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ON EXTENSION OF A GIVEN FINITELY

ADDITIVE FIELD - VALUED, NON NEGA-
TIVE MEASURE, ON A FINITELY ADDI-
TIVE BOOLEAN TRIBE, TO ANOTHER

TRIBE MORE AMPLE 1)

Nota (*) di OTTON MARTIN NIKODÝM (a Ohio U.S.A.)

1. - The theory of measure in a Boolean tribe enables

us to investigate the structure of tribes, especially when
the measure is real-number valued and efective, i. e. when

it vanishes on the null-element only. Now, it is know

that there are finitely additive tribes which do not admit any
finitely additive number valued and effective measure 2),
so the idea of introducing measures whose values are taken
from a general linearly ordered (algebraic) field, which

may be not archimedean, seems to be promising. The pre-
sent paper deals with such measures and gives a (positive)
solution of the problem of extending a non-negative measure
from a given tribe to another, wider one, containing it.

There is a method, available in the literature, which is

adequate to deal with the problem of extension, viz. the
S. Banach’s method for extension linear functionals (1).
This method was applied with success by Banach himself
and by other authors. We shall also apply it in our problem.

(*) Pervenuta in Redazione il 24 luglio 1956.

!) Composed under the grant from the National Science Foun-
dation (U. S. A),

2) An example of such a tribe was kindly communicated by
MR. J. DIXMIPR in a letter to me.
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N. - Though the idea is known and rather simple.
nevertheless to apply it in our problem many auxiliary
items are needed, because the behaviour of general fields
differs from that of the field of real or complex numbers.
General smaller or larger auxiliary theories shall be deve-

lopped to master the situation, and since our arguments
must have a rather subtle character, clarification of some
known basic notions will be also needed. Some of the
mentioned theories will serve as a tool not only to solve

our problem, but they will be also useful for the subsequent
papers by the author. Therefore the auxiliaries are exposed
in a more general way. than needed for the proof of the
result the present paper is aiming at, and with more details.
just for purpose of future references. Some of these auxiliary
topics imply new methods which, we believe, will be useful
in the capacity of a new technique suitable for various

branches of mathematics, some ones clarifying known but
confused topics.

3. - An abstract of the present paper has been published
in four C. R.-notes (2). However, the present paper contains
arguments which differ slightly from those in these notes.
and in addition to that, it constitutes a much more explicite
setting. The auxiliaries, mentioned above, are exposed in
six first chapters entitled : § I. Endings and their ordering
(there are many sections labelled § I A, B, C, D, E, F, G, H, K).
Their purpose is to overcome the difficulty in linearly
ordered non-archimedian fields which consists of the fact
that a bounded set may not admit a supremum and infimum.

§ 2 gives a precise setting of partitions in a Boolean tribe.
§ 3 deals with « aggregates » and constitutes a particular
case (adapted to the main purpose of the present paper)
of the general theory sketched in the C. R. notes by the

author oa « functionoids » (3). § 4 introduces the exterior

and interior ending-valued Jordan measure in Boolean

tribes. § 5 deals with a kind of linear functiona,ls and

their ending-valued norm. The aim of § 6 is to prove the
possibility of extension of linearly ordered fields (which
may be not archimedian), by placing a new element in a
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gap which may be a true or not true Dedekindian section.
The proof of the corresponding existence-theorem is relied
on the know theory of reel-closed fields (4), which in
turn is based on the Steinitz-theorem (5) on the existence
of the algebraic closure of a field, (see also (6)).

Yow, the last theorem has not yet been proved correctl y
in the spirit of theory of types (7). and it is known that

mere considering of a class whose elements have not the

some logical type invariably leads to contradiction ~).
Our § 6 supplies a correct proof which is even simplier

than the original proof by Steinitz. The necessity of discri-
mination of logical types does not allow any « identification »
of isomorphic elements, neither a merely formalistic ap-
proach to polynomials and operations on them. In addition
to that the notion of single element extension of a field,
which is rather confused in the literature, needed clarifi-

cation. Having this all in mind, it . seemed necessary to the
author, to give a thorough refoundation of the algebra of

fields. Especially new definitions were necessary which

separated some similar notions from one another. Concerning
ordinals and cordinals. we refer to the abstract (8) by the
author and Mrs. Stanislawa Nikodým, where these notions

are defined in accordance with the necessity of discrimi-

nation of types. The definitions in the auxiliary chapter,
are stated carefully, but many theorems, whose proofs do
not require special technique, are stated without proof, in
the belief that the reader will be able to supply them.

Especially § 1 on «endings» contains a great quantity of
« small » theorems, whose proofs, sometimes not too short.
if given explicitely (as they are in the manuscript of the

author), would increase many times the volume of the

present article. Also proofs of the known theorems in the

theory of fields are omitted.

~) Eg. If we shall take into consideration the set whose only
elements are the number 1 and the class composed of the numbers 1
and 2, a contradiction will result. It will however not result, if the

class is composed of the set composed of 1 and of the set composed
of 1 and 2.
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5. Preliminaries and notation*. - Since our topic is .

rather subtle, and since il is generally true, that in abstract
things nothing is «obvious», the following preliminaries
will be in order - to avoid misunderstanding. Indeed,
mathematical understanding of a topic differs from the

intuitive common place-understanding.
We shall deal with various theories, as e. g. with chains

and tribes. In each theory there is notion of 

its elements, with respect to wThich the operations and rela-
tions considered are invariant, and which conditions the

notion of sets of elements, that of correspondences and the
notion of uniqueness of the element, satisfying a given
condition. If the theory is abstract, the notion of equality
is axiomatized or defined, and if the theory is constructed,
the notion of equality is defined or taken from another

theory. We shall call it equality governing the theory. If A
denotes the theory, its equality will be denoted by A .
though the letter may be oinitted if no misunderstanding
is to be feared of. 

’

A set E of elements of the theory A must be A--inva-
riant, which means that if a E E and a’ A a, then a’ E E.
E. g. in the theory of measurable subsets of ’0, 1) the notion
of their governing equality is -coquality almost everywhere »,
’ &#x3E;&#x3E; ; hence a class of sets must be ’- -invariant, and so
must be the operations on them. e. g. if u a a’, b ’ b’, c * c’,
and a U bac, then a’ U b’ -’-- c’ . We say that a is the

j-unique element a condition z(x) (invariant with

respect to -*-), whenever ~(a), and if and ~(a’), then o2013a’.
Let M be a not empty subset of a set N, (taken from a

theory) on which « = » is the governing equatity. If we

do not analyse this equality. it may be termed « identity ».
Suppose that. for soine purpose, we change the notion of

equality, on M, into another one M , satisfying, of course,
the conditions of symmetry, transitivity and reflexiveness ’).
This is e. g. the case when the elements of N are sets of

-----

~) New equalities are termed « equivalences ~, though, really, there
is no logical difference between them and equalities.
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real numbers and M constitutes the measurable subsets of

(0, 1), ~ being the equality « almost everywhere v. We must
discriminate between N-sets and M-sets. Instead of the

equality. we can consider equivalence classes which are
N - sets and operate on them through representatives.
However, many times it is more comfortable to consider
the -m-equality, than identity. of the corresponding equiva-
lence classes; e. g. in abstract algebra, in the theory of

. Hilbert space whose vectors are square-summable fun-

ctions, and in the theory of ordinary fractions. 
-

In the literature the notion of equality is usually, with
few exceptions, not taken into account. Its importance in

the theory of Boolean tribes is, howeve~~, emphasized by
the author (10), (11). E. g. the difference between free

vectors, gliding vectors and bound vectors in the euclidean
geometry derives from different kinds of equalities.

6. - The « relations » of Russell and Whitehead (7) will
be termed corre,epondences or mappings. We consider cor-
respondences, in accordance with these authors, as belonging
.to propositional functions of two variables, and not; as is
now fashionable, as classes of ordered couples. A couple
(a, A) will be understood as the correspondence x, y ; all =’ a,
y =’’ A ! . The domain of the correspondence R will be

denoted by (l R and the range by I) I~. They may be of
different types. If the type is the same, (lR U is

meaningful: it will be termed camlnus of 1~ and denoted

by OR. The correspondence I~ must be equality invariant
in its domain and equality invariant in its range (where
these equalities may have a different character). This

means that if aRA, a =’ ai , then aiRAi. We shall

say I~ is =’ -" -invariant. Instead of aRA we shall also

write a!!... A. Isomorphisms, as correspondences shall fit

this requirement. By a function we shall understand a

pluri-one correspondence. If E C (I R, R we shall

understand the correspondence x, y ~ x E E, i. e. the

correspondence .R restricted to A., (7).
If speaking of isomorphisms or homomorphisms we shall
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say which relations and operations should be maintained
by them. E. g. We shall say  order-addition-multiplication
-zero-and unit-isomorphism », if these items are preserved
through it. Set-operations will be denoted by Bourbaki
-symbols U, fl, , U, (~ and the complementary by co.

