... <rq in (a, b) such that the
statement holds in each of F(a, r\), F(r1, r2), ..., F(ry, b) separately.

(b) [8; § 13]. If f is analytic in some E(g), then f— 0 in
F(a, b) means that for any £>0, there is a g such that | f(x) |<e for
all xeE(g). f<1 in F(a, b) means that in addition to f — 0, all functions
0/f — 0 where 0; is the operator 0;f=(xlogx ... log;_1x)f’. Then
H1<f:, fi~f2, fi=f2, i< mean respectively, fi/z<1, fi—f.<f.,
fi~cf, for some constant ¢=0, and finally either fi<f, or fi=f,. If
f~c, we write f(eo)=c, while if f<1, we write f(co)=0. The relation
« < » has the property ([8; § 28]) that if f<1 then 0;/<1 for all j.
If f~Kx*(log x) for complex ap and K and real o;, then S(f) will
denote ay. It is easily verified that for every £>0, xR —<x%<
< xRew)+¢ from which it easily follows that if Re(8o(f)) < Re(8o(h)) then
f<h. If f~cx~'*? where c¢ is a non-zeroconstant and d=0 then, the
indicial function of f is the function on (—m, =) defined by IF(f)(p)=
=cos (do+arg c¢). Finally, a function & is called trivial if h<x* for all
real o.

(c) [8; § 49] (and [10; § 53]). A logarithmic domain of rank
zero (briefly, an LD,) over F(a, b) is a complex vector space L of fun-
ctions (each analytic in some E(g)), which contains the constants, and
such that any finite linear combination of elements of L, with coeffi-
cients which are functions of the form cx* (for real a), is either ~
to a function of this latter form or is trivial.
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) [5; § 3]. If G(z)=X bj(x)z/, where the b; belong to an
j=0

LDy, then a function N(x) of the form cx* (for real a) is called a
critical monomial of G, if there is a function A~ N such that G(h) is
not ~G(N). (An algorithm for finding all critical monomials can be
found in [5; § 26]). The critical monomial N of G is called simple if
N is not a critical monomial of dG/9z.

3. The Green’s function.

If Q(y)=X aj(x)y"” where the coefficients a;(x) are analytic in a
j=0

simply-connected region D, and a.(x) has no zero in D, then the one-sided
Green’s function for Q is the function H(x, €) on D X D defined as
follows: If B={{y, ..., {n} is a fundamental set of solutions in D for
Q(y)=0, and if W is the Wronskian of B while W; is the Wronskian

of B—{{;}, then H(x, @):};‘, Yi(x)vi(C) where

/() =(—1)""Wi(5)/(aQW()).

(Remark: It follows from he uniqueness theorem for solutions of linear
differential equations that the Green’s function is indpendent of which
fundamental set is used, since it is easily verified (as in [7; p. 33])
that no matter which fundamental set is used, the corresponding H(x, %)
is a solution of Q(y)=0 for each LeD, satisfying the following initial con-
ditions at x=C: 0*H(x, {)/0*=0 for 0<k=<n—2; 9" 'H(x, {)/9x"'=
=(1/a.2))).

4. Results from [1] and [2].

Let Q(y) be an n'® order linear differential polynomial, coefficients
in an LDy over F(a, b). If 0 is the operator Oy=xy’, Q(y) may be written

Q(y)= X Bj(x)¥y where the functions B; belong to an LD, . We assume
i=0
B, is non-trivial. By dividing through by the highest power of x which
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is ~ to a coefficient B;, we may assume that for each j, B,-él and

there is an integer p=0 such that B,~1 while for j>p, Bj<1. Let

g=min {j : Bj=~1}. By dividing through by B.(ec), we may assume

B,~1. Let P(a)= X Bj(>)a/ and let o, ..., & be the distinct non-zero
i=0 .

roots of P(a) with o; of multiplicity m;. (Thus g+ X m;=p). Define
i=1

M;, .., M, as follows: M;=(logx)y~! if 1=<j<q; My j=x"(log x)! if

1<j<my, and in general, Mg m...me+i=x%+1(logxy~! for 1<k<r

and 1<j<my,,. Define a sequence of integers p=tO)<#1)< ...

<t(o)=n as follows: #0)=p and if #(j) has been defined and is less
than n, let #(j+1) be the largest k such that #j)<k=<n and such that

B:<B; for all i, t(j)<i<n. Let G(z)= X x'PB,;)z"?~?, and assume
i=0

that the critical monomials Ny, ..., N._p, of G are each simple (§ 2 (d)),
and are arranged so that N; <N, for each j. Then e.f.d. in F(a, b), the
following conclusions hold:

(@) Each N; is of the form ¢;x~'*% where ¢; is a non-zero con-
stant and d;>0.

(b) The equation Q(y)=0 possesses a linearly independent set
of solutions {gi, ..., g} where gi~M, for 1<j<p.

(c) If we set hj=(log x)~%; for 1<j<p and define functions
hy s fos Yo, ..., ¥p_y recursively by the formulas, Wo=Fh and fj.1=
=V';/¥; where ¥;=(f; ... filhj.1) (recalling that fi(y)=y—(y’/f;)), then
there exist functions fpi1, ..., f» With ft ~Ni_, such that,

(i) The equation Q(y)=0 possesses solutions gpi1, ..., g such

k-1

that gi is of the form gi=Riexp | fi where Ri~(log x)? I (f;/(fi—f))
i=1

for p+1<k=<n.

(ii) The solutions g, ..., 8. form a fundamental set of solutions
for Q(y)=0.

(iii) If ®o(z)=(1/g"((log x)?z), then for some function E~1,
the operator ®, possesses the exact factorization ®y=Ef, ... fi where

)=y—'/1).
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(iv) If hv=(log x)?gx for 1<k=<n, then fe ... A(h)=0 for each
ke{1, ..., n}.

