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DISTRIBUTIONAL BOUNDARY VALUES IN D’Lp

RICHARD D. CARMICHAEL *)

Section I. Introduction.

In papers by De Jager [ 1 ] , Lauwerier [2], and Beltrami and Woh-
lers [ 3 ] the foilowing problem has been considered. Let f(z) be analytic
in the half plane Im(z) &#x3E; 0 and be bounded by a polynomial in

Im(z) &#x3E; 8 &#x3E; o. Under what conditions does f (z) converge distri~butionally
to an element of a distribution space, and what are the properties of
this element? Lauwerier showed that the analytic function f (z) converged
in Z’ to an element which was the Fourier transform of an

element which vanished for Re~(z)  4. The problem is not as

straightforward in S’ as was shown first by De Jager and then by Bel-
trami and Wohlers. With the convergence in S’ being assumed it was

then shown that the limit distribution was an element of S’ and was
the Fourier transform of an element in 8 which vanished for Re(z)  o. In

[4] we have extended the results of the above authors to n dimensions.
n being an arbitrary positive integer and have given conditions under
which the convergence in S’ of [ 1 ] and [3] is proved. Throughout [4]
we used a boundedness condition of f(z) which resulted in a more ge-
neral concept of support than that in [ 1 ] , [ 2 ] or [ 3 ] .

In [ 3 ] Beltrami and Wohlers have stated a boundary value theorem
concerning the space D’L2, which is a subspace of 8’, with the conver-
gence being that of S’. The result is that a necessary and sufficient
condition that be the boundary value in the S’ topology of a
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specified function f (z) is that U be the Fourier transform of the product
of a polynomial and a L2 function having support in Re(z)  0. Thus as

’ before the convergence must be assumed; and if the limit distribution is
to be an element then this must be assumed also. Beltrami and
Wohlers note the reason for the convergence being that of 8’. Their
result is a distribution version of a result of Titchmarsh ( [ 9 ] , Theorem
95, p. 128) which replaces L2 functions by L~ functions multiplied by
a polynomial and replaces the Hardy space lP by a less restrictive class
of functions. The sacrifice for this more general setting is that the to-

pology of S’ replaces that of the L2 norm.
In this paper we shall consider the boundary value problem with

respect to the space l~p~2. In particular we shall be concerned
with obtaining conditions under which the convergence in S’ of a certain
analytic function f(z), which is assumed to be an element of LP,
1  p  2, on Im(z) = o, to a distribution is proved and shall determine
the properties of this distribution. As will be seen, the limit distribution

will not necessarily be an element of 2)~.p, 2013+2013=1, but will bey L 

q p
the Fourier transform of such an element. The limit distribution will be
characterized in terms of functions in L2 if p=2. These results will

appear in section 3. Converse results to those of section 3 will appear
in section 4. A characterization theorem for will be represented
in section 5.

Throughout this paper by f(x)eLP, l~p:2, or 

1  p  2, we mean that for some p where 1  p  2 or 
for some p where 1  p  2.

Section I I. Definitions and Notation.

The n dimensional notation used here will be that of Schwartz [5].
Thus by the point x E ’IRn we mean x= (xi , ..., Xn), and by ze ~n we
mean z=(zi, ..., zn) _ (xi -E- iyl , ..., x.+iy.). The product of two vectors
x and y in ’IRn will be denoted by (x, Similarly
we define ( x, z) where x E ’IR" and ze The absolute value of z is

defined by I z = max By D", a being an n-tuple of nonnegative
1jn
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integers we mean Da=Daj1 ... D °‘ n where ° Similarly we

write xa = xa11 ... xann. All integrals will be n-f old over unless other-
n oo

wise specified; that is by we mean - ... where there are n
-oo Rn -oo -oo

integrals on the right hand side of the last equality. In this paper we
shall be concerned with the octant 1  j  ~z, which from
now will be described by It will frequently be necessary to
delete the j th. component of an n-fold expression. We shall denote this
by a ~ over the concerned expression. Thus by x we mean