We avoid  empty » unions and intersections for reasons

explained in (10). There will be, in § 1E, some other

operations on sets: they will be defined there. If the
elements of the sets E, F have the type respectively,
and R is a correspondence with CI R = E, I)R = ~’, the

type of R will be denoted by ; a ; 01. The type of a class
of elements of the type a will be deneted by cl a.

7. - If a set A is organized into a structure by intro.

ducing some operations or relations, the structure will be

denoted by (.A.) or or even [(A)], for more clarity, if
needed. The following structures will be considered:

Orderings (usually referred to as ~c partial ordering &#x3E;&#x3E;
(12), (13). An ordering is defined as a not empty corre-
spondence R, (abstract or constructed) mainly denoted by
«  ~, such that 1) if a E CD l~, then aRa, 2) if « a.Rb, 
then aRc, 3) if a, b E then « a = b » is equivalent to

- and bRa:Jo. By a chain (linear ordering) we understand
an ordering R which satisfies the additional condition: if

a, b E (I) 1~, then either or b~Ra. By a tribe I) (Boolean
tribe, Boolean lattice, Boolean algebra), we shall understand
an ordering which is a distributive and complementary
lattice, (12), (13). A tribe B is said to be not trivial,
whenever its unit 1B differs from its zero OB . The elements
of a tribe will be termed elements or somata 6). Somatic

operations will be denoted by -E- , ., co, ~, II, , the
algebraic addition (a - b) + (b a) which organizes (together
with the multiplication) the tribe into a Stone’s-ring (17)
will be denoted by -~- . A measure on B will be supposed
to be equality-invariant. If the values of a measure are

5) Term borrowed from (16).
6) Term borrowed from (15).
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taken from a linearly ordered field, and are non negative,
the measure will be termed effective whenever it vanishes

only on OB . 
’

8. - The term ring and field are understood in the usual
way with the exception that if the structure is confined to
a single element (which must be the zero), we shall call
the ring or field triviat. We shall consider abelian groups
and semigroups only. Their « identit~ ~ wil be denoted by
0 (with an index, if needed). and the group-operation by +.
A structnre ~ with operations O, ... and correspondences

... will be said to be (O, ..., cJ, ...)-genuine substructure
of B whenever, for elements a, b, c.... of A the following
are equivalent: (10) /

If in addition to that the eqnalit~ A is identical with

(A 1 B ) i. e. with the restriction of ~ to B, we shall call A
(O, ... c~, strict substructure of A.

9. - References to former theorems and subsections will
be stated as e. g. [§ 3; 4], but in references to the actual

section the number, e. g. § 3, will be omitted, e. g. [4]. The
numbers in bold parentheses, as (2), refer to the literature
at the end of the article.

10. - The main theorem on extension of measure, proved
in this paper, is stated at the end of § 8.

§ 1. -- Endings and their ordering.

1 A. Left endings.
1. - Let (M) be a chain, denoted «:t. It will be kept

fixed through the whole present § 1. We shall consider

only not empty subsets E, F, ... of M.
Given E, F, we define E ·  .F’ (also written h’ ~ &#x3E; .~ as

« for every there exists x E E such that x  y ~. E  · F
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(also written F ~ · E) will mean v for every x E E there

existe y E F such that x  y ».
The following properties hold true: E · C E. If E ·  F,

F · C G, then E · C G. For any two not empty sets E, F we
have either F or 

~:. - The correspondence   induces a notion of equality
E ~ = F defined as « E ·C F and F ·C E ». It possesses the

formal properties of identity. The notion ~ C is invariant

with respect to the equality ’=; thus the notion . orga-
nizes the class of all not empty subsets of M into a chain
( ·C ) with ( - _) as governing equality. The notion (.=)
coincides, for chains, with the notion by J. ~’. Tukey of
coinitial similarity (18).

:i. - If then h’ · C E.

4. - If ; a ~ is the set composed of the single element ’a,
where a E M, let us agree to write a instead of a &#x3E; , when
no ambiguity will be feared of. We have: if x E E. then

5.. By left ending of E, ~~(E~, we shall understand the
class of all sets F such that F . - E. By a left ending 1)
we shall understand any C6 (E) where E C 0. Left

endings will be denoted by greek letters provided with a
.... If £(9 (E) is denoted by *a, we call E

representative of * 0153. Every set belonging to the class *2 is
a representative The set E is a, representative of

.£l9( E).

6. - are left endings, we define the correspon-
by « there exist representatives E. F 

*fi respectively such that E .  F ~. The notion of () for
left endings does not depend on the choice of representa-

7) This notion is a particular case of J. W. Tukey’s « coinitial
type - (18).
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tives. The following are equivalent: I. ~ a C ~ ~, II. for all

representatives E, F of *0153, *~ respectively we have E-F.

7. - are left endings, we define x *a = *0 -v by
« *0153 ~ *P and ~" y~ C ~ x ;&#x3E; . The notion of equality of left

endings is the identity of classes of sets.
The following are equivalent: I. *0153 = *~, II. there exist

representatives E, F respectively. y such that

E .._-_ F, III. for all representatives E, F respec-

tively we have E · = I’, IV. The classes *a, *~ of sets

coincide.
The notion of equality (=) of left endings satisfies all

conditions of identity, and the notion () for left endings
is invariant with respect to it.

8. - The following properties are if *~ a  ~ ~
then *~ a C ~ Y. The class of all left endings in

(M) is organized into a chain () with (=) as governing
equality.

9. - If E possesses the minimum a, then E. = a. If a E M
and E · = a, then a is a minimum in E.

A left ending whose one of the representatives is the
set ( a j 1 composed of a single element a of M, will be

termed point ending. To simplify writing we agree to
denote such an ending by a. 

’

If E is a representative of *0153 and E has the minimum

a, then i a I is a representative of *a and *a= a.
If *a = a, and E is a representative of *a, then E has

the minimum ca and a is a representative of *oc.

10. - If E ~ 0 is a subset of M, and a E M, then the

following are equivalent: I. a · C E, II. for every y E E we
have y  a.

If E is a representative of and a E M, then the follo-
wing are equivalent: I. II. for every we have

11. - If F ~ 0 is a subset of M, a E M, then the following
are equivalent: I. E · C a, 11. there exists y E E such that
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If E is a representative a E M, then the follo-

wing are equivalent: I. *~ a  a, II. E ·  a, III. there exists
e E E such that e  a, IV. there exists an element p of M
such that 1) there exists e E E with e  p, and 2) for every
e E E with e  p we have e  a.

12. - If a, b E M, then the following are equivalent:
I. a · ~ b, II. a  b, and the following are equivalent: I. a · = a,
II. a = a.

If E has at least two different points and a is not the
minimum of E, a E E, then 

If E is a representative of *a, a E E, a is not the mini-
mum of E, then the set is also a

representative of *a.
aEE, then 

If E is a representative of *a, a E E, then 
x  a ~ I is also a representative 

df

13. - If *« has a representative composed of the single
point a and F is any set, (l~’ ~ M) with minimum a, then F
is a representative of *a. ’

14. - The following are equivalent:
I. ~~(E)  £(9(F), II. either there exists a E E such that

for every b E F we have a C b, or ~~(L~ _ £&#x26;(1’).
have representatives E, 1~’ respectively, then

the following are equivalent : I. ~ a  ~ ~, II. either * a = *~
or there exists a E E such that for every we have

’

° 

~-

1B. Right endings.
1. - Given E, F, we define E C· 1~’ as « f or every x E E

there exists y E F such that We have: E.E; if

For any two sets E, 1~’ (not empty) we have either

E C· 1’ or F~.~.