(v) The functions f;, ..., f, have the following asymptotic behav-
ior: fi~—(g—j+1x'dogx)?! if 1<j<gq; fori~ax! if 1<j<my,
and in general, foim,+ .. +mp+i~01x"! for 1<k <rand 1<j<myp,.

(REMARK. (@) is proved in [1; § 5]; (b) is proved in [2; §§ 5,
7, 10]; For (c), (i) is proved in [1; § 9] in light of [1; § 8]; (ii) is
proved in [1; § 9]; (iii) and (v) are proved in [1; § 7]; (iv) for
1<k=p follows from the definition of f;, while for p+1=<k=<n, it is
proved in [1; § 91).

In view of the above results, and with the above notation, we can
make the following definition:

DEFINITION. A fundamental system of solutions (Y1, ..., {n) of
Q) =0 is called asymptotically canonical if Y;j=M; for 1<j<p while

for p+1<k=<n, {r is = to a function of the form R exp ffk .

5. The Main Theorem.

Let Q(y) be an n™ order linear differential polynomial with coeffi-
cient in an LD, over F(a, b). By dividing through by a convenient func-

tion of form cx® (as in § 4), we may assume Q(y)= X, Bj(x)¢y, where
=0

0 is the operator Oy=xy’, and where the coefficients B; belong to an
LD, over F(a, b) and have the following asymptotic properties: B;<1
for each j; For some integers 0<¢g=<p, B,~1, B;~1 and Bij<1if j>p or

j<gq. Let B, be non-trivial in F(a, b). Let P(a)= X B{oo)a/ and let
=0

P have the property that if o and @ are roots of P with a>=(3, then a
and B have distinct real parts. Let o, ..., a. be the distinct non-zero
roots of P, with a; of multiplicity m;, and let M,, ..M, be as in § 4.
Let G(z) be the polynomial constructed as in § 4, and assume, as in
§ 4, that the critical monomials N, ..., Nu—, of G(z) are each simple
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and are arranged so that N;<Nj1 for each j. Define functions u(xy), ...,
uAx) ef.d. in F(a, b) as follows: uj(x)=x"'(logx)?”7 if 1<j<g;
Ugri(x)=x""""(logx)™~’ for 1<j<my, and in general Ugim,+ ... +m;+i(X)=
=x"1"%+1(log x)"+1~7 for 1<k<r and 1<j<my,1; For p+1=<k=<n,

let uw(x) be a function of the form wuw(x)=EFEi(x)exp (— f fx) where

Ev=fc TI (f;/(fi—f0), the f; being in § 4. Then ef.d. F(a, b), the
j=k+1
the following conclusions hold:

(1) The equation Q(y)=0 possesses an asymptotically canonical
fundamental system of solutions (s, ..., {,) in the sense of § 4 (i.e.

Y;=M; for 1<j<p, while {x~R; expffk for p+1=<k=n) such that
such that the one-sided Green’s function for Q is of the form H(x, {)=

= ¥ Yi(x)wi({) where wj=~u; for each j=1, ..., n.
P

(2) The equation £*(y)=0, where Q" is the adjoint of £, pos-
sesses a fundamental set of solutions {{*1, ..., Y.} where {*j~u; for
each j=1, .., n.

ReMArk. It suffices to prove Part (1), since (2) will follow from
(1) (see [7; p. 38]). In view of § 4 (c) (iii) we first prove a lemma
concerning the Green’s function for a factored operator, ®=f, ... fi.
The proof will make use of results proved in § 8, and the proof of the
main theorem will be concluded in § 7.

6. LEMMA. Let 0<¢g=<p=<mn, and let m;, ..., m, be positive in-
n

tegers such that g+ ¥, m;j=p. Let a4, ..., &, be distinct non-zero complex
j=1

numbers such that Re(a;)<Re(a;;1) for each j. If g>0, assume also
that Re(a;)¢0 for each j. Let M;, ..., M, be as defined in § 4. Let I
be an open subinterval of (—x, =) and let Ay, ..., h, be functions such
that hj~ (log x)~*M; in F(I) for 1<j<p. Let f1, ..., fo, Yo, ..., ¥p_1 be
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defined as in § 4 (¢) and let fi, f, have the asymptotic behavior de-
scribed in § 4 (¢) (v). Let Ny, ..., Nn_, be distinct functions, each of
the form c;x~'*% for complex ¢j>0 and d;>0, arranged so that N; < Nj.1
for each j. For p+1<k=<n, let f« be a function ~N;_, in F(I) and

k-1
let hx be a function of the form A=A exp | fr where Ar~ II (f;/fi—
j=1

—f)) in F(I). Assume that Ay, ..., h, are linearly 1ndependent and that
for each je(l, .., n}, f; fl(h) 0 (where fi(y)=y—(y'/f}). Let
CI>=}",. fi and let uy, ..., Un be as in § 5. Then, e.f.d. in F(I), there
exists a fundamental set of solutions {¢: ..., s} of ®(y)=0, such that
@j=~h; for j=1, ..., n and such that the one-sided Green’s function for

@ is of the form Ho(x, )= ¥ o@;(x)v{Q) where vj~u; for j=1,
j=1

Proor. The proof will be by induction on n. We consider first the

case n=1. Here &= fl , and since fl(hl) 0, we have by § 8 A that the
Green’s function for @ is,

(1) Ho(x, Q)=hi(x)vi({) where v1(C) =~ fi(§)/h(0).
We distinguish the two cases p<n and p=n. If p<n then p=0 (since
¢

n=1). Thus by § 5, wi(Q)=E«?) exp(—f f1) where E;=f;. But since

fithy)=0, clearly hi({)=exp [}‘1 and hence by (1), vy=u; so the result

holds if p<n. If p=n=1, we distinguish the two subcases g<p and

=p. If g<p, then ¢g=0. Hence hi~x* and fi~ox~!. Thus by (1),
Q=L 1%, so vy=w. If g=p, then hi~(logx)! and fi~—x"!
(log x)~*. Hence by (1), vi()=T"!, so again v1=~u;. Thus the lemma
holds for n=1.

