RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

FRANCO NAPOLITANI

Modularità e distributività nell'insieme dei sottogruppi subnormali

Rendiconti del Seminario Matematico della Università di Padova, tome 43 (1970), p. 215-220

http://www.numdam.org/item?id=RSMUP 1970 43 215 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1970, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MODULARITÀ E DISTRIBUTIVITÀ NELL'INSIEME DEI SOTTOGRUPPI SUBNORMALI

Franco Napolitani *)

Un sottogruppo H di un gruppo G si dice subnormale in G, $H \triangleleft \triangleleft G$, se H può essere connesso con G per mezzo di una catena normale finita. Una sezione di un gruppo G è un gruppo H/K, dove $K \leq H \leq G$ e $K \triangleleft H$; una sezione dicesi subnormale se $H \triangleleft \triangleleft G$. Un gruppo modulare o M-gruppo è un gruppo avente il reticolo dei sottogruppi modulare. Per gruppi localmente nilpotenti questa condizione equivale alla permutabilità di ogni coppia di sottogruppi (per definizione due sottogruppi H e K di un gruppo si dicono permutabili se $HK = KH = \langle H, K \rangle$). In questa nota si considera l'insieme sn(G) dei sottogruppi subnormali di un gruppo G e si cercano condizioni affinchè sn(G) risulti un reticolo modulare oppure distributivo. I risultati trovati sono i seguenti:

TEOREMA A. In un gruppo G l'insieme sn(G) dei sottogruppi subnormali è un reticolo modulare se e solo se ogni sezione subnormale di G avente ordine p^3 , p primo, è modulare 1).

Il teorema A estende ad un gruppo qualunque un teorema dato da Zappa [12] per i gruppi finiti. Per gli Mç, gruppi 2) una dimostrazione (non pubblicata) molto semplice del precedente teorema è stata trovata da Zacher.

^{*)} Lavoro eseguito nell'ambito dei gruppi di ricerca del C.N.R. Indirizzo dell'A.: Sem. Mat. Univ., Padoya.

 $^{^{1}}$) I soli gruppi non modulari di ordine p^{3} sono il gruppo diedrale e i gruppi extraspeciali di esponente p.

²⁾ Gruppi a condizione minimale per i sottogruppi subnormali.

TEOREMA B. L'insieme sn(G) dei sottogruppi subnormali di un gruppo G è un reticolo distributivo se e solo se ogni sezione subnormale di G di ordine p^2 , p primo, è ciclica.

Anche il teorema B deve già ritenersi noto per alcune classi di gruppi: gruppi risolubili finiti (Zappa [11]), gruppi finiti (Zacher [10]), gruppi con catene normali finite (Tamaschke [9]), T-gruppi (Curzio e Permutti [3]), \mathfrak{M}_{s}^{v} -gruppi [5].

1. Notazioni e risultati preliminari.

Se H e K sono sottogruppi di un gruppo G, denotiamo con H^K il sottogruppo generato da tutti i coniugati H^k ($k \in K$) di H mediante elementi di K. La serie normale di chiusura

$$G=H_0 \triangleright H \triangleright \dots \triangleright H_n \triangleright \dots$$

di H in G viene definita ponendo $H_0=G$ e $H_{i+1}=H^{H_i}$ per $i\geq 0$. Il sottogruppo H_n si chiama l'*n-sima chiusura normale* di H in G. Si scrive $H \triangleleft^n G$ per esprimere che $H=H_n$. Il sottogruppo H è subnormale in G se e solo se $H=H_n$ per un certo n ed il più piccolo n per cui ciò accade si chiama l'*indice di subnormalità* di H in G e si denota con s(G:H). Useremo infine la notazione γHK^n ($n\geq 1$) per il sottogruppo [H,K,K] e $G^{(m)}$ per l'M-simo termine della serie derivata di un gruppo G.

LEMMA 1. Siano H e K sottogruppi subnormali di G e sia $J = \langle H, K \rangle$. Se H e K sono permutabili, J è subnormale in G.

Una dimostrazione di questo lemma si trova in [6].

Se H e K sono sottogruppi di G, il sottogruppo generato da tutti i sottogruppi di H che sono permutabili con K è un sottogruppo permutabile con K, e quindi è il più grande sottogruppo di H che ha questa proprietà.