2. - The correspondence . induces a notion of equality
E - · 1~’, def ined as and F.~~. The notion .
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is invariant with respect to the equality ‘ · . Consequently
the notion . organizes the class of all not empty subsets
of M into a chain (.) with (= · ) as governing equality.

~3. - If E C h’, then 

4. - If x E E, then z . E.

~. - By the right ending of E, we shall understand
the class of all sets F such that F = E.

By a right ending we shall understand any M(E) where
ECM, 

Right ending will be denoted by greek letters provided
with a star 2*, ~*, ...

If is denoted by a*, we call E representative o f a ~ ~
Every set belonging to the class a~ is a representative

of a~.

6. - If a~, fi* are right endings, we define the corre-

spondence §* by c there exist representatives E, F of

respectively, such that E  · F ».
The notion of  for right endings does not depend on

the choice of representatives.
The following are equivalent: I. a ~ C ~3 ~ . II. for all

representatives E, F of a*, 0* respectively we have EC·F.
If 0* are right endings, we define a~ - by « a~ C ~*-

and ».

Thus, this notion is the identity of classes of sets. There
are properties similar to those of left endings, stated in

[§ 1A, 7 and 8].

7. - If E possesses the maximum then E - a. If

a E M and E ~ · a, then a is the maximum in E.
A right ending whose one of the representatives is the

set i a i composed of a single element a of M, will be termed
point-right ending. To simplify writing we agree to denote
this ending by a. 

’

8. - The nqtions related to right endings have properties
analogous to those, stated in [§ IA, 9, 10, 11, 12, 13, 14].
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1C. Inequalities in ending..
1. - The relation

will mean that there exist repreeentative~ E, F’ of *a, ~*
respectively such that for every z E E and every we

have 

2. - The relation

will mean that there exist representatives .E, F of 

respectively such that for every x E E and every y E F we
have xCy.

3. - The following are equivalent: I. a~ C ~ ~, II. for

every representatives 1P of 0153*, . ~ respectively we have:
for ald we 0

4. - For every E ~ 0 we have

If  2&#x26;(E), then E is composed of a single point.
If a~ C ~~ and ~~ C a~, then there exists a point a E M,

such that a j is a representative of both 0153* If 0153*,
* 0 have both a representative a ~, then (1* C ~,~ 

If a is the maximum of E and, at the same time, the
minimum of F, then ~~(E) C ~~(I~ and ~~(F) C ~~(E).

5. - The class off all endings, right and left makes up
a chain. This can be established by the following steps :

These properties prove that the correspondance C, which
.is defined for all ending, im transitive. This correspondence
is also reflexive.
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The equalities a* = ~* a nd ~ a = ~ ~ were already defined
in [§ 1 ~. and § IB].
Now define ex* = *~ as « a ~ C *~ ~ and and

define *p==x* as and a~ C ~ ~ ~.
The following are equivalent: I. 0153* = *~, II. If E and

F are representative of a* and *P, then B has a maximum
and h’ has a minimum. (Both coincide).

The notion of equality of endings is reflexive, symmetric
and transitive. The notion for endings is invariant
with respect to the notion « ._ ~ of equality of endings.
Given any two endings cp, ~, we have either or 

The above properties prove that the notion of -  v orga.
nizes the class of all endings, right and left, into a chain
on which the equality  of 

. endings is the governing
equality.

Concerning point-endings, there is no need to make

discrimination between right point endings and left point
endings. We shall call them shortly poi~t-ending~s and

denote, as before, by the quantities of M, determining them.
Thus if a E M, a can be conceived as a right point

ending or as a left point ending.

1D. Additional properties of endings.

1. - The following properties of endings can be proved
without any requirement of special tenchnique:

We define for endings cp, ~ the inequalily rp  cjJ, cp)
cJI.

2.. The following are equivalent: I. a  £&#x26;(1’), II. for

every y E h’ we have ac  y.
The following are equivalent: I.  b, II. there

exists x E E With x  b.

- The following are equivalent: I.  ~~(1~,
II. there exists x E E whit x  ~~El~, III. there exists z E E
such that for every y E F we have x  y.

If ~~(E) ~ 2&#x26;(P), then f or every y E F we have  y,

(but not conversely).
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The following are equivalent: I. for every y E ~’ we
have 29(E)  y, II. for every y E F there exists E E with

x  y.

4. - The following are equivalent: I. a C ~~(F), II. for

every y E F we have a  y.
The following are equivalent: I. ~~ (E) C b, II. there

exists E E with x  b.

5. - Consider the statements: I. ~~(E)  ~~(~, II. there
exists x E E III. there exists x E E such that
for every y E F we y.

From II follows I, but from I does not follow II. II and
III are equivalent.

All three following statements are equivalent: I. 

C ~~(F), II. for every y E F we have 29(E)!~’. y, III. f or every
y E F there, exists x E E such y.

6. - The following are equivalent: i. a  *~, II. for

every representative F of *~ and for every y E F we have
a  y, III. there exists a representative F of *0 such that
for every y E F we have a  y.,

The following are equivalent: I. *0153 ~, II. for every
representative E of *a there exists x E E with x  b, III.

there exists a representative E of *a such that there exists
 b.

7. - The following are equivalent: I. ~ a C ~ ~i, II. for

every representative E of *a there exists x E E such that

x  *0, III. there exists a representative E of *a such that
there -exists x E E with x  *~, IV. for every representative
E of *a and every representative 1~’ of *~ there exists x E E
such that for every y E F we have x  y, V. there exist

representatives E, F of *a and *§ respectively such that

there exist x E E such that for every y E F we have x  y.
If *a  *~, then for every representative F of *fi and

every y E F we have *a C y, (but not conversely).

8. - If there exists a representative E such that there

exists x E E with x C ~ ~, (but not conversely).
1?*
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9. - The following are equivalent: I. ~a C ~, II. there
exists a representative E of *a such that there exists x E E
with III. for every representative E of *a there
exists x E E such that x C b.

The following are equivalent : I. a C *~ ~, II. there exists
a representative 1~’ of *~ such that for every y E F we have

III. for every representative F of ~~ we have: for

every y E F we have a  y.

10. - The following are equ i valent : I. ~ a C ~ ~, II. there
exists a representative F of *0 such that for every y E F
u-e III. for every representati ve F of *0 and
for every y E .F’ we IV. there exist represen.
tatives E, I’ respectively such that for every y E F
there exists x E E with V. for every representatives
E, F of *a, *~ respectively and for every y E P there exists
xEE with xCy.

11. - The following are equivalent: I. *a  *0, II. there
exists a representative E of ~a such that for every x E E
we have x  *~.

The following are II. for every
representative F of *~ there exists y E F with *a  y.

13. - The properties [2 - 11] of left endings have their
analogy in the corresponding properties of right endings.

i3. - Remark. The endings cannot be identified with
Dedekind sections in the ordering M. Indeed let R be the
chain of all ordinary real numbers, and let a E B.

If we define

then we have

where a denotes the point ending whose representative
is 
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The smallest ending is ~~(R), the greatest Every
real number a is replaced by three different endings. This
circumstance may be useful e. g. in the theory of ordinary
functions of bounded variation.

lE. Operations on sets in a lineary ordered semigroup.

1. - This will be an auxiliary topic for operations on
endings. To introduce these operations we shall suppose
that the ordering M is a kind of linearly ordered abelian

semigroup G, which will be axiomatized as follows : Let F
be a non trivial linearly ordered commutative field. There
is an addition a -~- b, for a, b E G, which is always perfor-
mable and yielding an element of G. It is supposed to be

G - invariant, where G is the equality governing on G,
(supposed to satisfay the conditions of identity). There is a
multiplication 7~ a performable for every a E Q~ and every
X E F where ). &#x3E; 0. We shall write aX or Àa.

This operation is supposed to be invariant with respect
to G and to the equality ~ governing in F.

In stating the following admitted axioms We shall drop
auperscripts over the signs of equality.

To these axioms, which look like the usual axioms for
a modulus (with exception of the cancellation law), we add
the following : ~.-

There exists an element 8 of G such that for every
dEG we have 

[We prove that 6 is =C’ -unique]. We shall denote it by 0G .
We also admit that for every a E G, we have a G 0G.

Thus G is a kind of semigroup with zero.
We suppose that there is a correspondence’ £ with

domains Q~ and range f~, which makes up a chain, and
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We admit the axioms: a = b is equivalents two a C b,

We prove that i f a’ C b’, then a+ a’  b 4 b’ .
We may call G linearly ordered semigroup with non

negative multipliers taken from a linearly ordered commu-
tative field.