Now let n>1, and assume that the lemma holds for n—1. Let
hy .., h, and ®={, ... f; be given as in the statement of the lemma.
(We show that the conclusion of the lemma holds for ®). It follows
from the hypothesis, that A, ..., h,_1 are solutions of ®,(y)=0 where

(2) (Dl:].‘,zq jl.
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We distinguish the two cases, p=n and p<n.
Case I. p=n. In this case, we will distinguish three subcases.

SUBCASE A. ¢g<p and m,=1. Then h,~x* (log x)™% It is easily
verified that using the given solutions hi, ..., k.1 of ®«(y)=0, the
operator @, satisfies the induction hypothesis, where the corresponding
functions u; are precisely ui, ..., U,—1 as defined in the statement of the
lemma (see § 5). Hence by the inductive assumption, there exists e.f.d.
in F(I), a fundamental set of solutions {@i, ..., n_1} of ®1(y)=0 such
that ¢@;~h; for each j and such that the Green’s function for ®; is of

n-1
the form Hi(x, Q)= X @;(x)w;() where w;=u; for each j. Now by defi-
i=1

nition of f., we have f',,(\y,._,)zo, where ‘Pn_lzfn_l fl(h,.). In view
of the asymptotic relations for the f; given in § 4 (c¢) (v), it is easily
verified using [1; § 6 (B), (D)] that

(3) ‘Iln—l"*‘xa'.

Since fu(¥,_1)=0 and fa~oux7!, it follows from § 8 A that the Green’s
function for the operator f. is Hx(x, )=¥._1(x)w(§) where (using (3)),
w({) =1~ . Since ®=1,D (by (2)), we have by § 8 B that the Green’s

function for @ is Ho(x, {)= f Hi(x, s)H(s, C)ds. Hence,
g

X

n—1
4) Ho(x, 0)= i);.l@,(x)W(C) wi(s)¥,_i(s)ds.
4

Now wj=u;, so in view of (3), wi(s)¥.-1(s)=~s* u;j(s). Hence by the
asymptotic relations for the u; (see § 5), clearly for 1<j<n-—1,
(8o(wj¥,-1) is either a,—1 or a,—1—o for some k<r. Since a.>=0
and ax40a, for k<r, we have that 8¢(w;¥.-1)> — 1 for each j. Thus by
§ 8 D (a), for each j=1, ..., n—1, there exists e.f.d. in F(I), a function
Qj(s) =~ s* *'ui(s) such that Q;=w;¥,_; Hence the right side of (4) is
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n-1
T 9 (w(E)(Qi(x)—Qs(R)), so (4) may be written,
n—1
(5) Ho(x, {)= Py 9i(x)vi(Q)+ V(x)w(%)

where 3,(€)= ~w(OQ() and V(=T o(x)Qx). Since w(@)=~L

and Q{¥) =7 *u;(0), clearly v;=u; for 1<j<n—1. Furthemore, since
uQ)=7¢"'-*, we have w=u, . Hence in view of (5), the conclusion of
the lemma will hold for @, if it can be shown that {¢:, ..., @u_1, V} is
a fundamental set for ®(y)=0 and that

(6) V(x) = ha(x).

To prove (6), we note first that ¢, ..., ¢.—1 are independent solu-
tions of ®(y)=0, since they form a fundamental set for ®(y)=0.
Hence in view of (5), we have by § 8 (C) that ¢y, ..., @u-1, V form a
fundamental ®(y)=0. Since hi, ..., h, also form a fundamental set,
there exist constant $x and v such that,

@) V= k);l Brehu ,
and

n—1
(8) h,= kglykcpk—k*rnV.

Now by hypothesis, for g4+1<j<n—1, we have Re (8¢(%)))< Re (a,).
Thus h; < h, (see § 2 (b)), and since @;=h; , we have 9;<h, also. Hence

n—1 n-1
U= X Bhj is <h, and W= ZlYi(Pi<hn, and so (7) and (8) may

j=q+1 i=q+
be written,

q
€)) V=0.h.+ _)_:1 Bihi4+U, where U<h, , and

q
(10) hn:YnV+ z YI(P1+W Whel‘e W<hn .
i=1
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Now if g=0, then (6) will follow from (9) if $.5<0. But this is clear,
for if 8,=0, then by (9), V<h., and hence from (10) we would obtain
h.<h, (since g=0) which is a contradiction. Now consider the case
q>0. Then by assumption, either Re(a,)>0 or Re(a,)<0. If
Re (a,)>0, then for 1<i<gq, h;<h, (and hence ¢;<h,) since &o(h:)=
=0< Re(a,). Thus again, (6) will follow from (9) if B.0. But if
B.=0, then from (9), V<h, and so from (10) we woud obtain h.<h,
which is impossible. If Re (a,)<<0, we consider each term ¢;Q; in V.
Since o@;=~h;, we have for 1=<j<n—1, @;Q;=x* *'(log x)"*M;u; . By
the asympotitic relations for M; and u;, clearly So(Mju;)=—1, and
hence,

(11 80((9,‘0,’):&’,, for ISJSI’l—-l

Since Re(a,)<0 and 8o(h)=0 for 1<k=<gq, we thus obtain V<h:
q

and h,<h; for 1<k=<gq. Thus from (9), ¥ B:hi<h: for each k=gq.
i=1

Since li<h< ... <hg, this implies ;=0 for 1<i<gq, for in the con-
trary case, setting jo— max {i: 1<i<gq, B:>0}, we would obtain the

q
contradiction, h;,=~ Y. B:h:<h;, . Thus from (9), V=8.h.+U, so (6) will
i=1
hold if B.»0. But if B,=0, then V<h,, so since Re (a,)<0 and
q
Qr=~hi, it would follow by (10), that ¥ yvipi<er for 1<k=<gq. This
i=1

would imply, as above that v;=0 for 1<i<gq, so from (10) (and
V< h,) we would again obtain the contradiction h.<h,. Thus 3,0 so
(6) holds. Thus in this subcase, the conclusion of the lemma holds for ®.

