RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

G. DE MARCO

Funzioni reali continue e semicontinue

Rendiconti del Seminario Matematico della Università di Padova, tome 43 (1970), p. 203-208

http://www.numdam.org/item?id=RSMUP_1970__43__203_0

© Rendiconti del Seminario Matematico della Università di Padova, 1970, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FUNZIONI REALI CONTINUE E SEMICONTINUE

G. DE MARCO*)

1. Sia X un insieme non vuoto, e sia \mathbb{R}^X il corpo dei numeri reali. Diciamo f-sottoalgebre di \mathbb{R}^X quelle sottoalgebre di \mathbb{R}^X che sono algebre di tutte le funzioni continue di X in \mathbb{R} per una topologia su X.

Detto F un sottoinsieme non vuoto di \mathbb{R}^x , viene in questa nota dato un procedimento che permette di costruire, con sole operazioni algebriche e reticolari su elementi di \mathbb{R}^x , la minima f-sottoalgebra di \mathbb{R}^x che contiene F.

S. Ciampa (cfr. [2]) ha considerato una questione analoga, determinando le f-sottoalgebre di funzioni limitate di \mathbf{R}^{x} . Qui viene ripresa la condizione da lui data perchè una sottoalgebra di \mathbf{R}^{x} sia una f-sottoalgebra di funzioni limitate, e vengono in più determinate le f-sottoalgebre di funzioni non limitate.

Viene mostrato come il procedimento seguito conduca, con lievi modifiche, anche alla determinazione dei sottoinsiemi di \mathbb{R}^X che sono totalità delle funzioni semicontinue inferiormente per una topologia su X. Anche questa condizione è stata considerata, sempre in [2], da S. Ciampa.

Ringrazio S. Ciampa che mi ha suggerito la presente ricerca.

Le notazioni e la terminologia sono essenzialmente quelle di [3] tranne che per gli spazi completamente regolari, che possono qui non essere di Hausdorff.

^{*)} Lavoro eseguito nell'ambito dei gruppi di ricerca del C.N.R. Indirizzo dell'A.: Seminario Matematico, Università, Padova.

2. Sia dunque X un insieme non vuoto, e sia $F \subseteq \mathbb{R}^X$. Se w = w(F) è la topologia debole di F, cioè la meno fine topologia su X per cui le funzioni di F sono continue, l'algebra C = C(X, w) delle funzioni w-continue è ovviamente la minima f-sottoalgebra di \mathbb{R}^X contenente F.

Una prebase di chiusi per w è costituita dagli insiemi

$$f^{-1}[(-\infty, r]]$$
 $f \in F, r \in \mathbb{R}$

Si ha

$$f^{-1}[(-\infty, r]] = Z[(f-r) \lor 0]$$

$$f^{-1}[[r, +\infty)] = Z[(f-r) \land 0]$$

Sia B la minima sottoalgebra con unità di \mathbb{R}^X , che sia un sottoreticolo di \mathbb{R}^X , e contenga F. Sia A la sottoalgebra delle funzioni limitate di B.

Poichè gli zeri delle funzioni di B sono gli zeri delle funzioni di A, la famiglia di insiemi $\{Z(u): u \in A\}$ è una base di chiusi per w.

PROPOSIZIONE 1. Sia $f \in \mathbb{R}^X$ inferiormente limitata, w-semicontinua inferiormente. Essa è inviluppo delle funzioni di A che non superano f.

DIM. Supponiamo f non negativo (in caso contrario basta considerare la funzione f-n, con $n=\inf\{f(x):x\in X\}$).

Se per $x \in X$ si ha f(x) > 0, sia $r \in \mathbb{R}$ tale che $0 \le r < f(x)$.

Per la semicontinuità inferiore, esiste un intorno aperto U di x tale che per ogni $y \in U$, f(y) > r. Essendo gli Z(u), $u \in A$, una base di chiusi, esiste $u \in A$ tale che $Z(u) \supseteq X - U$ e $x \notin Z(u)$. Posto $\xi = u(x)$, la funzione

$$g=r(((\xi^{-1}u)\vee 0)\wedge 1)$$

è una funzione di A tale che g(x)=r, $0 \le g \le f$; infatti, se $y \notin U$, $g(y)=0 \le f(y)$, se $y \in U$, $g(y) \le r < f(y)$.

