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PRINCIPAL PARTS AND CANONICAL

FACTORISATION OF HYPOELLIPTIC POLYNOMIALS

IN TWO VARIABLES

di J. FRIBERG (a Lund, Svezia) *)

Introduction

The basis for this paper is Gorin’s definition [5] of ) . (-hypoellipticity.i

A polynomial ()==(1...), is called o f tipe
i

ak &#x3E; 0, if

It is always assumed that aciz &#x3E; 1. Then the inequality

is a sufhcient condition for (0.1) to hold, and also a necessary condition

if 1. If P() is (k) -hypoelliptic for all k and ’ then it is hypoelliptic( ) 
i 
P p p p

in the ordinary sense (H6rmander [6]); if it is (k) -hypoelliptic for allY ( C ]) 
i 

Yp p

1 and for = 1, ...., n’ with n’ &#x3E; n, then it is partially hypoelliptic in
x’ = (xl, ..., Friberg [2]), so that all solutions of P(D)u= 0,
D = ..., ~ /~xn) are sums of derivatives of functions, infinitely

differentiable in the x’-variables. Finally, if P() is (k) -hypoelliptici
for k = n’ + 1, ..., n and all j, then it can be shown that all solutions

*) Indirizzo dell’A.: Matem. Inst., Lunds Universitet, Lund (Svezia).
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of P(D)u = 0, with support contained in a cylinder I  A, are

infinitely differentiable.

As in the related paper [3] , we shall use the following notations.
If P($) = then we set the index set (P) - ~a ; ca ~ 01, while

(P)* denotes the convex hull of (P) U {01. The (upper) Newton surface
(or polygon) F(P) of P is then the union of the flat (n - 1) dimensional

pieces of the boundary of (P) * bounding (P) * from above, i.e. which are

not parts of the coordinate planes. If F(P) consists of a single face

segment, F(P) will be called simple. Hypoelliptic polynomials with
simple Newton polygon have been studied by Pini [7]. His main con-
tribution was the introduction of a « principal part s containing all

terms of P($) that are essential for the hypoellipticity. Cf. our Cor. 3.1.
The purpose of the present paper is to extend and improve the results

of Pini as far as possible for general ) . )-hypoelliptic polynomial in twovariables. i /

Our main tool in the two-dimensional case will be the construction

of a polynomial P’, the  2 -hypoelliptic canonical factorization » ofy 1
P = P($1, 2), whose zeros 2 = 0($,) have a finite Puiseux expansion,
obtained by a suitable truncation of the Puiseux expansions of the zeros

P(). It can be shown that P’ is a product of (2) -hypoelliptic poly-I
nomials with simple Newton polygons, possibly multiplied by a poly-
nomial in ~1 only. This factorization allows us to derive precise lower
estimates for I P(~) ~ , , and to define a « minimal » principal part for P($).
Is turns out that the terms of P(~) not belonging to this principal part
are exactly the terms that are strictly weaker than P(~), in the sense
of H6rmander.

Since (2) -and ()-hypoellipticity together imply hypoellipticity1 2 y p y g py yp p y

of P(), our results can be used to define a canonical factorization into
hypoelliptic polynomials with simple Newton polygons, of any given
hypoelliptic polynomial in two variables. We can also show that the

2 1 -and 2 1 -hy p oelliptic principal parts coincide, hence define uniquelyBI/ 2
a hypoelliptic principal part. The special class of hypoelliptic polynomials
in R2, for which the principal part contains only terms with indices corre-
sponding to points on the Newton polygon, was discussed in our previous
paper [3].

In the more-dimensional case it is no longer possible to define a
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hypoelliptic canonical factorization. Consequently our results about

principal parts for this case are still very incomplete.

1. The Newton algorithm.
Given a polynomial P(~) - E R2, with index set (P) -

== {c~; 0}y we can always find integers r, s, h &#x3E; 0, with r and s rela-

tively prime, such that

Then every a E (P) belongs to one of the lines rcxl -f- sa2 = h - j,
j = 0, 1, ..., h. It follows that there are polynomials such that

We want to determine the Puiseux expansions for the zeros u = U(T)
of f o(z, u) - 0 for T near 0, using the method of the Newton polygon.
(See Bliss [1]). Suppose goo(u) has a zero 0 of multiplicity po. Let

and construct the Newton polygon bounding the index set (go) of go
from below. The polygon determines a finite set of couples of positive
integers yi) and (r1, 81), ri, 7 81 relatively prime, such that