(xl , .., xj-1 , Xj+1, ..., xn), or by dx we mean dxl ... dxj-idxi+i ... dxn .
The Fourier transform of a function will be denoted by f or

x] . By the Fourier transform of an element f(t)EL1(1Rn) we mean

the function while that of an element f(t) E U(1Rn),
-~ N N

1p2, is defined as f (x) = l.i.m. ", where l.i.m. de-
N-+oo f f-N -N-N -N

notes the limit in the Lq norm, I + 1 = 1. In the case then 1 is
p q

continuos and bounded on 1R n; while if lp~2, then

f ELq, 1 -I- 1 =1. In case the inte g ral exists for z in
p q f-oo

some region of en then it will be called the Fourier transform of f(t)
in that region and will be denoted by 

S will denote the space of functions having derivatives of all order
sup

and satisfying x I for all multi-indicies a and 5 of

non negative integers. By p in S as k, k0, where çk E S for

each X and we mean that lim sup =o, where
k-+k0 x

rL and Pare as above. 8’ is the space of continuous linear functionals

on 8, where continuity means that (px 2013~ 9 in S as X 2013~ ~ implies
~ T, cp ~ --~ ~ T, p) as TeS’. It is well known ([5], pp. 249,
251) that the Fourier transfor is a continuous isomorphism of S onto
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8 with the same being true of S’ under the definition

where çES and 
The space £9LP is the vector space of functions which are inde-

finitely differentiable and whose derivatives are elements of 

We say that converges to 0 in as 

if for every multi-inidex r.L of nonnega-

tive integers. The 1 C p  ~ , is the space of continuous lineari

functionals + 1 == 1, with continuity being defined as in the
p q 

.

case of S’. The space ~~1 is the dual of the space 113, which is a sub-
space which are functions which vanish at oo together
with each of its derivatives. Schwartz ([5], Theorem 15, p. 201) has
obtained a characterization of distributions in 192 P ; for it is

necessary and sufficient that U be a finite sum of derivatives of functions
in LP. For a complete discussion of C3)LP and the reader is referred
to [5], p. 199.

The support of a function g(x) is the closure in 1Rn of

} and is denoted by supp (g). Let U be an element
of one of the above distribution spaces. The support of U is the comple-
ment in 1Rn of the union of all open sets in which U = 0. U is equal to 0
in an open,set O i~f ~ U, for every cp in the appropriate function
space such that We denote the support of U by supp (U).
Let cp be an element of one of the above function spaces, and let f(x) be a
suitable function such that

exists and is finite. Then f is a regular distribution, and we note that
supp,(f) is the same as a function and a distribution.

Let f (z) be a function of n complex variables. We say that f(z) has
a distributional boundary value U in S’ if
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in 8’ as for Here by y --~ 0-+-, we mean y; -~0~-,
1 jn.

Section I II. Distributional Boundary Values in 

Mikusinski [6] has shown that if f (z) is analytic in the half plane
Re(z) &#x3E; o, e-klzlf(z) is bounded in Re(z) &#x3E; 0, and f(iy)eLP(1Rl), 1  p  2,
then f (z) can be represented as a Laplace type integral of a continuous
and bounded function with support in ( - k, ~ ) in the case of Ll or of

a function in =1, which vanishes a.e. outside ( -k, oo )
p q

in the case of LP, 1 C p ~ 2. We shall now extend this result to n-di-
mensions. This extension will be used in the proof of the main result
of this paper.