2. - G will be a linearly ordered abelian group over 
when 1) À. a is performable for any X E F, and the condition
in (1) of nonnegativeness of factors is omitted, 2) the can-
cellation law: « if a -~- b = c~ ~- b~, then b = b’ ~ is admitted.

If G is supposed to be a semigroup only, we shall

write GI-11.

3. - We shall consider subsets of (or G) b u t only
n o t empty o n e s . They will be denoted by E, F, ...

We def ine :

(for 0(6) we suppose that 7~ &#x3E; 0), 

4. - The following are equivalent : I. z E E -E- h’, II. there
such + y.

The following are equivalent: (for any X E 1~’ for (~, and
for for G(’»): I. II. there exists z E E, such
that z = Xz.

6. - (X + p)E C a E + ~,E (for for f~, and for
f or G(6).

Remark. Notice that, even for X &#x3E; 0, ~ &#x3E; 0 and G, the
relation 1E C (), + p)E may be not true.
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If for G and for E h’ we have (À -~.- ~)E =
- XE -~- [LE, then E is composed of a single point-and
conversely.

. 7. - 71(E-f -h’) = XE + (f or any 7~ for G and for X &#x3E; 0

for 

8. - = for for G and 0,

9. - For the linearly ordered groups G we define

(The last also for GCI».

1U. - For Q’- the following are equivalent: 1. a E E - F,
II. there exist x E E and y E I’ such that a = x y, and

the following are equivalent: I. II. there exists
x E E with a = 2013~.

11. - We have for and G : +E = E.

12. - For G we have E -- F=:~+(2013F), 2013N=(-1~)’~

lj.. We define for Q’- and G(6), E  F as « for every
x E E and every y E F we as ~ f or

every x E E and every y E F, x  y ».

We define a ± E as i a ! ::t: E and E ± a as E -+- i a ~.

IF Operations on endings.

l. - We suppose that the chain M in which endings
will be considered, is a linearly ordered abelian semi-group
or group. Multipliers will be taken from a linearly order
non trivial commutative field F.
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3. - *~ are left endings, E, E’ are representatives
of *~ and F, F’ are representatives of *~, then E -~- F =
= E’ + F’ and + h’) = ~~(E~ -~- F’). 

’

Definition. If *a, *~ are left endings, then by ~"x ~- *~
we shall understand the left ending where E, F
are representatives of *a respectively. This notion
of addition of left ending8 does not depend on the choice
of representatives.

If *y = *x -f- ~~3. G, E, ~’ are representatives of ~Y, *0153,
respectively, then G · = E + F. Conversely, if G . = E -f- ~’

and G. E, F are representatives respectively,
then *y = *0153 + *~.

The addition *x -~- *0 is invariant with respect to the

equality of all endings.

4. - If E~ .F’, A &#x3E;0, then 
then XE - = 1F.

~. - Definition. If ~; &#x3E; 0, then we shall under-

stand the I ef t ending £l9(À. E) where E is a representative
of *«. This notion of multiplication does not depend on

the choice of the representative E 
If E, F are representatives respectively and

X &#x3E; 0, then the following are equivalent: I. XE . = F,
II. À. * ex = *0.

The product X. *x is invariant with respect to the

equality of all endings.

Proof. Let E be a representative of *«. Then 71E, JArE,
(À + are representatives *a, and (X + JAr). *a

respectively. By we have (I -~- p)E ~ -~- tLE.
Hence, by [§1A;3~ and then, by
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[Def. § lA ; 6], £l9(ÀE -~- ~ (7~ + Ii) . i. e., [Def. § 1 F ; 3]
and [Def. § IF; 5], À. *0153 + 11 . *0153  (I + ..... (1).

let y E XE + liE. There exist x’, x" E E such that

y - xx, + I1x" .
We shall prove that there ezists y’ E (X + such that

y’  y. We may suppose that x’  x’. We get  px" and
then

Hence

Consequently, for every there exists 

such that y’  y.

Hence (X -f-  XE -f- gi ves (a + (1) .  ), .

From (1) and (2) the theorem follows.

9. - OF . *a = 0, i. e. the point-left ending whose repre-
sentative is the set composed of the single element 0 E M.
We also have f or every * a the *a.

11. - The properties (IF, 6-10] show that the left endings
in a linearly ordered abelian semigroup with zero or in a
linearly ordered abelian group, make up another linearly
ordered abelian semigroup with zero and with nonnegativTe
multipliers taken from F. This allow to consider endings
and operations on them in the cha i n of left endings. A
similar behaviour show the right endings in M.

1Z. - Till the end of this subsection § IF, we shall sup-
pose that the chain M, under consideration, is a linearly
ordered abelian group with arbitrary multipliers taken
from a linearly ordered commutative, non trivial field F.

The following are equivalent: I. E · C 1~’, II.

(-1J’) C · ( - E).
The following are eq uiva.lent : I. E C · F, II. (-P).«-E).
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The following are equivalent: I. E · .-.F’, II. ( --F)_-_ · ( E),
and the following are equivalent: I. E = · .1~’, II. ( F) ·
, = ( ~~, 

’ 

_

14. - Definition. We define the addition of right endingrs
as follows : By 0153* +~* we shall understand the rigt ending
5Jtf9(E + F), where E, ~’ are representatives of 

respectively.
This notion does not depend on the choice of repre-

sentatives.

15. - Definition. We define the multiplication of right
endings by non negative quantities as follows : If X &#x3E; 0,
then we shall understand the right ending

where E is a representative of a*. This notion

does not depend on the choice of the representative E of a*.
The above operations [§ 1F ; 14,’ 15] are invariant with

respect to the equality of all endings.

16. - The addition and multiplication of right endings
by non negative factors behaves exactly as the same ope-
rations performed on left ending. Thus laws similar to

[§ 1F~ 2-10] are valid for right endings.

1’~. - Now we are going to introduce further operations
on endings.

Definition. If we define À. * 0153 as the right ending
5Jtf9(À . ~ E), where E is a representative of *a. If 7l  0, we
define X - a* as the left ending where E is a repre-
sentative of a*.

These notions are independent of the choice of repre-
sentatives.
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18. - If X = 0 we can apply the definition [1?] as well
as [5] for 7~ · *~ a. Both yield the same, namely the point
-ending 0. The same holds for X - 0153* if 7~ = 0.

19. - The notions [17] are invariant with respect to the

equality of all endings.

2U. - Definition. By - *a we shall understand the right
ending where E is a representative of *a.

By - a* we shall understand the left ending 
where E is a representative of a*.

These notions do not depend on the choice of the repre-
sentative E. They are invariant with respect to the equality
of all endings. 

’

21. - For any E ~ 0 we have .

~Z. - The following are aquivalent: I. ~a - ~~, II.

- *oc.
We have

23.

24.

26.

For any

26. - Remark. The equalities
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37. - We have defined the addition for homogenuous
endings only; we do not add heterogenaous endings, but
we define subtraction for heterogenuour endings only.

Definition. We and

0153* - *~ as a* + (- *~).
If one of two given endings is a point-ending, say a,

the a ~ -~- a, a -~- ~ a, a -~ a *~ are meaningful,
since a point-ending can be considered as a right ending,
as well as a left ending.

We 0153*+O=0153*.

28. - We have some theorems concerning inequalities
in endings:

29. - and Ã, p are any quantities of ~’, and
*a &#x3E;0, then 71 ~ ~ a C ~ · ~ x.

8$. ~ · If ?*&#x3E;, 0 C Jl C~., then a · a~ C ~ex~ .

3i. - The following are equivalent: II.

- ~" ~ C - ~ a, and the following are equivalent : I. 

II. -~*-0153*.

1G. Supplementary theorems on endings.

1. - The following rules have a lemmatic character, since
they will be only used in the discussion of extending
measure.

2. - The statements I. ~ a C d ~-- ~ ~, are

equivalent, and so are 1. x~ C a -~- ~*~, II. 

3.. If aC~a-~-~~, then 

4.-Ifo2013*x&#x26;+*~ then o2013&#x26;~*x+*~ and con-
versely.

5. - If *0153  *~, then *0153 + c *A+C.
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We notice that if *a  *~ and *y is any, we cannot say

The cancellation then

~ Y = *Yl» is not valid.