We can now repeat the process, determining a zero C1 of of multi-

plicity and so on. After j iterations we have

0, we may choose u; = 0, which gives a zero with a finite Puiseux
expansion. Also, it may or may not happen that the process terminates
after a finite number of iterations, with an h == 0, hence with Uj = c; ,

If we introduce integers a,,, 0’1 ..., such that
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we can write (1.4) as

It can be shown (See Bliss [1]) that ri = 1 for all i big enough,
so that there is only a finite number of Puiseux expansions

generated by (1.6). Moreover, all these expansions converge for T small

enough, and together they represent all zeros u = of u) near
T = 0. Now let Wj be any one of unit the roots of order - rr, ... ri, and
let mi = ay;+i~’~, so that Wi is a unit root of order ei = ri. Then,
in view of (1.2), every expansion (1.6), (1.7) defines exactly e, zeros of
P(~) - P($1, ~2)’ « conjugate at ». These are of the form

or, if we define to be real for ~1 positive,

It should be noticed here that, in view of (1.5),

so that 6, &#x3E; ð1 &#x3E; ..., all the 6, being rational numbers, y negative for i

big enough. In contrast,

is an integer for every value of i.

Let now the couple (r, s) take on all the possible positive values deter-
mined by the Newton polygon .F’(P) bounding the index set (P) «from
above ». Then we obtain, through the algorithm just described, the

Puisseux expansions of all those zeros ~2 = 0($,) of P(~), for which

I ~2 I tends to infinity with .
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2. The canonical factorization.

Suppose that we want P _ 1 2)’ to be (2 hypoelliptic
of type a12 in the sense of Gorin [~] , i.e. such that

Then I - oo as ~1 ~ =1= 00, P(~1, ~2) = 0, and we see that (2.1)
is satisfied if and only if every zero $, - of P(~) is of the form

with

DEFINITION 2.1: Let (2.2) be defined by the Newton algorithm of sec-
tion 1. Then c = co, c1... is called a minimal Newton sequence (of lenght
J) if there are integers k, 1 withmax ( lc, l) = J, sue that

and if, for every zero ~~,~,(~) conjugate to 0,(~) at level J,

(In this definition we have made use of the fact that there is a certain
arbitrariness in the relation (2.2 ) between the sequences eo , c1, ..., and

el, el, ...). 
,

THEOREM 2.1: The ol nomial P() is 2) -hipoelliptic if and only ifp y 1
for every minimal sequence c the critical exponent ,, = min (6,, 6,),

given by (2.4), is strictly positive. If P is then it is also

2 
-hypoelliptic, a%d the types are2 -hypoeltiptie, and the types are

with each maximum taken over all minimal sequences.
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PROOF. It c = co, cl, ... is a minimal sequence, then it follows from

(2.2), (2.4) with, to be specific, J = max (k, 1) - 7~ that

Since by construction Im c, o 0, Theorem 2.1 is a direct consequence

of (2.6) and the definition (0.1) of ( .j-hypoellipticity. Note that Re Co * 0i
except possibly when J = 0. But then (2.5) still holds because of the

assumption that 1.

Now let c be a minimal sequence for P(~) of length J, with bi &#x3E; 0.

Denote by

a Puiseux expansion, truncated at level J, of any one of the zeros

~2 == 0(~,) of P(~), conjugate to 0,(~,) at level J. The product

is then a symmetric polynomial in the zeros 71 - of the polynomial
~1’ hence a polynomial in ~1 (and ~2).

DEFINITION 2.2. Let every minimal Newton sequence c of lenght J

for a (2) -hypoelliptic polynomial P() represent an equivalence class (c)1 p Y ( ) p q ( )

of minimal sequences, namely the ones that define zeros conjugate to
0,(~,) at level J. Construct, for every equivalence class (c), a polynomial
lVl(~&#x3E; ",(~) as in (2.8). Suppose that P($) = P(~l);~1 + terms of lower

degree in ~2. Then the product

is called the ca%o%ical f acctorizaction of P(), and the
1

M(,),, are called primitive polynornials (of length J).’ 

1
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In general P’ =1= P, but the notation « canonical factorization » is

motivated by the following.

LEMMA 2.1: Let P’ be the canonical ( 2’ )-hypoelliptic factorization of P.,1
Then P() and P’() are strictly of the same strength, in the sense that

P(~) /P’ (~) = 1 + 0 (1) 1 ~ I - 0 -~ 00, ~ real, for some 0 &#x3E; 0. More

exactly, let i = min - the minimum taken over all minimal

sequences for P. Then

Moreover, P’ is I I -hypoellipic of the same types as P.