THEOREM. 1 Let f(z) be analytic in Im(z»O, continuous on

Im(z) = 0, and

for some constant C and n-tuple A of real numbers. Let f(x)ELP(1Rn),
1 :5p:52. Then f(z) can be represented for Irtx(z) &#x3E; 0 as an absolutely
convergent integral

If p=1, g(t) is continuous and bounded;

and g(t) is given by the absolutely convergent integral
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If 1 C _ 2 the function g(t) belongs to Lq, I+ I =1; g(t) vanishesP ~ f g( ? g 
p q

a.e. outside SA+; and g(t) is given as the limit in the mean with expo-
nent q,

PROOF. Let p be fixed, 1:5p::52. Let a be any n-tuple of real
numbers such that 1:5in. Consider a to be fixed for the pre-
sent. Let Be 1Rl, B&#x3E;0, and let it be large enough so that

for the fixed a. Consider the function

which exists. It is immediate that gatt) is continuous and bounded in

1R". We show that supp {ga) C SA+ . Let (~31, ..., On) be a fixed vector such
that 0, 1 _ j _ n. For a f ixed j construct a rectangle with vertices at
(-11, 0), (~, 0), (n, a;), and ( -n, in the i th. Coordinate plane of
~ n. Integrating the function

around the boundary of this rectangle and adding on the other n -1
integrals we obtain by Cauchy’s theorem for ~1 that



41

say.
With Bj fixed we estimate I, using (1).

where

and K is a constant such that

Hence from the inequality (8) we see that lim I, = 0. A similar argu-
n-+oo

ment can be used to show lim 13=0. Thus changing the order of
n-+oo

integration which clearly can be done, and letting 1’) on the left
hand side of (7) and in 12 we have from (6) that



42

Estimating (9) we have

where is as before and D is a constant such that

Assuming and letting oo in (10) we see that Since

j was arbitrary then as desired. From (9) we
have

where have replaced fi with y. From inequalities (1) and (5) we see
that as a function of x alone

Hence by the Plancherel theory and

Here we have used the fact that for Im(z) &#x3E; 0~ since

supp (ga.)ÇSA+ and g~(t) is bounded. Hence we have replaced the limit
in the L2 norm integral by an ordinary one. We now wish to let oc --~ 0.
This can be done as in [6], pp. 293-294, and the desired results can be
obtained; for the methods hold equally well for n-dimensions with
obvious modifications. This completes the proof.

We shall also need the following.
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for pe8.

PROOF. Let the space of functions having derivatives of
all order, such that on SA+ and supp ( oc) c SA + £ for 

Then independently of a(t) for Writting
( U, e-2~i~Z~ t~ ~ _ ~ IJ, we have that the integral in (11) is

a Riemann integral which can be approximated by Riemann sums. Con-
sider the Cartesian product on n intervals [ - Y, Y] @...@ [ - Y, Y].
Divide the coordinate axes f rom - Y to Y into partitions by planes
which are parallel to the coordinate planes. Let be the volumn
and ..., xni) be a point of the j th. small parallelpiped formed by
the above division. Let 1R denote the appropriate mesh. Then.

..., 

It can be shown without difficulty that the limit in the right hand side
of the last equality in (12) converges in 8 to

Thus by (12) and the fact that Ue8’ we have (11), and the proof is

complete.
We shall now give the main result of this paper, which gives con-

ditions under which the convergence is proved instead of assumed as
was the case in the result of Beltrami and Wohlers.
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THEOREM. 2. Let f (z) be analytic in Im(z) &#x3E; 0, continuous on

Im(z) = 0, and let f(x)eLP for some p, 1  p  2. Let

for some constants C, N, and n-tuple A of real numbers. Then there

exists an element p=l !+!=1, if lp2 such
q p

that p=1 or 1p2. Further-
more

and f(z) converges in S’ to an element V E S’ as Im(z) --~ 0 + where V
is the product of a polynomial and L’- function if p = 2.