Roseblade e Stonehewer [8] chiamano questo sottogruppo il permutante $P_H(K)$ di K in H. In [8] è dimostrato il seguente:

LEMMA 2. Se $H \triangleleft \triangleleft G$ e $K \triangleleft \triangleleft G$, allora $P_H(K) \triangleleft \triangleleft G$.

LEMMA 3. Sia G un gruppo localmente nilpotente. Se ogni sezione di G d'ordine p^3 , p primo, è modulare, anche G è modulare.

DIM. Sia H un sottogruppo finitamente generato di G. Indicata con T la parte di torsione di H, si supponga H/T abeliano. Allora poichè H è finitamente generato, il suo centro Z(H) ha indice finito in H. Siano A e B due sottogruppi ciclici di H; poichè essi hanno ordine finito rispetto a Z(H), la sezione $\langle A, B \rangle/(A \cap Z(H))(B \cap Z(H))$ è finita. Iwasawa ha provato che un p-gruppo finito che ha tutte le sezioni di ordine p^3 modulari è un M-gruppo. Dunque, per la nilpotenza di H, $\langle A, B \rangle/(A \cap Z(H))(B \cap Z(H))$ è un M-gruppo, ed A e B, permutabili modulo $(A \cap Z(H))(B \cap Z(H))$, sono essi stessi permutabili. Pertanto se H/T è abeliano per ogni sottogruppo finitamente generato H di G, il gruppo G è un M-gruppo.

Ma questa condizione, nelle nostre ipotesi, è sempre verificata. Infatti posto H/T=N, esiste in N un sottogruppo normale abeliano M con N/M libero da torsione e massimo per queste condizioni. Sia $F \triangleleft N$ tale che F/M sia ciclico e che, se $N \neq F$, N/F sia libero da torsione. Detto M^p il sottogruppo di M generato dalle p-esime potenze dei suoi elementi, F/M^p è un M-gruppo per quanto detto sopra, e quindi, poichè il suo sottogruppo di torsione ha esponente p, è abeliano. Allora anche F è abeliano in quanto $\bigcap_{p \in \Pi} M^p = 1$. Ma M è massimo, onde F = N.

LEMMA 4. Se ogni sezione subnormale di ordine p^2 , p primo, di un gruppo G è ciclica, il reticolo, n(G), dei sottogruppi normali di G è distributivo.

DIM. Il reticolo n(G) è modulare. Allora, se non fosse distributivo, G conterrebbe tre sottogruppi normali distinti A, B, C tali che AB = AC = BC e $A \cap B = A \cap C = B \cap C$ [2, Th. 2, pag. 134]. Da $AB/A \cap B = A/A \cap B \times B/A \cap B = A/A \cap B \times C/A \cap B = B/A \cap B \times C/A \cap B$ segue che $A/A \cap B$ è abeliano ed isomorfo a $B/A \cap B$. Esistono pertanto quattro sottogruppi A_1 , A_2 , B_1 , B_2 tali che $A \ge A_1 > A_2 \ge A \cap B$, $B \ge B_1 > B_2 \ge A \cap B$ ed $A_1/A_2 = B_1/B_2 = B_1/B_2 = B_1/B_2 = B_1/A_2B_2 = B_1/A_2B$

2. Dimostrazioni dei teoremi $A \in B$.

DIM. TEOREMA A. Poichè la necessità è evidente dimostriamo la sufficienza. Sia G un gruppo in cui ogni sezione subnormale di ordine p^3 , p primo, è modulare. Indicati con H e K due sottogruppi subnormali di G, mostriamo dapprima che:

1) se $H \not \leqq K$, il permutante $P_H(K)$ di K in H contiene propriamente $H \cap K$.

