RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ADALBERTO ORSATTI

Una proprietà caratteristica dei gruppi abeliani torsionalmente completi

Rendiconti del Seminario Matematico della Università di Padova, tome 42 (1969), p. 325-328

http://www.numdam.org/item?id=RSMUP 1969 42 325 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1969, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

UNA PROPRIETÀ CARATTERISTICA DEI GRUPPI ABELIANI TORSIONALMENTE COMPLETI

Adalberto Orsatti *)

Introduzione.

Tutti i gruppi considerati in questa nota sono abeliani e la notazione è quella additiva.

Sia G un gruppo e denotiamo con G_{∞} il sottogruppo degli elementi di altezza infinita, cioè l'intersezione dei sottogruppi nG con n intero positivo. È chiaro che G_{∞} contiene il sottogruppo divisibile massimale di G ed è ben noto che — se G non è libero da torsione — questa inclusione è in generale propria. Anzi, utilizzando una argomentazione di Rangaswamy [6], si dimostra facilmente che per ogni gruppo H esiste un gruppo G tale che G_{∞} sia isomorfo ad H.

D'altra parte, se G è un gruppo misto con sottogruppo di torsione t(G), particolari proprietà di t(G) implicano che G_{∞} sia un gruppo divisibile. Ad esempio, abbiamo provato in [5] la seguente proposizione: se per ogni primo p la componente p-primaria di t(G) è somma diretta di un gruppo divisibile e di uno di esponente finito, allora G_{∞} è divisibile. (Più in generale G_{∞} è divisibile se tale è $t(G)_{\infty}$ e se ogni componente primaria di t(G) è un addendo diretto di G).

Sorge così il problema di caratterizzare la classe formata dai gruppi di torsione T che godono della seguente proprietà: se T è il

^{*)} Lavoro eseguito nell'ambito dell'attività dei Gruppi di ricerca del Comitato Nazionale per la Matematica del C.N.R.

Indirizzo dell'A.: Seminario Matematico, Università, Padova.

sottogruppo di torsione di un gruppo G, allora G_{∞} è divisibile. Non è essenzialmente restrittivo limitare lo studio alla classe \mathcal{C} costituita da gruppi di torsione e ridotti per i quali la proprietà è vera. È evidente che un gruppo T appartiene a \mathcal{C} se e solo se per ogni gruppo ridotto G il cui sottogruppo di torsione sia isomorfo a T risulta $G_{\infty}=0$.

Nella presente nota si dimostra che la classe \mathcal{C} è quella dei gruppi torsionalmente completi.

1. Richiamiamo brevemente alcune definizioni e qualche proprietà della topologia naturale e dei gruppi di cotorsione.

Ogni gruppo G è un gruppo topologico nella topologia naturale (o n-adica) che si definisce prendendo come base di intorni dello zero i sottogruppi nG con n intero positivo. G, con questa topologia, risulta uno spazio di Hausdorff se e solo se $G_{\infty}=0$. Se $G_{\infty}=0$ diremo che G è un gruppo di Hausdorff. Denoteremo con G il completamento naturale di G, cioè il completamento di G/G_{∞} rispetto alla struttura uniforme di Hausdorff indotta dalla topologia naturale. Un gruppo completo è di Hausdorff.

Un gruppo di torsione dicesi torsionalmente completo se è di Hausdorff e se coincide con il sottogruppo di torsione del proprio completamento naturale, [4].

Siano Q il gruppo additivo dei razionali e Z quello degli interi. Un gruppo G dicesi di cotorsione, [2], se è ridotto (ossia Hom(Q, G)=0) e se ogni estensione di G tramite un gruppo libero da torsione è una somma diretta (ossia Ext(Q, G)=0). Per ogni gruppo ridotto G esiste la sequenza esatta canonica

(1)
$$0 \to G \to \operatorname{Ext}(Q/Z, G) \to \operatorname{Ext}(Q, G) \to 0$$

che fornisce una iniezione di G nel gruppo di cotorsione $\operatorname{Ext}(Q/Z, G)$ con conucleo libero da torsione e divisibile, [2]. $\operatorname{Ext}(Q/Z, G)$ si dirà il completamento cotorsionale di G e si indicherà anche con G^c .

Se A e B sono gruppi, Pext (A, B) indica il gruppo delle estensioni pure di B tramite A. Si ha Pext $(A, B) = [\text{Ext } A, B)]_{\infty}$, [1], [2]. Il completamento naturale di ogni gruppo G è canonicamente isomorfo a Ext (Q/Z, G)/Pext (Q/Z, G) cioè a $G/(G^c)_{\infty}$, [3].