PROPOSIZIONE 2. Sia $f \in R^X$ superiormente limitata, w-semicontinua superiormente. Essa è inviluppo inferiore delle funzioni $v \in A$ per cui $v \ge f$.

DIM. -f è inferiormente limitata, w-semicontinua inferiormente. Per la prop. 1

$$-f = \bigvee \{u \in A : u \leq -f\}$$

quindi

$$f = \bigwedge \{ v \in A : v \ge f \}.$$

- 3. Diciamo L-sezione, o sezione reticolare di A una coppia ordinata (Φ, Ψ) di sottoinsiemi con vuoti di A tali che
 - i) $\nabla \Phi$, $\wedge \Psi$ esistono in \mathbb{R}^X , e $\nabla \Phi = \wedge \Psi$
- ii) se $\varphi \in \Phi$, $\varphi' \in A$, $\varphi' \leq \varphi$ allora $\varphi' \in \Phi$ e se $\psi \in \Psi$, $\psi' \in A$, $\psi' \geq \psi$ allora $\psi' \in \Psi$.

La funzione $f = \bigvee \Phi = \bigwedge \Psi$ la diciamo elemento separatore della *L*-sezione. Indichiamo con C^* la sottoalgebra delle funzioni limitate di C = C(X, w).

TEOREMA 1. C^* è l'insieme degli elementi separatori delle L-sezioni di A.

DIM. Se $f \in C^*$, posto $\Phi = \{ \varphi \in A : \varphi \leq f \}$, $\Psi = \{ \psi \in A : \psi \geq f \}$, (Φ, Ψ) è una *L*-sezione di *A* di cui *f* è elemento separatore, per le Propp. 1, 2.

Sia poi f elemento separatore di una L-sezione (Φ, Ψ) di A; per ogni $\varphi \in \Phi$ e ogni $\psi \in \Psi$ si ha $\varphi \leq f \leq \psi$, ed essendo φ e ψ limitate, tale è anche f. Inoltre f è inferiormente semicontinua, essendo $f = \bigvee \Phi$, e superiormente semicontinua in quanto $f = \bigwedge \Psi$.

Noto C^* , C si costruisce nel modo seguente:

Diciamo t-successione, o successione di troncamenti di C^* una successione $(u_n)_{n\in\mathbb{N}}$ di elementi non negativi di C^* tale che

- I) $\bigvee \{u_n : n \in N\}$ esiste in \mathbb{R}^x
- II) $u_{n+1} \wedge n = u_n$ per ogni $n \in \mathbb{N}$.

Sia C_+ la totalità delle funzioni non negative di C.

206 G. De Marco

Teorema 2. C_+ è l'insieme degli inviluppi superiori delle t-successioni di C^* .

DIM. Se $f \in C_+$, si ponga $u_n = f \wedge n$. La successione $(u_n)_{n \in N}$ è una t-successione di C^* tale che $f = \bigvee \{u_n : n \in N\}$.

Sia poi f inviluppo superiore di una t-successione di C, $f = \{u_n : n \in N\}$. Allora $u_n = f \land n$, e posto $A_n = \{x \in X : f(x) < n\} = \{x \in X : u_n(x) < n\}$, gli A_n sono aperti, $\bigcup \{A_n : n \in N\} = X$, e $f \mid A_n = u_n \mid A_n$ è continua per ogni n. Quindi f è continua.

La conoscenza di C_+ porge C, potendosi per ogni $f \in C$ scrivere

$$f = f^+ - f^-$$

dove $f^+ = f \lor 0$, $f^- = -(f \land 0)$.

4. Mostriamo ora come il procedimento del paragrafo precedente conduca alla determinazione dei sottoreticoli I di \mathbb{R}^X che sono reticoli di tutte le funzioni semicontinue inferiormente di X in R per una topologia su X. Per semplicità di linguaggio diremo I-reticoli questi sottoreticoli. Dato un sottoinsieme, F, di \mathbb{R}^X costituiremo il minimo I-sottoreticolo di \mathbb{R}^X contenente F.

Sia w_i la meno fine topologia su X che rende semicontinue inferiormente le funzioni di F.