6. - We have for any chain M : if then 

C ~~ (F).

7. - For any chain M the following statements are valid:
If for every x E E we have x  ~ a, then If for

every y E F we have  y, then  29 (F).

1H. Endings in a superchain of a given chain.

1. - Let M, ~’- be not empty = subsets of N and suppose
that M, M’ are organized into chains ~, ~’, denoted by (M),
(M’) respectively (see [Preface 5]). Let - , be the corre-
sponding equalities governing on them. These equalities
may differ from N and from one another.

2. - Definition. According to [Preface 83] we say that

(M) is an order-genuine subcha~n of (M’) whenever for N-sets
we have

1) N .

2) if a, b belong to the N -set M, then the following
are equivalent : b.

It follows that also the following are equivalent for

a, b E M : I. II. A further conseguence is this:

If E of M is also an ~ ~ ~-subset of
M, there exists -subset E’ of M’ such that E G E’
in N. Thus the 14 -equivalence classes A are N-contained
in the corresponding 11’ -equivalence classes A’.

Denote by s the correspondence which attaches to every
m - equivalence class (which is an the ~’-equiva-
lence class A’ (which is also an such A’
in N. We call -s natural correspondences. . (I s is the class of
all M -equivalence classes and is contained in the class
of all ~’-equivalence classes. s is one - to - one. If E is an



256

m
=-subset of M, the correspoddence s generates the corre-

sponding subset E’ of M’.
. 

We shall write For sake of simplicity we shall
sometimes use the same symbol E for both E and E’, but,
if needed, we shall emphasize the discrimination by saying
E in (M) and E in 

3. - Definition. Let (M) be an order-genuine subchain
_ 

of (~t~. If the equality ’=v coincides with the equality Mi if
- 

restricted to M, i. e. if a E h~, then the two statements a ~ b,
a ’ b are equivalent, we say that (M) is an order-genuine
strict subchain of (M’), [Preface; 8]. In this case s is iden-
tity of N-sets, (restricted to Af-equivalence classes).

If (M) is an order-genuine subchain of (M’), (M) can be
modified so as to obtain an order genuine strict subchain
of (M’).

Indeed, let us replace M by the N-set Mi of all ele-
ments y, such that there exists x E M with i. e. instead
of ~-eqnival ence classes we consider the x-corresponding
= equivalence classes. We organize M’1 into a chain (M,),
by defining b~ « there exist a, b E M such that a M’ at,
b 11’ hI and The ordering (M1) is a chain which is

order-isomorphic with (M) and, at the same time, is an

order-genuine strict subchain of (M’). (Ml) is order-isomor-

phic with through the isomorphism s.

4. - Definition. If (1Q, (M’) are chains, then, [Preface; 8],
is an order genuine subehain of (M’) through the iso-

Whenever :
- 1) t is a one - to - one correspondence, with domain M,
and is .-invariant in it.

2) t transforms (M) into a chain which is an

order-genuine subchain of (M’). (t may be not 
in its region). t is invariant, in its region, with respect to All.

~. - We have devoted quite much room to the above

discussion, because of the subtlety of subsequent topics
which, otherwise, could be confused.
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If (M) is an order-gen uine subchain of M’, and E, 
then the f ollowing are equivalent :

~Here E, 1~’ denote in I. the of M and in II.,
the ~-corre$ponding M’ -subsets of M’).

The following are also equivalent:

6. - The left ending £GJE) is the class of all M-sets

F ~M such that E, and the left ending is the

class of all such that F’ :==E.
It may happen that these classes are different: the

class of all those I’’ may be ~ larger » than that of the

sets 1~’-even if (M) is a strict 8ubchain of (~’’). Nevertheless,
we can define a. natural order isomorphism N, between

the M-left endings and the corresponding ht’-lef t endings,
as f ollows : Let * a be an M-left ending and E~ its repre-
sentative. Let E~‘ be the s-corresponding subset of M’.

By we shall understand the left ending 
The correspondence ~~.~, thus def ined, does not depend

on the choice of the representative of *a. The domain

of n, is the class of all M-lef t endings, and its region is

contained in the class of all endings. ni is invariant,
in its domain, with respect to the equality M of left endings
in M, and is invariant, in its range, with respect to the

of left endings in M’.
The correspondence n, t preserves the ordering, i. e. if

~a, 1 *0 are left endings in M, then the following are equi-
valent : I. *0153 ~ *~, II. ~~ _(*~ a) ~’ ~i~(~ ~).

will be termed natural image of *a in M’. Many
times we can identify, without any harm, the left ending
*0153 with its natural 1wage. However, We shall denote them
differently if discrimination will be relevant.

7. - We proceed in a similar way with right endings,
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defining their naturali images in M’ by means of the ana-

l ogo us correspondence, denoted by ~~,, . The joint corre-

spondence 1&#x26; of ni and n,. transforms M-endings into

M’-endinga in a one-to-one way, preservi ng the ordering
of endings.

Indeed we have the following properties:
If Em is a representative of the ending y in M, then
= 2~ is also a representative of n(y) in M’. If y is

a point-ending in M, then n(y) in also a point-ending in M’,
and conversely if y is an ending in M, and n(y) is a point
-ending in M’, then y is a point-ending in M.

The point ending in M, generated by the element a may
be denoted by the same letter a, which will be also used

to denote its n-corresponding point-ending.
The above can be proved by transforming (M) into a

strict subohain of (hr), as indicated in [§ 1 H ; 3]. We have
the properties :

If fit denote 11-images of the M-endings.
*0153, *~, respectively, the following are equivalents

Thus to the chain of all M-endings there corresponds,.
through n, a chain of M’-endings, which is an order-genuine
strict subchain of the chain of all M’-endings.

8. The natural isomorphism of endings in (M) and (M’)
preserves the operations on left endings and those on right
endings.

1K. The chain of endings.

1. - The given chain (M) is an order-genuine subchain
of the chain of all endings through the order-isomor-
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phism which makes corespond to the element a E M the

point-ending a..
If A is a non empty set of M-endings, then by the

supremum in M we shall understand an ending
such that

1) for every a E A we have 2) if for every a E A.
we have then 0 m Pl.

In a similar way we define the infimum. of A in 
If we consider the chain of right endings, we define
analogously the supremum and infinum in ~,. of a set of

right endings.

2. - Theorem. is a set of right endings, then
A admits in 3f a supremum. This supremum is a right
ending a*. This ending a* is also a supremum of A in Mr .

.If for every g* E A, we have ~~  ~’, then a* *P’.
Proof. To prove that we shall rely on the lemma :
If X*  J.L *, then there exists y E M such that 

in the ordering of M-endings.
The theorem is true if we suppose that A admits a

maximum.

Suppose that A does not admit any maximum.
The following general theorem holds true 8) for any

chain P which does not admit a maximal element: There
exists a distinguished well ordering Pl  P2  ...  pn  ...

of elements of P which is cofinal with P, i. e. for every
q E P there exists a such that 

2a . - Let

be a distinguisched well ordering cofinal with A, where
ot E d. To apply the lemma, let us well order the set M in

8) See (8). An ordinal is termed distinguished when it is infinite

and the smallest among all-ordinals with the same power.
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the form of a distinguisched well order-sequence.

Given an index a from (1), find in (2) the element with
the smallest index - denote it by - such that 

C e ~1 in M. The sequence

is a well ordering whose ordinal is that of (1).
Denote by Y the set off all elements of (3) and put

If we put I va, I a’ &#x3E; 0153} 1 for a = 1, 2, ... , the set

Y(a) is for every a a representative of 0*, by [§ lA ; 12].
Applying [§ 1D ; 11], we get 6:  ~ ~ for every a, which

proves is an upper bound of Y, and then also for
A, because (1) is cofinal with A.

Now let y* be a right ending in M such that y*  ~ ~ .
We shall prove that y* is not an upper bound of A. Let
C be a representative of y*. On account of [§ 1D ; 7] there
exists ya such that for every z E C we have z  1ia.. We
have z  eh+i for every e E C, and hence, by [§ 1D ; 10] we

which proves that y* is not an upper
bound of Y, and then neither of A.

Consequently, if ~ has the property that for every a

we have e,* then we cannot have fit  ~*. Consequently
~ ~ C ~i , which proves that 0* is the supremum of A in 

2b.. Suppose that for every !;*~A we have ~* C ~ ~’.
Hence we have for every a.