SuBcAse B. g<p and m,>1. Since p=n, we have h,~x"r
(log x)~2*" -1, For convenience, let o(j)=q+mu+ .. +m,_1+j for
0<j<m,. As in Subcase A, h;, ..., h.—1 form a fundamental set for
®(y)=0, and we want to calculate the corresponding functions ux for
hi, ..., hui. Now the a; and m; involved in Ay, ..., ks o) are the same
as in the statement for the lemma, and so the corresponding functions
ui for k<c(0), are precisely w1, ..., Us0) as defined in the statement of
the lemma. The remaining solutions in {A1, .., h._1} are hq; for
1<j<m,—1. Thus the corresponding functions u; for these solutions
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are obtained by using m’,=m,—1 in place of m, in the definition of
Us(jy given in § 5. Since uq(jy=x"'"% (log x)™ 7/, using m’, in place of
m, clearly results in (log x)~'us(;) as the corresponding u for h.;y . Hence,
by applying the inductive assumption to @, there exists e.f.d. in F(I),
a fundamental set {@;, ..., @n—1} for ®(y)=0 such that ¢;=~h; for each
1, and such that the Green’s function for @ is of the form Hi(x, {)=

n—1
= ¥ @i(x)w;j(C) where wi=u; for 1<k=<c(0) while we;)=(log x) " 'us()
k=1

for 1<k<m,—1. Now f.~a,x!, and by using [1; § 6], it is easily
verified that ¥, 1~x’ . Hence as in Subcase A. the Green’s function
for the operator f, is Ha(x, {)=Y¥,_1(x)w({) where w({)=~¢ % . Since-
®=4,®,, we have using § 8 (B) that the Green’s function for @ is,

x

n—1
(12) Ho(x, §)=k§1<pk(x)w(l) wi(s)¥,—1(8)ds.
4

Now for 1<k=<0c(0), wr=~ur and hence wi(s)¥,._1(s)=s* ur(s). Hence
as in Subcase A, 8o(wx¥,_1)% — 1, and thus by § 8 D (a), for 1<k =<c(0),
there exists ef.d. in F(I), a function Qi(s)=~s**+ui(s) such that
Q'v=wi¥,._1. Now for o(1)<k<n-—1, say k=o(j) where 1<j<m,—1,
we have wi=~(logx)"'ur. Since wur=x"'"* (logx)"r~/, and also that
m,—j—1>—1 (since j<m,), and so by §8 D (b), for k=o(j)
there exists e.f.d. in F(I), a function Qu(s)=~(logs)™ 7 such that

Q'x=w¥,_1. Hence the right side of (12) is ni‘,l@k(x)w(?;)(()k(x)—Qk(C)),A
k=1
n-1
(13) Hox, {)= ,Elcpk(x)vk(C)JrV(x)W(C),

n-1
where v({)= —w({)Qw({) and V(x)= kZ_II ou(x)Qi(x). Now for 1=<k=<

<0(0), Qu({)=~T* *'ux(?) and so vi=~u; since w({)={'"*%. For o(1)=<
<k=n-—1, say k=o(j), we have Qi{)=(logQ™ /. Thus v({)=~
~{ 1% (log {)"~' and so again vi~u . Furthemore w=~u,, and so in
view of (13), the conclusion of the lemma will hold for ®, if it can be
shown that {¢i, ..., 9u—1, V} is a fundamental set for ®(y)=0 and that

(14) V=h,.
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The proof of (14) is very similar to the proof of (6) in Subcase A.
As in Subcase A, there exist constants 8; and vy: such that (7) and (8)
hold. By hypothesis for, g+ 1<k <0(0), Re (8o(1)) < Re (a,) so hr<h..
For o(1)<k=<n-—1, say k=o(j) (where 1=<j<m,—1), we have hi~

n—-1
~x* (log x)~9+-! so hx<h, since j<m,. Thus setting U= ¥, {;4; and
1

i=q+
n—1

W= Y ~v,9;, we have U<h, and W<h,, and so we obtain (9) and
i 1

=q+
(10). The proof now proceeds exactly as in Subcase A to establish (14).
{We remark that the relation (11) which is needed in the proof is easy
to verify, as in Subcase A, by using the definition of Q;.)

SuBcase C. g=p. Thus g=n by this case. As before, A1, ..., b1
form a fundamental set for ®(y)=0 given by (2). Now A;~ (log x)~7+/~!
for 1<j<n—1, and this does not fit the induction hypothesis for @, .
(i.e. Since ®1=f,_; ... /1, the corresponding g for @, is g—1, and hence
in order to apply the inductive assumption to ®;, the j solution must
be ~(log x)~“~PM; which is clearly not the case for h;.) To remedy
this, we set A(z)=®i((log x)~'z). Then for 1<j<n—1, the functions
h;* =(log x)h; solve A(z)=0. Clearly, h;# ~(log x)~?*, so,

(15) hi* ~(log x)~“VM; for 1<j<n—1.

Define functions Ui, ..., Un-1, Yo, ..., Yn_z recursively by dh="H* and
Uj 1 =Y';/Y; where §;=U; ... Uy(h#,). Then clearly,

(16) (U ... Up)hi*)=0 for 1<j<n—1.