PROOF. That acz2(P’) - ai2(P), i = 1, 2, follows from Theorem 2.1,
because .P’ and P have the same minimal sequences.

To prove (2.10), we write every zero of P(~) in the form 0, = 0,,., +
-f- 0* -,.r supposing that the sequence c is conjugate at level J to a minimal
sequence of length J. Then

(this is a consequence of more

accurate estimates given in the proof of Theorem 2.2), while

The lemma follows immediately.
COROLLARY 2.1: Let P() be -Vypoelliptic polynomial in two

1 y

variables. Let sia, + ria2 = hi7 i = 1, ... , N, be the equations for the sides
Fi(P) of the Newton polygon F(P). Write the canonical factorization of
P asP’ = p(~~) II Pi(~), with F(Pi) parallel to Fi(P). Then

PROOF. Les us study the case k = 1, the general case offering no
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additional difficulties. We have hence

- , i

with ðo = the proof of the lemma is complete.
Take as a simple example the following polynomial, used in a similar

connection by Pini [7],

Here r = 3, s = 4, Co - 1; r1 - = 2, c1 = i /3, and the only minimal
sequence is of length J = k = 1, with

Then a simple computation gives

We easily prove (Cf. Theorem 2.2) that, for some A &#x3E; 0,

Hence

Reversing the roles of i and ,, we find that (2.11 ) is also 1 -hypoelliptic.2

so that the corresponding 1 -h oelliptic primitive polynomial is(1) p
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obviously, like P’, strictly of the same strength as P. It now follows

from Theorem 2.1 that (2.11) is hypoelliptic, with all = 3, a2l = 4;
= 3 /2, a22 = 2, hence with a, = 3, c~2 - 4.

As a second example, let us consider polynomials parabolic in
in the sense of Silov, i.e. such that

Obviously such polynomials must be 2 -hypoelliptic. Let 2 = 1

= + ... + -- ... be one of the zeros of P(), with Im z= 0
for i  J. Then it is clear that bo, ..., must be integers, because
otherwise some of the zeros coniugate to 0(~1) could not satisfy the para-
bolicity condition. Moreover 6, must be an even integer, because other-
wise Im 0($,) and Im 0(- ~¡) could not both tend to + oo with ~1.
(These observations are originally due to V. M. Borok. See Gelfand-

Silov [4], p. 136). An immediate consequence is then, in view of Lemma 2.1,
the following result

THEOREM 2.2: Let ($1, ~2). Then P(~) is the

sense of ,SiZov if and only if is strictly of the same strength as a product
of polynomiacls of the type

where 81 is an arbitrary real polinomial.
Let us now return to the case of a primitive polynomial. Then we have

the following basic estimate.

LEMMA 2.2 : Let M() - be a primitive (2) -hypoelliptic poly-’ 1
nomiacZ as in (2.8), with

M($) is of degree
in ~2. Moreover,
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with 0 C d  1 or, more exactly,

I f we add the restriction that, for some k  J,

we get and improved estimate (2.13 ), with d replaced by

PROOF. Suppose, for instance, that J = max (k, l ) - l~. Then we

notice that, for some j - ~(co), 0  j --~- 1  J,

with Set now, with ,

for some C1, C, &#x3E; 0, is valid in the domain VW,j,8 for exactly 
- 1 /Q,) zeros ~~,1. On the other hand, outside the union

W

the estimate (2.19) is valid for all the eleJ-1 zeros 0.,,. Consequently the
best overall lower estimate for M ! I under the restriction (2.15) is

, where
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(Notice that the domain (2.15) is the complement of

follows that

with C small enough,
then trivially

Since m2 = ~O - vo is the number of zeros Øw, we see that 1

for $ real, 1 $ 1 &#x3E; 1. Since the upper estimate in (2.13) is trivial, it remains
only to prove (2.14). But by partial summation

and (2.14) follows if we observe that r = ~Oo C Pi ‘ ..., ~5,, &#x3E; o.