Let B be a representative of *0’. By [§ 1D; 9], for every
o E B we have ya  x for all a. Since Y is a representative
of 0*, it follows

2e. - It remains to prove that P*, defined in (4) is the

supremum of’A with respect to M. This, however, follows
from what has been proved. Indeed, if A  y where y is a
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right ending, we have §* C x, and if r is a left ending, we
also have ~* 5 y. The theorem is proved.

3. - Theorem. If ~ ~ 0 is a set of left endings, then A
admits in ~l an infimum. This infimum is a left ending
*era. It is also an infim..ll1’;. of A in MI.

If, for we Luen ~~ C ~’ a .
Proof si~ilar to the preceding one.

4. - Theorem. If A ~ ~ is a set of right endings in M,
B ~ 0 is a set of left endings in ~K, and for every 0153* E d

and every we have then

~. - Theorem. If d ~ 0 is a set of right endings und
does not admit a minimum, then A admits an inf i m u m in

M, which is a left ending *~. We also have:

1) If, for we then T*
2) If, for every we have *8~*, then *8*P.
3) We have 

4) ~ is the infimum of A in 

Proof. We shall rely on the following lemma :
If and E is a representative of a*, then the

set I x I x &#x3E; y ~ I is also a representative of a*.

5a. - There exists a distinguished well ordering

coinitial With g, where A for all a. By lemma [§ lg; 2]
for every a there exists E ht such that

Let

be a distinguished well ordering with domain M. For every
1 8 *
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a take, in (3), the element with the smallest index satisfying
(2), and denote it by ya , so that

Denote by Y the set (1), and put

Let Fi, F 2, ... , FIX, ... be representatives of the endings
(1) reoppectively, and put .

By the lemma (in this proof) Fa is a representative of
6*. We get

(5) for all a, so * ~ is a lower bound of A in M.

If we suppose that *~  *y holds true, we can prove,
by [§ lD ; 7] that there exists a such that  ~Y. Hence
*P is among all left endings the greatest lower bound of A.

6b. - Suppose that for a right ending Y *~ we have Y *~  A.

Hence Y ~  ea for all a :

It follows that y*  y~ for all a. let C be a representa-
tive of y*.

We have: for every x E C, x  ya for all y. Since Y is

a representative of *§, it follows that y*  [§ 1 C ; 3].
I say that the equality

is impossible. Indeed, if (6) were true, *~ would be a point
ending, and then the set Y would have a minimum, which
is excluded. Thus

5c. - Consider the set of all right endings Y *~ such that
Y*’  ,A. This set admits a supremum, by [§ 1K ; 2], Which .
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is a right ending, say ~. We have

hence, by what has been proved in [5b],

Thus we have proved the thesis 3).

~d. - We have proved that if y is a right ending with
~  ~., then and if y is a left ending with y  A,
then y  * P. It follows that * p is the infimum of ,d in 
Now, sup ~  ~ ~ I is the infimum of .~ in V,, so 4) is
proved. The theorem is established.

6. - Theorem. If A+ 0 is a set of left endings and A
does not admit a maximum, then A admits the supremum
in .11 which is a right ending ~*. We have also :

4) ~ ~1 is the supremum of A in Ml
Proof analogous to the preceding one.

7. - Theorem. If d ~ 0 is a set of left endings then A
admits a supremum in 11 which is a left ending whenever
A admits a ma,ximum, and which is a right ending in the
opposite case. An analogous theorem holds true for non

empty set of right endings.

8. - Theorem. 0 is a set of any endings, then A
admits a supremum in M and an infimum in M.

Proof. ~Ve shall confine us to the proof of the existance
of the supremum in the case where A does not admit any
maximum. There exists a distinguished well ordering

of ending, cofinal with A, where Let
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be the subsequence of (1) composed of all right endings.
(point endings included) and

the subsequence of (1) composed of all left endings (point
endin gs excluded).

Of course there may exist only one of these sequences.
or one of them may be finite. In the case one of these

sequences is finite or has a maximum, the theorem follows
from the foregoing theorem. Suppose that both sequences
(2), (3) are infinite, both without any maximum. It suffices
to suppose that both sequences (3) and (2) are cof inal with (1).

The set (2) admits in a supremum ~* and the set (3)
admits in a supremum ~~. We A  ~~.

By [§ 1 g ; 2] we have and, by theor. [§ 1 K ; 6],

The theorem is proved.

9. - The above theorems are apt to overcome the main

difficulty in dealing with non-archimedian linearly ordered
fields, where a non empty set of quantities, even if bounded,
may not admit any supremum or infimum.

10. - If M is a chain, then its right endings make up a
new chain ~,. and the elements of lfr satisfy the axioms
of a linearly ordered semigroup, given in [§ lE ; 11, (see
[§ 1F ; 11]). Hence we can consider right and left endings
in To these « double p endings we can apply the ope-
rations of additions and multiplication.

A similar behaviour shows Mi. Each M-ending *a gene-
rates an I-point ending whose one of I-representatives
is the set I composed of the single element *a.

If cf) is a set of M-endings a*, and 0’ the set of corre-
sponding I-point endings ~5~ (¡ 0153* }), then the supremum
of (D’ in the ordering of M-endings can be smaller than
the sapremum of 4Y in the ordering of M-endings. Indeed,
the chain I is «larger» than M.
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§ 2. - Partitions in a tribe.

1. - Partitions are usually considered as an easy topic
which does not require any detailed setting. Since the pre-
sent paper requires precision, we shall devote some care

to correct and not ambignos definitions.
Let B be a finitely additive (abstract or constructed)

non trivial tribe. By partition in B we shall understand

any finite sequence

al , a2 , ... , a,~ , (n &#x3E; 1), a; E B, such that a.-, · a? = 0~ for

i ~ j, and ai + ... + a* = 1B .
It will be denoted by 

’

Expl. The sequences 0, 1 ~ ; ~ 0, 1, 0, 0, 0 ~ ; ; co a, a !,
1 are partitions.

2. - If f is a partition, there egists j such that ai ~ 0.
A partition I is said to be equal to the partition 

whenever for every i with at ~ 0 there exists j such that
and f or every j with ~={=0 there ezists i such that

The notion " of equality of partitions is invariant with
respect to the equality B , governing in B. The equality
~ obeys the usual formal rules of identity.

3. - The following are equivalent : 1. j II.

Let E be a non empty, finite set of mutually disjoint
somata, such that

let n &#x3E; 1 -be the number of elements of E, and let a(~i) be
a function with (I a equal to the set ~(1, 2, ..., n) and with
Do = E. Then I a(,t) I is a partition in B. Let ... , 0~ be a

partition, and T a one-to-one mapping of the set 1, 2, ..., n
into itself, (permutation). If we put for j =1, 2, ... , n,
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then 1 is also a partition, and we have 1 at B 7r If

al .... , ac is a partition, then lit, ... , 0 is also a partition
which is ’=-equal to the former one. If Oi, ... , 0 is a

partition, so is ai , ... , a,~ , and the last is equal to the former
one. To every partition ai there exists a partition ~ ¡ hi i
such that all hi =t= 0 and The set i is unique.

4. - The above properties show that the partition is, up
to equality, well determined by the set of its somata which
differ from the null-soma. The presence or absence of a
finite number of null-somata in the sequence f ai, ..., 

does not matter. The permutation of elements of the se-

quence does neither. Thus, from the point of view of for-

mal logic, a partition is, with respect to 1’L’, neither a set
of somata nor a sequence. But, with respect to B , a par-
tition could be defined 9) as a suitable class of sequences
of somata of B.

5. - A partition ¡ a¡ i is said to be a 8ubpartition of
bi 1, whenever for every i there exists j such

B

If I ai I ibil, then We have

The following are equivalent: I. i ai ’~ # b~ ~ . II. i ai I ~ i hi I
and 

The notion ’ is invariant with respect to the equality
11’ of partitions, and to the equality, governing in B. If

i a. i, I are partitions in B, then the double sequence
ai, bx f , if ordered in any way into a single sequence, is
a subpartition of I ai I and If I bk is a subpartition
of ~ then there exists a partition such that 1)

for all i, 2) 

6. - Given two partitions 1 a¡ i, there exists a

partition ~ cx # , such that 1) 1 0161 

9) differently from our setting.
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This partition ; i equals where hj for
and j.