Una prebase di chiusi per w_i è costituita dagli insiemi

$$f^{-1}[(-\infty, r]] = Z[(f-r) \vee 0]$$
 $f \in F$ $r \in R$

Sia G il sottoreticolo di \mathbf{R}^{X} generato dalle costanti non negative e dalle funzioni della forma

$$s \cdot (f-r) \vee 0$$
 $f \in F$; $r \in \mathbb{R}$; $s \in \mathbb{R}_+$

 $(\mathbf{R}_{+}$ denota l'insieme dei numeri reali non negativi).

Allora G contiene solo funzioni non negative, ed essendo per f, $g \in G$

$$Z(f) \cup Z(g) = Z(f \wedge g)$$

gli insiemi $\{Z(u): u \in G\}$ costituiscono una base di chiusi per w_i . Poniamo $A' = \mathbf{R} + G$ dove $\mathbf{R} + G$ indica la totalità delle funzioni della forma r+g, $r \in \mathbf{R}$, $g \in G$.

PROPOSIZIONE 1'. Ogni $f \in \mathbb{R}^X$ w_i -semicontinua inferiormente, e inferiormente limitata, è inviluppo superiore delle funzioni $u \in A'$ tali che $u \leq f$.

La proposizione 1' si dimostra in modo identico alla Prop. 1 dimostrando dapprima che ogni funzione w_i -semicontinua inferiormente, e non negativa, è inviluppo superiore delle funzioni di G che sono non maggiori di essa. In questa dimostrazione si sfrutta la proprietà di chiusura di G rispetto alla moltiplicazione di suoi elementi per costanti reali non negative. L'essere poi $A' = \mathbf{R} + G$ permette di « traslare » convenientemente le operazioni fatte anche a funzioni non positive.

Diciamo ora L-segmento di A' ogni sottoinsieme non vuoto Φ di A' tale che

- i)' $\nabla \Phi$ esiste in \mathbf{R}^{X}
- ii)' se $\varphi \in \Phi$, $\varphi' \in A'$, $\varphi' \leq \Phi$ allora $\varphi' \in \Phi$.

Diciamo $I^* = I^*(X, w_i)$ la totalità delle funzioni w_i -semicontinue inferiormente, inferiormente limitate.

Teorema 1'. I^* è l'insieme degli inviluppi superiori degli L-segmenti di A'.

La dimostrazione è evidente.

Noto I^* , $I = I(X, w_i)$ reticolo di tutte le funzioni w_i -semicontinue inferiormente si costituisce con la medesima tecnica usata per costruire C_+ a partire da C.

Diciamo t-successione di I ogni successione $(u_n)_{n\in\mathbb{N}}$ di funzioni di I tali che

- I)' $\wedge \{u_n : n \in N\}$ esiste in \mathbb{R}^X
- II)' $u_{n+1} \wedge (-n) = u_n$ per ogni $n \in \mathbb{N}$.
- 5. I risultati trovati si riassumono nei seguenti enunciati.

Sia C una sottoalgebra con unità di RX, C* la sua sottoalgebra delle

208 G. De Marco

funzioni limitate, C sia sottoreticolo di \mathbb{R}^{X} . Allora

- a) C^* è una f-sottoalgebra di funzioni limitate se e solo se contiene gli elementi separatori delle sue L-sezioni;
- b) C è una f-sottoalgebra se e solo se C^* è una f-sottoalgebra di funzioni limitate e C contiene l'insieme degli inviluppi superiori delle t-successioni di C^* :

Sia I un sottoreticolo di \mathbb{R}^X tale che $I+I\subseteq I$ e $\mathbb{R}_+I\subseteq I$; I contenga le costanti. Sia I^* il sottoreticolo delle funzioni inferiormente limitate di I. Allora

- a)' I* è un I-reticolo di funzioni inferiormente limitate se e solo se contiene gli inviluppi superiori dei suoi L-segmenti;
- b)' I è un I-reticolo se e solo se I^* è un I reticolo di funzioni inferiormente limitate e I contiene gli inviluppi inferiori delle t-successioni di I^* .

BIBLIOGRAFIA

- [1] CIAMPA, S.: Topologie e funzioni reali semicontinue, Annali Scuola Norm. Sup. di Pisa, XXII, 1968.
- [2] CIAMPA, S.: Full Rings of continuous real functions, Rend. Sem. Mat. Università di Padova, XL, 1968.
- [3] GILLMANN, L. and Jerison, M.: Rings of continuous functions, Van Nostrand, 1960.

Manoscritto pervenuto in redazione il 3 luglio 1969.