For instance, in the example (2.11) we have ~o - 4 /3, ð1 - 2 /3,

Let now P(), E I2, be a general (2) -hypoelliptic polynomial, and1

let c = co, c1, ... be a minimal Newton sequence for P. Constructing c

by the Newton algorithm of section 1, we define go , gl , ... as in (1.3).
The lower Newton polygon for gi-i then determines a number of couples
of relatively prime integers (ri" Sij) &#x3E; 0, (not necessarily all different),
one of which is (ri, si). To each couple (rz,, Sij) corresponds an exponent
b,,, and f-lii (complex) zeros for P($) of the form

In case P is primitive as in Lemma 2.1, the Newton polygon for each
is simple so that there are only coefficients cii = all of multi-

plicity ui = elei i and with exponent ðï; = big.
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DEFINITION 2.3: Let P() be a 2 -hypoelliptic 1 y

with a simple Newton polygon -F(P), and such that, for some po &#x3E; 1,
r and s relatively prime, y

Then P is called a 2 -hypoelliptic polynomial with leading partI

Notice that every primitive -hypoellipti(,, polynomial is simple,
I

but the converse is not true. The importance of the simple polynomials
is that if we use the canonical factorization (and Lemma 2.1) to write

a iven 2 -hypoelliptic 1’() as equivalent to a product HSa of simpleg (1)
(’))-hypoelliptic polynomials, then in order to find a lower estimate for1

 P() , it is sufficient to estimate each () I downwards. In contrast,

the best lower estimate for a product of primitive 2 -hypoelliptic poly-1
nomials is in general better than the product of the lower estimates for
each factor separately.

THEOREM 2.3: Let a (2) -hypoelliptic P() = p (1)2 -- ... have the
1 

2

canonical 2 -hypoelliptic f actorization P’ = p(1)IhVlc ,, , and groupcc ) I /oWo ’ op

together the primitive factors to write P’lp as a product o f simple
A

/oB

factors Sz - II_lVlc,, with relatively prime leading parts

Then

(2.24)

and
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where g(~) - ( ~ I ~1 s ~-- ~ I ~2 when I s, 1 - c,-s,, 0 2  E ~ 11 for some
real Co and some 8 small enough, while H(~) - 1 outside the union of all
such sets.

PROOF. In view of the proof of Lemma 2.1, it is enough to prove (2.25)
for the case when P = P’. Further, it is evident that there are constants
A~, such that I &#x3E; I ~1 s -~- ~ I ~2 (s, r, and Po depending
on Â) for all A except one, at most, at every real point ~, ~ ~ ~ [ &#x3E; .~. Hence
it is enought to prove that

This can be done easily by the same reasoning as in the proof of Lemma
2.2 (Cf. also (2.16)). We find that (2.26) is valid with

where 2P for i &#x3E; J means that the summation does not include the

index j for which cii = ei. Since

clearly implies (2.23). Finally, y we can derive the estimates for dz from
(2.27), if we observe that 6,, and that Po.

Let us now recall (See Friberg [2] ), that P(~), ~ _ (~,, ~2)’ is called

partially hypoelliptic in ~1 if

An equivalent condition is that P is both 2 and 1 -hypoelliptic.I I

(Gorin [5]). But if P is 2 -hypoelliptic, then we know that P is equivalent1

to a 2 -hypoelliptic polynomial P’ = p (1)P1(), where the Newton
1

polygon jF(JPi) has only sides with positive normals. Hence all the zeros

$1 = 0($2) of Pl($) are of the form ~i cilol’i , with 6, &#x3E; 0.
0

With 2 - 0 in (2.28), we see that Pl and then P can be 1 -hypoel-

liptic only if Im ei o 0 for some i with bi &#x3E; 0, ~ i.e. only if P, is 

liptic. It is now easy to complete the proof of the following
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partially hypoelliptic in ~1 if and only if P is (strictly) of the same strength
as a polynomial

Polynomials of the type (2.29) have in fact been used earlier as exam-
ples of partially hypoelliptic polynomials (Friberg [2~ , Gorin [5]).

3. The principal part.

DEFINITION 3.1: Let a (2) -hypoelliptic polynomial1

have the canonical factorization P’ - Suppose that rnal +

sna2 - hn, n = 17 ..., N, are the equations for the sides of the Newton
polygon F(P) = .~’(P’), with rn, sn relatively prime. For given n, consider
all Sa - 81 with Newton polygon given by an equation rnai -f- .etna2 - h’J.,
so that and as in (2.28). Set

A

Then the polynomial

is called the principal part of P($).
1

The definition is partly motivated by Theorem 2.3, which shows
that P(~) - Pg(~) is strictly weaker than But we can prove
more :