We call ( i. e. ck I~ product o f ~ 1 G¡ I and ~ 

The product of two partitions is invariant with respect
to 7r and B . We have 1 a¡ 1 . 7r the product is

commutative and associative. The relation i ai c ~ I is

equivalent to ~ ai ; . .
The maximal partition is the sequence ; I composed

of the single element IB-
It contains every partition. Of course, for any a E B the

sequence a, co a l is a partition.
It { hi i, then there exists a partition 1 such

tha t jail 7r Ck ~ .

However, we notice that if this

does not imply the equality f bt ~ , so the cancellation
law does not hold true.

7. - The above properties show that the set of all par-
titions constitutes an ordering which admits finite meets

and a unit. It makes up a do~~n-streacm (directed set).

Remark. In a similar way we can define partition of a
given, fixed soma a E B, where a ~ 0.

§ 3. - Aggregates.

1. - Let B be a finitely additive, non trivial tribe and
a non trivial, commutative ring with unit. By a BF-aggre-
gate we shall understand a finite sequence of ordered couples

where ai, ... , an is a partition in B (see [§ 2]) and X,6F.
The aggregates will be written
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where -~-, ~’ and [] are mere symbols (unqnalif ied~. The
notion is Band ’ invariant. All as are disjoint and 2: as _-_ IB-

i

2. - 1 he aggregate [Is À¡ad is said to be equal to the

aggregrate [~; 

whenever for every i and i with we have 

The notion of equality of aggregates is invariant with

respect to B and 
-

and if for every

This theorem expresses a kind of invariance of ~ with
respect to equality 1r of partitions.
If u~ ~ is a partition in B, (~==1, 2, ... , n), (n &#x3E; I), T

is one-to-one correspondence with domain and range 1, 2,
... , fa, and ... , then [À1~ + ... -f ..
... + 

It follows that for any aggregate we have .

and if

Thus we see that permutation of terms and absence or
presence of a term, involving a null-soma, does not change

Athe aggregate up to
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are partitions in B, and

This allows to prove the transitivity of the equality A
Thus the equality A of aggregates satisfies the formal

conditions of identity. The above theorems imply that the
presence or absence of a finite numbers of terms with

null-soma, permutation of terms, and splitting of somata
into a finite number of disjoint parts do not affect the

aggregates-up to

~. - If 1 hi I is a partition in B, then = [~¡ li(aibi).
. s

Any two aggregates pi 7~a~], [~~ liihi)] can be represented
in the form involving the same partition: E~ 

..

5. - By the sum of two aggregates, [F;’, liail + [El We

shall understand the aggregate (~~ + (aibi).
The notion of sum is invariant with respect to =F B

a nd to the equality A of aggregates. We have

6. - If À E h’, then by the product À. we shall

understand the aggregate 
Thins notion of multiplication of an aggregate by a

« 8calar» is invariant with respect ~:.

7. - The addition of aggregates is commutative and asso-
ciative. If X, Y, Z are aggregates and X -E- 
then Y ‘~ Z. 

We have + Y) A XX -f- XY for any aggregates X, Y
and 

The following holds trne :

Consequently the class of all Bh’-~ggregates is organized
addition and multiplication into a linear vector-space

with multipliers taken from Ir’.
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The aggregate · 1Bj is the zero-vector 0.4 of the space.
It 

The subtraction can be defined, and the di f~erence X Y
of two aggregates is A invariant. We define 

- g d f OA
We have X -.Y A X + ( 1)Y, where ( 1) 6F.

8. - We have f or any aggregate

Now, we can simplify orthography by writing ai instead
of Sai, getting the following manner of writing aggregates
Es Xiai, where the sum means summation of aggregates. In
the sequel we shall use only this manner of writing,
because no ambiguity will be caused by this licence.

9. - If the ring F is linearly ordered, so that the abso-
lute value I of X E F is available, we define the absolute
value of as

The notion of ) X; is ~ -invariant, hence it does not

depend one the representation of X as sum.

~ 4. - Exterior and interior Jordan-measure.

1. - Let b be a finitely additive, non trivial tribe.

&#x3E; 0 a finitely additive measure on b, with values taken
from a linearly ordered not trivial field f: We suppose
that &#x3E; 0.

Let b’ be a finite _and unit - genuine
supertribt~te o f b. This means that 1) the equality

is the restriction of b is the restriction of b’ to b, i. e.

if then the following are equivalents L II. 
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2) if a, b, c E b, then the relations and 
are equivalent, and so are a ! a = c and = c; 3) Ob = ob~,
4) (Compare (11) and [Preface 8]). We have b C b’.
The operations, zero, unit and the equality governing on b
are just taken from b’. The somata of b will be denoted

by small latin letters and those of b’ by latin capitals. lL(a)
is supposed to be equality invariant.

2. - By a b-(Jordan) coveriny of A E b we shall under-

stand any non empty set cp composed of a finite number
of somata of b : al , a2 , ... , (n &#x3E; 1), such that 
... + aft. We put J(w)j F(ai) + ... + and E(A) df { cp
is a b-Jordan covering of 

By measure of A with respect to It and f we
shall understand the left-ending

By b-interior measure of A with respect to J1 and f we
shall understand the 

If no misunderstanding is feared, we shall write simplier
or and a similar agreement is

admitted for It*.

3. - Concerning li, we have = Of, and for any a,

b E h we have p(a + + p(b). If a C b, then 

Theorem. The following are equivalent:

Proof. Let. I. , i. e. A. E b. Put Let al,..., aM,

(1&#x26;&#x3E; 1) be a covering of A. We have : ~(0)~~01)-}- ... + 
Hence the set E(A) has the minimum ~,(a) ; indeed, a is

a covering of A.

It f ol lows [~ 1A: 9]
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We have Hence, by what has been pro-
ved for somata of indeed co d E b.

Since a + co a ~ 1, a · co a = 0, it follows, by additivity
of }ty p(I) = p(a) -f- a). Hence

From (1) and (2) follow8 * I1(A) = i. e. II.
Let 11, i. e. ~~ (~.) _-__ ~ ~,(~). By [§ lC ; 4], there exists a

quantity ), E f such that 1 À I is a representative of both
these endings. Since E(A) is a representative it

has the minimum À, [§ fA; 9]. Hence there exists a covering
al , ... , an of A such that 7~ _ + ... + ~,(a~"), (n &#x3E; 1).

Now, the set, composed of the single soma ...

-f- a", is also a covering of ~, and we have 
df

Hence  À. Since À is a minimum, we get N,(b) = 1.
We also have

The set is a representative of tL*(A), i. e. of [§ 1F; 27],

Hence d.) is a point-ending. By~ similar argument
we get a soma b’ such that

Hence, by (3), co b’ C Â C b. It follows

Now, as A C b, co A C b’, it follows that A + co A C b +
- f - b’ C 1, and then
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From (4) and (5) we obtain

We have, from (3) A C b and, from (3.1) and (6), co A C
C c.o b, i. e. bCA.

Thus we get A = b and, consequently A E b, i. e. we

get I. The theorem is proved.

4. - Theorem. For any we have

Proof. Let d C a. Since f a I is a covering of A, we
have p~a) E E(A); hence, by [§ 1A; 4], E(A).  Since

E(A) is a representative of *[L(A), it follows, [§ lA ; 11],

The inequality (1) holds for every a with A C a. Hence
7] 

"

The inequality (2) can be inverted. Indeed, let y E { ( c~
is a b-Jordan covering of A ~ = E(A).

There exists a covering a~ ~ } of A such that y = Ek 
P ut 

Hence, f or every y belonging to there exists

x E ~ I Â C b ~ } with z  y..

This gives, [§ 1A. ; 1], ~ A C b ~ ~  E(,~), and then,
[~ 1 A ; 6],

From (2) and (3) it follows

To prove the second formula of the thesis, notice that
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is a representative of the right ending and
is a representative of its right ending.

is, [§ 1F ; 3], a representative of the ending (5), on the
right side of the equation.

Now (6) is equal to p(co b~ ~ co A C b ~ . Since the in-
clusion co A C b is equivalent to co b ~ .d, we have

Hence

which proves the second part of the theorem.