Sia $K \triangleleft^n G$; se n=1, K è normale in G ed ovviamente $P_H(K)=H$ è più grande di $H \cap K$. Supposto $K \triangleleft^n G$ con n>1, proviamo la 1) per induzione su n. Se $K_1 \cap H > H \cap K$, essendo $K \triangleleft^{n-1} K_1$ il sottogruppo $P_{H \cap K_1}(K) > H \cap K$ e quindi anche $P_H(K) > H \cap K$. Sia $K_1 \cap H = H \cap K$. Posto $P = P_H(K_{n-1})$, per l'ipotesi di induzione $P > H \cap K$. Allora $K_{n-1} \triangleleft PK_{n-1}$, perchè altrimenti $H \cap K_1 > H \cap K$; e da ciò, per un risultato di Roseblade (Corollary, pag. 368 di [7]), segue $(K^P)^{(m)} \leq K(\gamma K P^m)$ per ogni intero positivo m. Poichè P è subnormale in G (lemma 2), esiste un intero positivo r per cui $\gamma K P^r \leq P$. D'altra parte $\gamma K P^r \leq K^P$, e pertanto $(K^P)^{(r)} \leq K$. Indicato con Q il permutante di P in K, Q contiene $(K^P)^{(r)}$, in quanto $(K^P)^{(r)}$, quale sottogruppo caratteristico di K^P , è normale in $\langle K, P \rangle = PK^P$. Allora, se $Q \neq K$, dalla risolubilità di $K/(K^P)^{(r)}$ e dalla subnormalità di Q segue che esiste in K un sottogruppo $F \triangleleft \triangleleft G$ che normalizza Q e tale che F/Q sia ciclico.

Si osservi adesso che se si particolarizza H, supponendo $H \cap K \triangleleft H$ e $H/H \cap K$ ciclico, PQ/Q risulta ciclico e quindi $\langle PQ, F \rangle/Q$, essendo generato da due sottogruppi subnormali ciclici, è, a norma di un risultato di Baer [1], nilpotente. L'essere $\langle PQ, F \rangle/Q$ a condizione massimale per i sottogruppi implica $\langle PQ, F \rangle \triangleleft \triangleleft G$, onde, per il lemma 3, $\langle PQ, F \rangle/Q$ è modulare. PQ ed F sono allora permutabili e perciò tali sono anche P ed F. Ciò è in contraddizione con la definizione di Q e quindi Q=K. Dunque se H e K sono sottogruppi subnormali di G tali che $H \cap K \triangleleft H$ e $H/H \cap K$ sia ciclico la 1) è vera. Ma allora, poichè, ritornando al caso in cui H è qualunque PQ ed F sono tali che $PQ \cap F=Q$ ed F/Q è ciclico, il permutare di PQ in F è, per quanto visto sopra, più grande di Q e infine tale risulta anche $P_F(P)$. Pertanto anche adesso K=Q e la 1) è provata.

Dalla 1) discende subito che H e K sono permutabili. Infatti, se

 $P_H(K)$ fosse propriamente contenuto in H, dalla $KP_H(K) \cap H = P_H(K)$ discenderebbe che il permutante di $KP_H(K)$ in H è più grande di $P_H(K)$, e ciò porterebbe ad una contraddizione.

I sottogruppi subnormali di G sono dunque a due a due permutabili e questo fatto, tenendo conto del lemma 1, assicura che sn(G) è un reticolo modulare.

DIM. DEL TEOREMA B. Sufficienza. Sia G un gruppo con sezioni subnormali di ordine p^2 , p numero primo, cicliche. Per il teorema A sn(G) è un reticolo modulare. Per provare che sn(G) è distributivo utilizziamo la ben nota proprietà [2] che un reticolo L è distributivo se e solo se non contiene elementi distinti a, b, c tali che $a \cup b = a \cup c$, $a \cap b = a \cap c$. Allora, se, per assurdo, si suppone sn(G) non distributivo G contiene tre sottogruppi subnormali distinti H, K, Y tali che