THEOREM 3.1: Let P -hypoelliptic, with coineidin 9p rinci p atI
parts, Q,,,. Then P and Q have identical minimal Newton sequence

and are consequently (2) -hypoelliptic o f the same type .( q y (I )
PROOF. It is enough to show that the minimal sequences of P depend

only on the coefficients c,,, of P with a e H(P). Omitting the indices n,
let ral -p sa2 = h be the equation of one side in F(P), and define

= 0, 1, ..., and = 0, 1, ..., k = 0, 00.1 hi, as in (1.2),
(1.3). We notice that 991k(U) is determined entirely by the coefficients

ca of P with ra, + sa, = h - k. On the other hand, to compute the
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coefficients co , ..., cj of a minimal Newton sequence, we need only know

..., But we have

it follows that to determine qjo,
for instance, we need only know ..., goi, where

the entire part of

1

Now it is easy to check from the Newton

Since also, in view of (1.9), when ~i,~ - max 

we see on comparison of formulas (2.23) and (3.5) that

Consequently, in view of (3.3) to determine all the minimal sequences
belonging to we must know (p(,i with

It follows that all minimal sequences for P are determined by the coef-
ficients ca with a E H(P).

COROLLARY 3.1: Let rna1 + 8,,a, = hn, n = 1, ..., N, be the sides

of the Newton polygon F(P) for a given polynomial.

Suppose the maximal multiplicity of a zero o f S
being defined by (1.2). Let

Then P is -hypoelliptic if and only if Q is -hypoelliptic.
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PROOF. All we have to do is observe that, according to the estimates

(2.24),

Then P is both G) - and G) - hypoelliptic if and only if the same is theT/ jP o ( 1 )- 2 )-pM o/ e e

case f or Q. I f this condition is satisfied, then P is also hypoelliptic in the
ordinary sense and strictly of the strength as a produet P’ where

every is It sim le G) -hypoelliptic and G) -hipoelliptic potynomiaZ at thep 1 ) 2 ) e

same time. Moreover, the 1 and 2 -hypoetl2ptic principal parts o f P

coincide, as well as those o f each SA.

PROOF. Suppose P($), $ e R2, is both 2 and ( B/ )-hypoelliptic. Then,pp ( ’ ’ 1 2

in view of Theorem (2.1) P is also 2 and ( B1/ )-hypoelliptiCy hence’ 2 1

hypoelliptic in the ordinary sense. Now let P’ - be theYp p p )
hypoelliptic factorization of P. Then since P and P’ are strictly equally
strong (Lemma 2.1), it follows that P’ is hypoelliptic. Every factor of
a hypoelliptic polynomial being hypoelliptic, this means that each
is hypoelliptic, and that p (~l) is a constant C. Let now d~ be the maximum
of the numbers d for which S~,(~) ~ I &#x3E; 8 -~- ~ ~2 all real ~,
I I &#x3E; K, where s, r and po are determined by the leading part (2 -
- of S).. Then, due to Theorem 2.3, we know that d,   /r. But

SA is also sim le 1 -hypoelliptic, hence we must also have p 2
Further, since every di is the same, wherther it is determined with start

from the 2 -hy oelli ticit or from the G)-hYPOelliPticity, it follows
1 p p 2

that P($) is not only the ( )-hypoelliptic but also the 1 -hypoelliptic1 2

principal part of P(). Finally, y the equivalence of P and Q is proved
as in Corollary 3.1.
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In view of Theorem 3.2, if P(~), ~ E R2, is hypoelliptic, we can justly
call P~,($) the (hypoelliptic) principal part of P, and, for instance, P’ _
= 17(S.1),, a canonical hypoelliptic factorization of P. It may be worth

noticing, that in spite of the truncation of to (which is made for
the sake of symmetry), in general PH =1= This is obvious from

the following example.
Suppose that P has the hypoelliptic factorization P’ - CHSI, where

each Si is equal to its leading part (~2 - co~i)~‘~, i.e. suppose that every

minimal sequence for P (with respect to 2 or (1) -hypoellipticity)q ( p 1 2 Y

is of length J = 0. Then obviously di = 0, for all and (2.25) becomes

of P. In general P$(~) ~ = cU($§ - as is easily checked.

Now, (3.10) is exactly the definition of a multi-quasielliptic polyomial,
in the sense of Friberg [3] . Hence we get from the preceding discussion
and from Theorem 2.1 the following result (Cf. [3] ).