PROOF. Let p be fixed 1  p  2. Let Be ’IR1 and B &#x3E; o. Let B be

large enough so that

Let R be a constant which is large enough so that N20132R~2013~2013E,e&#x3E;0.
Then f (z) (B+(z, satisfies the conditions of Theorem 1. Thus there
exists a function g( t), which belongs to Lq if 1  p  2 or is continuous
and bounded if p=1 and is given by (4) or (3) respectively, such that

Let A be a differential operator which is defined by

Then by the characterization theorem of Schwartz ([5], Theorem 15,
p. 201) the distribution U=(B-I1)Rg is an element of 0’ - if p=l
or if 1 C p _ 2. Also supp (U) - supp (g). Let a(t) be defined as
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in the proof of Lemma 1. Then

The integration here is over SA+ since at worst supp (g) 9 SA + a.e., and

integration over sets of measure zero gives no information. Thus from
(14) and (15) we see that

It remains to show the boundary value results. Let pe 8. Since 
or and both space are in S’ then by Lemma 1 we have that

It is easy to show that ~ in S as Im(z) ~ 0 +. Thus
by (16) and the fact that see that

in S’ as Im(z) -~ 0-~-- where V = U and V E S’. Again let pe8. Then for
p = 2 we have

Thus V=(B+(x, Since geL, then The proof is complete.



46

If we knew that g existed for E Lq, 1 -f- 1 =1, l~p2, theng g 
p q 

p

the calculation of the element V in the last theorem would have been

valid for However g does not necessarily exist for g e Lq , q &#x3E; 2.
In a future paper we shall show that under the assumption of the
existence of the Fourier transform of q &#x3E;_ 1, results may be ob-
tained for 3)~, q &#x3E;_ 1.

Lions ([5], Proposition 8, p. 397, [7]) has obtained results similar
to Theorem 2 for the space S’ but without consideration of the boundary
value problem. We have shown that under the assumption of integrabili-
ty of f(x) on the boundary of the octant one can make the stronger
statement that the distribution U, whose existence is proved, is in 

1p2, 1 + 1 = 1, which are proper subspaces of 8’. We
p q 

note that if the integrability on the boundary had not been assumed
and if the boundedness condition of f~(z) had been assume valid on the
boundary then the distribution U can be shown to be in ~f 00 and

~L q , 1 -~- 1 =1, 1 C _ 2 for all q. To see this we need only look at
p q 

p q Y

f (z)(B-~- ( z, z ))-R. Then for this product belongs to LP for

any p. Applying Theorem 1 and the noting the proof of Theorem 2 this
result is obtained.

In [4] we have considered function f (z) of n complex variables
which are analytic in and satisfy

in any octant Ô=(Ô1, ..., 6n), 6;&#x3E;0 for 1 _ j _ n, where
N is a constant, Cs is a constant which may depend on 6, and A is as
before.Denote these functions by GA+. Similarly we could define the set
GA- of functions analytic in and satisfying the above inequali-
ty in any octant We shall obtain a boundary value result
concerning GA+ .

Let 1 _ p _ 2. Then by the characterization theorem of

Schwartz, where ga. E LP for all a under consideration.
|a|m

There exists a Ve8’ such that U = V. Let Then
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Hence in S’, and we note that supp (~-lg0153)ae

=supp(V) f or each a. Since l~p~2, then 

1   2, 1 -f- 1 =1 or ha is continuous and bounded if p=1. By
p q

here we mean

if p =1 and

if 1  p  2. Of course the reciprocal relation ha = gQ holds only if p = 2.
In [4] we have proved that if f (z) E GA+ and converges in S’ to an

element U, then Ue8’ and there exists an element Ve8’ having support
in SA+ such that U = V and f(z)=(V, e-2~i~ Z~ t ~ ~, Im(z) &#x3E; o. As an im-
mediate consequence of this result and the above calculation we have the

following.

THEOREM 3. Let f(z)eGA+ and let 1  p  2, in

the S’ topology. Then there is an element Ve8’ having support in SA+
such that U=fl and f(z)=(V, e-2niz,t&#x3E;. Furthermore V = E

1 1 
where htlweLq, - + - =1, if 1  p _ 2 or h0153 is continuous and bounded

p q

if p =1; and supp (ha) c SA+ for each a.
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Section IV. Converse Results.