(1)
$$HK=HY$$
, $H \cap K=H \cap Y$

e, posto J=HK, s(H, K, Y)=s(J:H)+s(J:K)+s(J:Y) sia minimo rispetto a queste proprietà. Si ha $H(K\cap H^J)=(HK)\cap H^J=H^J=(HY)\cap H^J=H(Y\cap H^J)$, per cui, essendo anche $H\cap (K\cap H^J)=H\cap (Y\cap H^J)$, la minimalità di s(H, K, Y) comporta $K\cap H^J=Y\cap H^J$ e quindi $H=H^J\lhd J$. Posto $T=(H\cap K)^J$, sia $K^*=TK$, $Y^*=TY$. È $K^*\neq Y^*$, altrimenti $K^J=Y^J$ e quindi $(H\cap K^J)K=(H\cap K^J)Y$, $(H\cap K^J)\cap K=(H\cap K^J)\cap Y$, con $s((H\cap K^J), K, Y))< s(H, K, Y)$. Si ha poi $s(J:K^*)\leq s(J:K)$, $s(J:Y^*)\leq s(J:Y)$ ed inoltre $H\cap K^*=H\cap Y^*$, $HK^*=HY^*$. Si considerino i tre sottogruppi H, K^* e Y^* e sia $s(J:K^*)\leq s(J:Y^*)$. Se $s(J:K^*)>1$, esiste un $h\in H$ tale che $h^{-1}K^*h\neq K^*$. Segue da ciò: $HK^*=H(h^{-1}K^*h)$ ed $H\cap K^*=H\cap (h^{-1}K^*h)$, con $s(H,K^*,h^{-1}K^*h)\leq s(H,K^*,Y^*)$; e, applicando la relazione di modularità, si ottiene che $H\cap K^J$, K^* , $h^{-1}K^*h$ verificano delle relazioni del tipo (1) con $s(H\cap K^J,K^*,h^{-1}K^*h)< s(H,K^*,Y^*)$, contro la minimalità di s(H,K,Y). Pertanto $s(J:K^*)=1$, cioè K^* è normale in J e quindi tale è anche K.

Si ha così: $H \triangleleft J$, $K \triangleleft J$ $Y \triangleleft^n J$.

Posto adesso $N = Y^{J} \cap H$, sia $\overline{K} = NK$, $\overline{Y} = NY$. Si ha: $\overline{Y} = (Y^{J} \cap H)Y = = (YH) \cap Y^{J} = Y^{J}$ e, poichè $H\overline{Y} = H\overline{K}$, $H \cap \overline{Y} = H \cap \overline{K}$ con $\overline{Y} \neq \overline{K}$, è n = 1 e pertanto anche $Y \triangleleft J$. Ma ciò è assurdo, poichè, per il lemma 4, n(J) è distributivo.

La necessità è evidente.

BIBLIOGRAFIA

- [1] BAER R.: Nilgruppen, Math. Z. 62 (1955), 402-437.
- [2] BIRKHOFF G.: Lattice theory, A.M.S., 1948.
- [3] Curzio M., Permutti R.: Distributività nel reticolo dei sottogruppi normali di un T-gruppo, Le Matematiche, vol. XX, fasc. I (1965), 46-63.
- [4] IWASAWA K.: Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. of Univ. Tokyo, 4-3 (1941), 171-199.
- [5] NAPOLITANI F.: Proprietà reticolari dell'insieme dei sottogruppi subnormali, Rend. Sem. Mat. Padova, vol. XXXVIII (1967), 293-304.
- [6] Robinson D. S.: Joins of subnormal subgroups, Ill. J. Math. 9 (1965), 144-168.
- [7] ROSEBLADE J. E.: The permutability of orthogonal subnormal subgroups, Math. Z. 90 (1965), 365-372.
- [8] ROSEBLADE J. E., STONEHEWER S.: Subjunctive and locally coalescent classes of groups, J. Algebra 8 (1968), 423-435.
- [9] TAMASCHKE O.: Die Kongruenzrelationen in Verband der zuganglichen Subnormalteiler, Math. Z. 75 (1961), 115-126.
- [10] ZACHER G.: Sui gruppi finiti per cui il reticolo dei sottogruppi di composizione è distributivo, Rend. Sem. Mat. Padova, vol. XXVII (1957), 75-79.
- [11] ZAPPA G.: Sui gruppi finiti risolubili per cui il reticolo dei sottogruppi di composizione è distributivo, Boll. U.M.I., XI (1956), 150-157.
- [12] ZAPPA G.: Sui gruppi finiti per cui il reticolo dei sottogruppi di composizione è modulare, Boll. U.M.I., XI (1956), 315-318.

Manoscritto pervenuto in redazione il 20 luglio 1969.