THEOREM 3.3: I f ~ E R2, then P(~) is multi- quasielliptic, i.e. satisfies
an estimate (3.10), i f and only if one of the f ollowing two (equivalent) con-
ditions is satisfied:

4. Sufficient conditions for hypoellipticity.

Let us now drop the condition $ = (~1’ ~2). It is then no longer pos-

sible to extend the results of section 2 concerning the canonical (G)-)i ,

hypoelliptic factorization of a I - hypoelliptic polynomial. Counter-
examples were given in Friberg [3], all of them multiquasielliptic in
the generalized sense that they satisfy an estimate of the type

(Here the a i are a finite number of multi-indices ~0. ) Nevertheless, it

is sometimes possible also in the more-dimensional case to find a prin-



129

cipal part of a (e)-) hypoelliptic polynomial. For instance for a multi-
quasielliptic polynomial (4.1 ), the principal part is always 

F’(P)
as in the two-dimensional case. (Friberg [3]).

To simplify the exposition, we shall in what follows mostly restrict
our attention to the case when P($) has a simple Newton surface F(P),
given by an equation

THEOREM 4.1: Suppose F(P) is given by (4.2), and that P satisfies,
for $ I &#x3E; K, an estimate

Then P() is C)-hypoelliptic f or all j i f d  I /m,, hypoelliptic i f d 
?

 min (ljmk).
The proof is trivial, because we have

when P satisfies (4.3). Clearly, in case of a non-simple F(P),
(4.3) must be replaced by an estimate of the type

with d &#x3E; 0, but small enough. We notice that (4.5) defines a class of

hypoelliptic polynomials slightly larger than the class of all multi-

quasielliptic polynomials.
COROLLARY 4.1: Let ~ _ (~1’ ~2)’ and suppose that 8($) = (~2 - 0 1 +

+ terms c,,$2 with ra¡ -~- sa2  rs. If S($) is then it is

simple (2) -hypoelliptic, with leading part of multiplicity o = 1 and

Conversely, if S() satisfies (4.5), then S is 2 and 2 -hypoelliptic, with’ 1 2 yp  ’



130

Moreover, if ~o - ~,,  1, f or instance i f s  r, then (4.5) implies that S

is hypoelliptic, with

PROOF. The value of d follows from (2.24). Conversely, if S satisfies
(4.5), then we can prove as in (4.4) that I &#x3E; 1

The first estimate gives the values of and a22 , the same as were com-

puted in Theorem 2.1. The second inequality implies the 2 andp 2
1 provided that au and au, as given by (4.7), are po-
sitive.

A first example is the polynomial (2.11), for which 6, - by = 2/3.
As a second example, consider a primitive Silov-parabolic polynomial
8(~) - (~2 - i~2l) -f- real, degree S, = ini. Here 60 = max (2p,
m1), and b., = 2p. Hence 60 - 8,,  1 if and only if m1  2p. Conse-

quently a Silov-parabolic polynomial is in general not hypoelliptic.
This means that the definition of parabolicity given by H6rnlander
[6, p. 152] is more restrictive than Silov’s definition.

Let us return to the general more- dimensional case. Generalizing
an observation due to H6rmander [6, p. 103] we have the following
result, showing the existence of hypoelliptic polynomials with simple
Newton surface and an almost arbitrary (real) leading part. Let

where the Q, are real polynomials with every parallel to F(P),
1 for a e (P), and where Ry is real quasielliptic, Ea¡/ml =

= y  1 for a e (JRy). Then P is (k) -hypoelliptic for all j provided thati

For the proof we first notice that, for instance,
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because P ~ ~ max ( I Q I , ). Next we write ui = 1~ ..., N,
so that min E, = 1, I - ’81)/1. It follows I
can be estimated by a sum of terms like

for $ 1 large enough. Consequently

if we assume that which is

precisely (4.7). We notice that if Q is not itself J-hypoelliptic then
R must be considered to belong to the ( J-hypoelliptic principal part
of P, for any sensible definition of the principal part in the more-dimen-
sional case. (Of. Pini [7], p. 11 ). It is also easy to find examples where

y  1 - fljmk and P is not e)-hYPoelliPtic.AT
Consider now instead a polynomial

positive semi-definite, and suppose that

Set ,u~ = min Then the estimate
I

is a sufficient condition for (k) -hypoellipticity. (The proof is the same asi
in the preceding example). Notice that this result indicates that, as in
the two-dimensional case, the form of the principal part of P does not
depend exlusively on the leading part Po.
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