In view of (15), it follows easily using [1; § 6 (A), (D)] that for
1<j<n-—1,

an Ui~ —(g—x"'(log x)~" and §j_1=h;*.

Let A;=U,_; ... U;. In view of (15), (16), (17), it is clear that
A1, with the solutions hi* , ..., h# ,, satisfies the inductive assumption
using g—1 for q. The corresponding functions u; are clearly obtained
by using g—1 for g in the defintion of u; given in § 5. Since
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uj=x""(log x)?~/, using g—1 for g clearly results in (log x)"'u; as the
corresponding u for h;#. Hence by the inductive assumption, there exists
ef.d. in F(I), a fundamental set {@:#, ..., 9} for Ai(y)=0 such that
o;* ~h;* for each j, and such that the Green’s function for A, is of
the form

n—1
(18) K(x, )= z @;i* (x)wi(0),

where w;=(log x)~'u; for 1<j<n—1. We now prove,
(19) A=a(x)A;, where a(x)=®((log x)™Y).

To prove (19), we apply the division algorithm for linear differential
operators ([9; § 2]), and divide A by U,. Since U, is of order one,
there exist an operator I'y and a function bi(x) such that A=TU,+b, .
Since @, is of order n—1, clearly A is of order n—1 and hence T is
of order n—2 by [9; § 5 (a)]. Since A(l#*)=0 and U(l#)=0 (by (16)),
we have bii* =0. Since l* =0 by (15), b1=0 so A=TU;. Dividing
Iy by Uz, there exists an operator I'; of order n—3 and a function b,
such that Ty=T%U>+b,. Since A(h#)=0 and UUy(h#)=0 (by (16)),
we have b;Ui(h*)=0. Since Ui(h*)=1{1 and {150 by (17) we obtain
b,=0, so A=T,U,U, . Continuing this way, we clearly obtain A=T,_1A;
where I',_; is an operator of order zero. Thus for some function a(x),
A(z)=a(x)Ai(z). Evaluating at z=1 (and noting that U,~(1)=1), we
obtain (19).

From (19) and the defintion of A, we have, Ai(z)=(1/a(x))
®y((log x)~'z). Thus by § 8 (A), the Green’s function Hy(x, {) for &,
is related to the Green’s function K(x, ) for A; by K(x, {)=
=a(Q)(log x)Hi(x, {). Thus from (18), we obtain,

n-1
(20) Hi(x, §)= ’_El<Pi(x)(Wi(§)/ a(©)),
where @;(x)=(log x)~'¢;#(x). Since @;* = h;#, cleatly,

21) Qj~h; for 1<j<n—1.
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Now by (19), a(X)=fuo1 . fll((log x)™Y), and by definition, ¥,_;=
=fu1 ... fi(hy), where by assumption, h.~ (logx)~'. Since g=n, we
have fj~—(q—j+1)x"'(log x)~!, and so it easily follows using [1; § 6
(D)], that

(22) a(x)=~(log x)~! and ¥, =~ (log x)~'.

Since fu(¥n_1)=0 and f,~ —x"'(log x)!, it follows from § 8 A that
the Green’s function for f,. is Hy(x, O)=¥,_1(x)w({) where (using (22)),
w({)~¢'. Since &= fn<I>1 , we have by § 8 B and (20) that the Green’s
function for @ is,

n—1 -
(23) Ho(x, 0)= §1 @i (x)w(Z) f (Wi()¥n—1(s)/a(s))ds.
g

Now wj(s)=(log s)"'uj(s) and V¥,_«(s)/a(s)=~1 by (22). Hence since
ui(s) ~s~Y(log s)?-7, we have w;(s)¥._i(s)/a(s)=s"Y(log s)?~/~! for 1<j<
<n—1. Since g=n and j<n, g—j—1>—1. Thus by § 8 D (b), for
each j=1, ..., n—1, there exists e.f.d. in F(I), a function Q(s) =~ (log s)?~/

n-1

such that Q’;=w;¥,_1/a. Hence the right side of (23) is X @i{x)w(Q)
i=1
(Qj(x)— Q%)) and so (23) my be written,

n-1
(24) Ho(x, §)= P 9i(x){(Q)+ V(x)w(D),

n-1
where v{({)=—w({)Q,({) and V(x)=.§.‘.1 9{(x)Qj(x). Since w({)=~¢,

vi(Q) =L (log £)*7 so vj~u; for 1<j<n-—1. Furthemore w=u,, so in
view of (21) and (24), the conclusion of the lemma will hold for @, if
it can be shown that {¢;, ..., ¢,_1, V} is a fundamental set of solutions
for ®(y)=0 and that

(25) V=h,.

To prove (25), we note first that since {¢:#, ..., @#,} is a funda-
mental set for Ai(y)=0, clearly {o:1, ..., ¢._1} is a fundamental set for
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@y(y)=0. Since (I>=j‘,,<1>1, {o1, ..., @1} is therefore an independent
set of solutions of ®(y)=0, and hence in view of (24), it follows from
§ 8 ¢ that @1, ..., @n1, V form a fundamental set for ®(y)=0. Since
h, is a solution ®(y)=0 by hypothesis, there exist constants v; such that,

n—1
(26) h.= -21 Yi®it+YaV.
fon

Since n=gq, hj~(log x)"?*! and so h;<h, for j<n. Since @;=h; by
(21), @j<h. for j<n. Thus y,=0, for othervise by (26), we would
obtain the contradiction h,< h.. Hence v,0, and so h,=V by (26).
This proves (25), and so the conclusion of the lemma holds for ® in
Subcase C, which completes Case I.