In this section we shall present converse results to those of

Section III. The following is a converse to Theorem 2.

THEOREM 4. Let 1 ::;p::;2, and supp Then there

is a function f(z) which is analytic in 1m (z»O, satisf ies

and in the topology of S’. V = ~ tohp, where 
|B|m

1 -~- 1 =1, if 1 C p:5 2, and hp is continuous and bounded i fp =1.
p q

PROOF. Let a(t) be as defined in Lemma 1. Consider the function

This function is analytic in since it is analytic in each variable
separately. To show the boundedness condition we use the Schwartz
characterization theorem and obtain U = ~ where if

|B|m

We note that supp (gri)ÇSA+ for each ~3. Using Leibnitz’s rule
we have

For te 1R" such that for some j, 1 ; _ n, we have
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where

Hence

where Q is a constant and A is an n-tuple of real numbers. For

we have

where

Letting
we get from (18) and (19) that

Since both sums on the right are finite then there exists a constant M
and a nonnegative integer N such that

Thus (17) is obtained with C= QM. It follows as in the proof of Theo-
rem 2 that f {z) converges in the 8’ topology to an element V = U E S’
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as ~ 0 -I- . Let cp E S. Then

LP, 1 C  2, then Lq, - + - == 1.g p g 
p q

If then h~ is continuous and bounded. The proof is complete.
We note that Schwartz ~([5], Pl. 256) first recognized the form of

the Fourier transform of an element in ~L p , 1  p  2.
We now present another converse result.

THEOREM 5. Let ’l!ELP, 1  p  2, and 
|B|m

c SA+. Then U is the Fourier transform of an element in 1  p  2;
and there exists a function f(z) wich is analytic in Im(z) &#x3E; o, satisfies

and f (z) ~ U in 8’ as Im(z) --~ 0+.

We shall present a sketch of the proof and shall leave the details
to the interested reader. By a calculation similar to that of Theorem 4
we obtain U=5;[ y_ Defining the function

|B|m

the boundedness and convergence results follow as in Theorems 4 and 2,
respectively.
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Section V. Characterization Theorem 

H6rmander ([8], p. 4) has defined the space ~’ to be the space
of all linear forms U on 0 such that to every compact set K C Rn there
exist constants C and K such that

With this definition one can prove as a theorem ([8], p. 5, Theorem

1.3.) the usual definition of element of i9’. The reverse can also be
shown. That is if one is given the usual definition of i9’ that 
if U is a continuous linear functional on i9, then (20) can be shown
to hold for every pei§. The inequality (20) thus serves as a characte-
rization of elements of ~’.

Throughout this paper we have used the characterization theorem
of Schwartz for the spaces of distributions 2)~ p. We shall now give
another characterization theorem for D’Lp similar to that described above
for i9’.

THEOREM. 6 A linear functional U on belongs to q)’L P

1 -f- 1 =1, 1  p:5 00, if and only if there exist constants C and m de--+-=1, p- f and y there exit constants C and m de-
p q

pending only on U such that

f or every 

PROOF. The sufficiency is an immediate consequence of the de-
finition of convergence in To prove the necessity suppose the ine-
quality does not hold for any C and m. Then for every X we can find a

such that

Then 11 Dllpx 00 for if it were (22) would be contradicted. Put
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Then the function

is an element of i9L q such that 11 Ih.= 1/1 and

for every X. For any n such we have

From (24) we conclude that Wx 2013~0 in as X -+ 00. Then since

by assumption, we must have (U, ~x)2013&#x3E;0 as which
contradicts (23) Hence (21) must hold, and the proof is complete.

A similar characterization holds for ~~1 which is the dual space
of c%, the subspace of 2)i.- whose elements converge to zero at ~ along
with each of their derivatives. As an application of Theorem 6 one can
use it to obtain the boundedness condition (17) of the function f(z) in
Theorem 4.
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