Un gruppo completo nella topologia naturale è di cotorsione. Un gruppo di cotorsione è completo se di Hausdorff.

- **2.** TEOREMA. Per ogni gruppo ridotto G le condizioni che seguono sono equivalenti.
 - (a) Per ogni sequenza esatta del tipo

$$(*) 0 \rightarrow G \rightarrow H \rightarrow X \rightarrow 0$$

con H ridotto ed X libero da torsione si ha $H_{\infty}=0$.

- (b) Pext (Q/Z, G)=0.
- (c) Il sottogruppo di torsione t(G) di G è torsionalmente completo.
 - (d) $\widehat{G} \cong G^c$.
- DIM. (a) \Rightarrow (b). Consideriamo la sequenza esatta (1). Ext (Q/Z, G) è ridotto ad Ext (Q, G) è libero da torsione. Pertanto Pext (Q/Z, G)=0.
- $(b) \Rightarrow (a)$. Consideriamo la sequenza esatta (*) scritta nell'enunciato (a). L'iniezione di G in H è pura poichè X è libero da torsione. Pertanto la (*) dà luogo, [3], alla sequenza esatta:

$$0 \to \operatorname{Pext}(Q/Z, G) \to \operatorname{Pext}(Q/Z, H) \to \operatorname{Pext}(Q/Z, X) \to 0.$$

Ora Pext (Q/Z, X)=0, poichè coincide con il sottogruppo divisibile massimale di Ext (Q/Z, X) che è di cotorsione e libero da torsione.

Quindi Pext (Q/Z, H) = Pext (Q/Z, G) = 0. Si ha pertanto $(H^c)_{\infty}$ = 0. Poichè H è ridotto, H è canonicamente isomorfo ad un sottogruppo di H^c e quindi anche H_{∞} = 0.

 $(b) \Leftrightarrow (c)$. Abbiamo appena osservato che Pext (Q/Z, X)=0 per ogni gruppo libero da torsione X. Da questo fatto consegue che per ogni gruppo G Pext (Q/Z, G) è canonicamente isomorfo a Pext (Q/Z, t(G)). Basta quindi provare che la condizione (b) è equivalente alla (c) per ogni gruppo ridotto e di torsione T. Se Pext (Q/Z, T)=0, si ha $\widehat{T}=T^c$ da cui, scrivendo per T la sequenza esatta (1), $\widehat{T}/T\cong \operatorname{Hom}(Q,T)$

che è libero da torsione. Allora $T=t(\widehat{T})$, cioè T è torsionalmente completo. Osserviamo ora che Pext $(Q/Z, \widehat{T})=0$ poichè \widehat{T} è di cotorsione e di Hausdorff. Quindi, se $T=t(\widehat{T})$, si ha Pext (Q/Z, T)=0.

 $(b) \Leftrightarrow (d)$. Infatti $G \cong G^c$ se e solo se G^c non ha elementi di altezza infinita.

COROLLARIO. Un gruppo ridotto e di torsione T appartiene alla classe T se e solo se T è torsionalmente completo.

OSSERVAZIONE. È ben noto che un gruppo ridotto e di torsione T è torsionalmente completo se e solo se per ogni primo p la componente p-primaria di T è un p-gruppo chiuso [1].

Pertanto la equivalenza tra le condizioni (b) e (c) del teorema precedente poteva dedursi anche da un teorema di Kulikov ([1], Theorem 34.6).

BIBLIOGRAFIA

- [1] Fuchs L.: « Abelian groups », Budapest, 1958.
- [2] HARRISON D. K.: «Infinite abelian groups and homological methods», Annals of Math., 69, (1959), 366-91.
- [3] Harrison D. K.: «On the structure of ext.», Topics in abelian groups, Edited by J. M. Irwin and E. A. Walker, (1963), 195-209.
- [4] KAPLANSKY I., « Infinite abelian groups », Ann Arbor, 1954.
- [5] ORSATTI A.: «Una caratterizzazione dei gruppi abeliani compatti o localmente compatti nella topologia naturale», Rend. Sem. Mat. Univ. Padova, XXXIX (1967), 219-225.
- [6] RANGASWAMY K. M.: «On Σ-groups», Bull. Soc. Math. France, 92, (1964), 259-62.

Manoscritto pervenuto in redazione il 18 febbraio 1969.