x

Case II. p<n. Then h,=A, expffn. Now Ay, ..., hyy form a

fundamental set for ®i(y)=0 (see (2)), and we want to calculate the
corresponding functions u; for Ay, ..., ha1. Since p<n—1, the a; and
m; involved in Ay, ..., h, are the same as in the statement of the lemma,
and so the corresponding functions u; are precisely u; , ..., Up as defined
in the statement of the lemma. For the remaining solutions A1, ..., Bu_1,
the corresponding functions w: are clearly obtained by using n—1 in
place of n in the definitions u©p41, ..., Usn—1 given in the statement of
the lemma (i.e. § 5). Since for p+1=<k=<n—1, u; is defined as

Ei(x) exp (——J}‘k) where Ek:fk‘_fl l(fj/(fj—fk)), using n—1 for n clearly

n-1
results in Ex* exp (—[f«), where Ex =fi Hl(f;/(fi— fx)), as the corre-
=kt

sponding u for hi. Hence by applying the inductive assumption to @,
there exists e.f.d. in F(I), a fundamental set {¢1, ..., ®n.—1} for ®(y)=0
such that @;=~h; for each j, and such the Green’s function for ®; is of

n—-1
the form Hi(x, {)= X @i{x)w;i({) where wj~u; for 1<j<p, while
i=1

g
wi(0) = Ex* () exp (—ffk) for p+1<k=<n—1. Let zo(x) be a function

of the form exp f f» . Since f,,(zo)=0, it follows from § 8 A that the



174 Steven Bank
Green’s function for f, is Ha(x, {)=2zox)w({), where
(27) w(&) = fu(8)/ 20(2).
Since &= f,,<I>1 , we have by § 8 (B) that the Green’s function for

@ is,

X

n—1
(28) Ho(x, §)= glcp,(x)W(C) wj(s)zo(s)ds.
Now for 1<j<p, wj=~u; so w; is = to a function of the form

x*(log x)°. Since p<n, f, is ~ to a function of the form cx~'*? where
d>0. Thus clearly (see § 2 (b)), IF(f.) has only finitely many zeros
on (—m, ®). Since zo(s)= exp ff,, , it follows from [3; § 10 (b)] that
for 1<j<p, there exists e.f.d. in F(I), a function of the form Qj(s)=
=aj(s)zo(s) where aj~w;/f., such that Q" ;=w;z, . For p+1<k=<n—1,
wi(s)zo(s) is =~ to a function of the form Ei#(s)exp J (fn—fr). Now

for p+1<k<j=<n, fi—fe~f; (since Nr_,<N;_, and Ni¢_,N;_,), and
so it easily follows that E;# is =~ to a function of the form x*(log x)°.
Since f.—fr=~fa, IF(f.—f+) has only finitely many zeros. Thus it follows
from [3; § 10 (b)] that for p+1=<k=<n, there exists e.f.d. in F(I), a

function of the form Qi(s)=Tx(s) exp f (fa—f+), where Ti=~Ei* /(fn— fr)

n-1
such that Q"x=wxzo . Hence the right side of (28) is X @{(x)w({)(Qi(x)—
i=1
=Qi(¥)), so (28) can be written,

n—1
(29) Hy(x, )= El ()i Q)+ V(x)w(Q),

where 2;({)= —w({)Qi¥) and V(x)= 'g;ll(p,-(x)Q,-(x). Now in view of (27),

for 1<j<p, vj~f.a;. Since aj~w;/f., and wj~u;, we have vj=~u;.
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By (27), w({)=fu(C) exp (— J.)‘n) Thus for p+1=<k=<n, clearly v({)~

=~ (fuEr* [(fa—f1)) exp (— f f+) and hence vi({) ~ Ex(C) eXP(—ffk) Thus

vi~u; . Furthemore by (27), w({)=u.({), so in view of (29), the
conclusion of the lemma will hold for @ if it can be shown that
{@1, ..., ®u_1, V} is a fundamental set for ®(y)=0 and that

(30) V=h,.

To prove (30), we note that since {¢1, ..., ¢,-1} is a fundamental
set for ®(y)=0, and since ®=F,®;, it follows from (29) and § 8 D
that {@1, ..., .1, V} is a fundamental set for ®(y)=0 Since ®(h.)=0,
there exist constants ; such that

n-1
(31 h,= El Biw;+ BV,
whence
n—-1
(32) (hn—B.V)/h,= EI Bi(epi/ ).

We now calculate each term ¢;Q; in V. For 1<j<p, 9;Q;=9;a)z .

For p+1<k<n—1, we have qi=h, hk:Akexpffk and Q=

=T expf (fa—f+). Since zo= exp f fn, it follows easily that ©Qr=
= A1AiTrzo where Ar=~1. Thus clearly,

(33) V:UZ() N

k-1
where U= Zcp,a,+ 2 AAiTr . Now Ap~ _IIl(f,-/(f,-—fk)). Since fi—f«
i=

k=p+1

is =~f if ]<k and k=p+1, it follows easily that

(34) Ar is = to a function of the form x*(log x)°.



176 Steven Bank

In particular, Ax is < some power of x. Since AiTi=Ei#*/(fu—fo), it
follows similarly A;T« is < some power of x for p4+1<k=<n—1. Since
@;j~h; and ag;=u;/f. for j<p, it follows easily that ¢; and a; are each
< some power of x. Thus each term in U is < some power of x, so
«clearly,

(35) U(x)<x® for some real number o.

Since h,=A. exp f fn» clearly hn=cAnz for some c¢0. Hence in view

of (33), the left side of (32) is (cA.—B.U)/(cA,), which by (34) and
(35) is clearly < some power of x. Thus by (32),

n—-1
(36) }51 Bi(oi/hn) < x*

for some real number A.
)4
Consider _Zl Bj0; . Now by hypothesis, Re (a;) < Re (a;) if i<j, and
j=

if ¢g>0, Re a;>0. It easily follows (since @;=h;) that for 1<i<j<p,
either @;<q@; or @;<¢@; (see § 2 (b)). Hence clearly, if not all of
B1, .., By are zero, then there exists an index jo€{1, ..., p} such that
B0 and @;<q;, if i<p and is=j,. Thus

14
(37) ) Bioj=i(Bjo+ b(x)) where b<1.

(If all of B4, ..., 8, are zero, set B, and b equal zero so (37) still holds.)
For p+1<k=<n—1, set Dx=qr/h.. Then we may write,

n—1 n—1
G8) 3, B0/ =(1/h) 5 08+ T BiDr.

Now for p+1=<k=n, clearly IF(f) has only finitely many zeros
(see § 2 (b)). For p+1<j<k=n, fi—fe=fe so IF(fi—f) also has only
finitely many zeros. Thus if we let T be the union of all zeros in I of
all the above functions IF(fi) and IF(f;—fi), then I is a finite set, say
1< . <€m. If I=(g, €m+1), then letting J be any subinterval of any
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of the intervals (g;, €1) such that {@, ..., pu-1, V} exist on F(J), we
have that (36) is valid on F(J) and all IF(fi) and IF(f;—fx) as above,
are nowhere zero on J. Now clearly, since oi~hi, we have Di=

~(Ar/An) expf(fk—fn). In view of (34) and the fact that IF(fi—fn)

is nowhere zero on J, it follows from [3; § 10 (a)], that for each
ke{p+1. ..., n—1},

(39) Either Dy is trivial in F(J) (i.e. Dr<x* for all a) or 1/Dy is
trivial in F(J).

Since hr=Ax expffk , it follows similarly using (34) and [3; § 10
(a)] that for each ke{p+1, ..., n},

(40) Either h; is trivial or 1/h is trivial in F(J).

Finally, if j and k are distinct elements of {p+1, ..., n—1}, then

since D;j/Di=~(A;/Ax) expf (fi—fx), it follows as above that

(41) Either D;/Dx is trivial or Di/D; is trivial in F(J). We now return
to (36) and prove,

(42) For each je{p+1, .., n—1} such that 1/D; is trivial in F(J]),
we have 3;,=0.

We prove (42) by contradiction. We assume the contrary and let
io be an index such that 1/D,, is trivial but B;,>0. Let L be the set
of all je{p+1, ..., n—1} for which 3;>¢0. For i and j in L with i=j,
we have by (41) that either D;<D; or D;<D;. Since L is a finite set,
clearly there exists ko€ L such that D;<Dy, if ieL—{ko}. If ko=1i, then
1/Dy, is trivial. If kos%ip then D;,< Dy, so again,
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(43) 1/Dy, is trivial in F(]).

n-1
By the property of ko, we can write X BiDi=0D w(1-+1¢) where t<1.
1

i=p+

Hence by (36), (37) and (38), we obtain in F(J),

(44) (@5/ Bn)(Bjo+ b) 4 BrDro(1 + 1) < x*.

Now Dih.=oi,. Thus dividing (44) by Dy, and using (43),
(45) (9io/ 0x)(Bjo+ ) +Be(1+1) is trivial in F()).

Since B, is a non-zero constant, B, ~1. If B;,=0 (and b=0), then (45)
is clearly impossible. If B;,0, then since fx,~ 1, we have from (45) that
Bi®io/ Pte~ —PBr, . Thus @;,/@r,~1 and so hj,=~ hi, . This is clearly im-
possible since A;, is ~ to a function of the form x*(log x)" (since jo=<p),
while by (40), either hi, or 1/hs, is trivial. This contradiction proves
(42), which in view of (39) clearly implies,

(46) nil BiD: is trivial in F(J).

k=p+1
If B;,=0 (and b=0) in (37), then by (46), the left side of (38) is
trivial. Thus by (32), (h.—B.V)/h. is trivial and hence is <1 in F(J).
14
Thus B.,0 and h.,=~V proving (30). If B;,>=0, then X B;p;~¢,, . But
j=1

p
in view of (46), we have by (38) and (36) that (1/h,) ¥ B,0;<x*. Hence
=1

®;, /h.<x*, so (1/h,)<x*/q;, . But ¢, ~h;, and so (since jo<p), @, is
=~ to a function of the form x*(log x)". Thus (1/h,) is < some power

of x. Hence by (40), 1/h, must be trivial in F(J). Thus (I/h,.)f:B,q),-
j=1

is trivial, so by (46), the left side of (38) is trivial. Hence by (32),
(hn—B4V)/h, is trivial, whence <1, and so again $,%0 and h,=~V in
F(J) proving (30). Thus in Case II, the conclusion of the lemma holds
for @, and so the lemma is established by induction.
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7. Conclusion of proof of § 5.

Let Q, q, p, M; and u; be as in § 5, where the roots a; are arranged
so that Re (a;) < Re (@j41). By § 4, ef.d. in F(a, b), the operator Dy(z)=
=(1/g")((log x)?z) possesses a factorization ®o=Ef, ... fi (with f; as
in § 4 (¢)), and there exists a fundamental set {g, ..., g.} for Q(y)=0,

with gi~M; for 1<j<p and g=R: expffk for k>p, such that if

h;=(log x)~%g; for each j, then &= ]"n ... 1 satisfies the hypothesis of § 6
relative to the solution Ay, ..., h, . Hence by § 6, e.f.d. in F(a, b), there
exists a fundamental set {@;, ..., 9.} for ®(y)=0 such that ¢;~h; and

such that the Green’s function for @ is Ho(x, {)= ¥ ¢i{x)v{({) where
i=1

vi=~u; for each j. By § 8 A, the Green’s function for Q is H(x, {)=

=(log x)"Ho(x, £)/(q'E(Z)). Thus H(x, {)= ) Yi{x)wi(Q), where Yj(x)=

=(log x)%pi(x) and wiQ)=v{0)/(q'E)). Then clearly, {{1, ..., .}
is a fundamental set for Q(y)=0 and Y;=g; (since ¢;=~h;). Hence,
($1, ..., Un) is an asymptotically canonical fundamental system for Q
in the sense of § 4. Finally, since E~1, clearly w;~u;. This concludes
the proof of the main theorem.

8. Results needed in the proof of §§ 6.

A. LEMMA. Let f and E be analytic functions having no zeros
in a simply-connected region D. Then:
(a) If h(z) is analytic fung:tion in D such that f(h):O and h=£0,
then the Green’s function for f is K(x, {)=h(x)w({), where w({)=
= —f(8)/h().

(b) If Q)= 20 ai(x)y?”, where the agj(x) are analytic in D and

P
a.x) has no zeros in D, and if A(z)=E(x)Q(f(x)z), then the Green’s
function H(x, ) for Q is related to the Green’s function Hy(x, {) for

A by Hi(x, Y)=H(x, £)/(f(x)E(Y)).

ProOF. Since (k) is a fundamental set for f(y)=y—(y’/f)=0, Part
(a) follows from the definition of K(x, 7).
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For (b), set Hxx, {)=E(Q)f(x)Hi(x, C). As in § 3, for each CeD,
Hi(x, €) is a solution of A(z)=0 satisfying the following initial condi-
tions at x=¢ : 0*Hy(x, {)/9x*=0 for k<n—2, while 9" 'H(x, {)/dx" 1=
=1/(E(Q)f(Q)an(C)) since Efa, is the leading coefficient of A. It is then
easily verified that for each ¢, Hx(x, ) is a solution of Q(y)=0 satisfy-
ing the same initial conditions at x=0 as the solution H(x, {) (see § 3).
Hence H,=H by the uniqueness theorem for linear differential equa-
tions.

B. LEMMA. Let ®(y)= X aix)y” and ®:(y)= X bj(x)y", where
i=0 i=0

the a; and b; are analytic in a simply-connected region D, and a, and
b have no zeros in D. Let @&;=®,®, and for k=1, 2, 3 let Hi(x, Q)

be the Green’s function for ®;. Then Hi(x, {)= f Hi(x, s)Hys, C)as,
¢

the contour of integration being any rectifiable path in D from ¢ to x.

Proor. Set K(x, {)= f Hi(x, s)Hy(s, Q)ds. By the property of the
t

Green’s function given in § 1, K(x, ) is for each T, a solution of
@(y)=Ha(x, {), and hence (see § 3), K(x, ) is a solution of ®x(y)=0.
Furthemore, using the initial conditions at x={ satisfied by H, and H,
(see § 3), a straightforward calculation shows for each {eD, the solu-
tion K(x, {) of ®3(y)=0 satisfies the same initial conditions at x={ as
the solution Hi(x, {) (see § 3). Thus by the uniqueness theorem for
linear differential equations K=H; proving Lemma B.

C. LeEMMA. Let ®(y)= X ai(x)y'”, where the @; are analytic in
fr}
D and a, is nowhere zero in D. Then if the Green’s function for @ can
be written in the form H(x, {)= X @j(x)wi{), where @1, ..., ®n._; are
ji=1

linearly independent solutions of ®(y)=0, then {¢i, ..., ¢} form a fun-
damental set of solutions for ®(y)=0.

Proor. We complete {o;, ..., ©n_1} to a fundamental set {o, ...,

n—1
@n-1, g} for ®(y)=0. Then by definition (§ 3), H(x, )= ¥ oi(x)vi({)+
j=1
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+g(x)vx(8), and it is proved in [7; p. 38], that {s, ..., v»} form a
fundamental set for the adjoint equation ®*(y)=0. Now for each {eD,
H(x, ) .solves ®(y)=0, so clearly,

47) D(Pn(x)wn()=0 for each ¢

If wi(2)=0, then from the two representations for H(x, ), and the
independence of {¢1, ..., ®u_1, g}, we would obtain ».,({)=0 which
would contradict the independence of {2, ..., v.}. Thus for some &eD,
wn(%)#0 and so from (47), ¢. is a solution of ®(y)=0. To show
{@1, .., 9.} is independent, we assume the contrary. Then since
{@1, ..., @1} is independent, we would have a relation of the form

n—1

n-1
o.= Y cip; . Thus, H(x, )= X @i{x)(w;i({)+ciwn({)), which together with
i=1 j=1

the other representation for H and the independence {¢i, ..., @._1, g}
again the contradiction »,({)=0, thus proving Lemma C.

D. LEmMMA. Let R(x) be a function such that in some F(I),
R(x)=~x*(log x)* for some complex number a and real number . Then:

(a) If a2 —1, then ef.d. in F(I), there exists a function Q(x)=
~xR(x) such that Q"=R.

(b) If o=—1 but B> —1, then ef.d. in F(I), there exists a
function Q(x)=(log x)**! such that Q"=R.

Proor. Under the change of variable y=x"z and division by
x*~1, the equation y'=R(x) is trasformed into,

(48) xz'+oaz=T(x), where T(x)=x'"""*R(x).

Thus T(x)=~(log x)’. If as —1, then by [4; § 3], equation (48) pos-
sesses, e.f.d. in F(I), a solution zo(x)=T(x). Part (a) then follows by
taking Q(x)=x"zo(x). If @=—1 but 8> —1, then by [4; § 3], equation
(48) possesses, e.f.d. in F(I), a solution zi(x)= (log x)T(x). Part (b) then
follows by taking Q(x)=x"'zi(x).

REMARK. In the case where o is real, Lemma D also follows
from [6; Lemma ¢, p. 272].
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