5. - Theorem. For every A E b’ we have
Proof. Take a, b with a C b. We have
If we vary a and b, we get by [§ IE, 13]

hence, by [lF; 3],

Applying theor. [4] we obtain

6. - Theorem. If I ai I is a partition in b (see
[§ 2], I is a subpartition of [§ 2 ; 3], a is the set

of all i for which Â =t= 0 and ~ is the set of all couples
(i, l~) for which am - A =4= 0, then
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If A I is a partition in b, ~ I ait I a subpartition
of { a~ }, a’ is the set of all i for which ai C A and 0’ is the
of all (~, k) for which then

7. - Theorem. If A, B E b’, then

Proof. The sets I Â F df B C 
~(c) ~ A -f - } are representatives 

respectively. Hence, by [§ 1F ; 4] E + F is
a representative 

Let u E E -~-1~’. There exist x E E, y E F with u = z + y·
There exist a, b with A C ac, B C b such that z = 

y = i hence u = w(a) + We have + b)  ~,(a) +
-f - N,(b) = 2; + y = u. We also have v E G, because A + B C

Consequently for every there exists such
that t1  u.

Hence, by [§ 1A ; 1] (~ .  E -f- F, and then

§ 5. - Linear functionals of aggregates
and the norm of an aggregate.

l. - Hypothetic: b’ is a non trivial finitely additive

tribe, b is its finite operations-zero and unit strict Rubtribe,
(see [§4; 1] and [Preface 8]), i. e. with the same zero, unit and
finite operations, and with the same equality, restricted to

h. We have b’.

The somata of b will be denoted b, c, ... , and

those of b’ by A, B, C, ... , M(a) is a finitely additive, B
invariant measure on b ; M(o)&#x3E;0; o ; the values of
M are taken from a given, not trivial, linearly ordered

field f- We shall consider br~-~aggregates, (see [§ 31).
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2. - LEMMA. If E, À.A. A E, are b’f-aggregates, and if
a E b, then

LEMMA. If I. £; A pkiBki are b§-aggregates, whereLEMMA. If 1. are Ill-aggregates, where
Bkt ‘ Å1cB,. 

ki

2. I is a partition in b’, (see [§ 2]).

then

These two lemmas yield the following
LEMMA. If are ~-aggregates, and a E b, .

then

and then

3. - Let aI, ... , a. 1, (m &#x3E; 1) be a partition and
be el-aggregates. We have

This quantity of f, depending only and on 
will be denoted by

This quantity is invariant with respect to b , 6, " ,
- and

If I bi I is a subpartition of ak 1, and both are partitions
in b, and X is a b’f-aggregate, then

4. - Definition. Given a b’f-aggregate X, consider the

set gx of all quantities (3[1 bl; 1, X] where I are all par-
titions in b (see [§ 2]). Its left ending in f will be termed
bM-norm and ~denoted by We have
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The norm is defined for all b’f’-aggregates X.

5.. If X == Ea is a, bf-aggregate, then its b~-norm,
*p(~ is a point-ending, and we ~ ~ a= ~ ~

To prove that, we first show that for every subpartition
i in b of ~ i we have

and then we go over to general partitions, proving a similar
equality.

Remark. The converse is not true. ~’ p(X) can be a point-
ending, even if X is not a bf-aggregate.

6. - Theorem. If X, Y are b’f-aggregates, 
_ 

Proof. We shall prove it by proving that +
(see t§ 1 A ; 6], [§ lF ; 3]).

There exist

There exist pertitions 1 bk I in b such that, [3],

Take them. Since I is a subpartition of I and
we have

Hence, by (1) and (2)

Now X, Y have representatives with a same partition
in h’ :

(see [§ 3 ~ 4]), so
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We have

all these maxima being taken for all a for which

Now we have for these a

so, since M &#x3E; 0, we get, taken (3) into account:

For every
. there exists

such that Hence

which gives

’i.. Theorem. If X is a then
for the bM-norm we have

Proof. Take a partion I in b, and let ·

We ~g) _ ~ . ~ [ ~ a~, X ~ ], and then 
Hence, by [IF; 5],

8. - Theorem. If X is a b’f-aggregate, then

We have for any

10. - Theorem. If X, Y are by-aggregates and
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then for every partition I bk I in b we have ~( { bx ), X] 
 (3[1 bk 1, Y] and then

We rely on [§ 1A ; 1] and [§ lA ; 6].

11. - By the characteristic aggregate of a soma A E b’ we
understand the aggregate QA defined by QA dr 1 f A +0/’ co ~.

Theorem. If A E b’, _ ~ Mb~ (A), where

*M(A) is the exterior measure of A with respect to b and
f (see [§ 4]).

Take a b-partition We have

Consider the sets of indices

If k E K, we have

if k E K2, we have

and if k E Ka, we have

Hence for all the coefficient by M(bk), in (1),
is 1, and for all k Eg,, the coeficient is = 0.

The sets K1, K,, K, are mutually disjoint and their
union is the set of all indices k. Thus
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The soma is the «smallest coverings of A
taken from the partition I bk 1, and we X] = M(b).

On the other hand we know, [§ 4 ; 4] that

Now, if A C b, the sequence b, co b makes up a b-par.
tition. Applying the obtained result (2) to this partition, we
see that

It follows that * M(d) is the left ending of the set of
all 9[ ~~ ; hence = ~ M(~), i. e.

12.. Theorem. If M(a) is an effective, f-valued, non
negative measure on b, X is a bf aggregate, *pbM(X) = 0,
then lb.

Proof. By hypothesis, *p(~T) is a point ending. Hence
[§ 1A: 9] there exists a partition I bk I in b snch that

9;[ X] = 0. We have

Since all terms in (1) are non negative, we get for all k :

Let We and then, by the

ef f ectivenees of My M(bk) ~ 0. Hence = 0.
Thus for every 0153 with bk. we have 7la = o. Since

bk is a partition, therefore, given 0153, there exists k’ with

hie’ ~ 0. Hånce À0153 = 0. Thus X = ~a 0 · and then

X = Of. 16.
18.. Remark. It may happen that there exists a b’f-ag-

gregate X such that

14. - By [§ 3; 7] the bf-aggregates make up a linear

vector-space- ~P with multipliers taken from f.
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Define for all bf-aggregates X : f(~) af ~s M(a;) · ~ls, where
X - ~¡ ~’ at .

The function f (X) is invariant with respect to the

A equality bf-aggregates.
C! f = ~, I~ f C f. We have for all X E V

and all X E f, and we also have

Thus is an f-valued linear functional in V with

multipliers taken from f.

16.. Theorem. We have f (~)  f or all bf-aggre.
gates X.

In the sequel linear functionals, and especially this one
will play an important role.

16. - Theorem. If Y is a b’f-aggregates, is the

linear functional def ined in [ 14~, then

§ ~. ~- Fields.

Polynomials :
1. - Let 0 be a non empty set of elements which may

be abstract or defined and endowed with a notion of

Let E be an abelian half-grroup 1°) which we
define as a structure having an addition of its elements

a, b, ... , always performable, yielding an element of E, and
satisfying the conditions: 1) d -~- b is invariant with respect
to the equality E governing on E, 2) it is associative and

commutative, 3) possesses a neutral element OE, and 4) obeys
the cancellation law i. e. if a -’- b’, then b 

to) It differs from the semigroup considered in [§ lEl.
it) The half-group E can be extended, through an addition-isomor-

phism, to an abelian group G by means of ordered couples (a, b),
where a, b E E. We define (a, b) G (a’, b’) as a + b’ E a’ + b, and we
define the sum so as to have (a, b) + (c, d) G (a+c, b-f-d). The defined
addition is We have OG G (a. a).
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Choose an element of ~, denote it by 00 and keep it

fixed. By an E~-function we shall understand any function
from E into ~, where t[s] . O. f or all s E E, excepting

perhaps a finite number of values of s. The class of all

E~-function8 will be denoted by P. We define f P g as
gtsJ for all s E E,

2. - For farther purposes it is needed to a d m i t that 0
is organized into a commutative ring or even
field F with unit 1~ and zero 0p where 
The elements of F will be termed quantities, and these
of E ex~ponents. The elements of P will be termed EF-po-
tynontials (9). We define the null-polynomial Op as such
that for all s E E. Given two Eh’-polynomials f, g
we define their sum f + g as the polynomial h such that
h[s] F + for all s E E. This addition is 

associative, commutative, and admitting olubtraction, so it
is an abelian group with Op as group-identity.

To define multiplication in P, ’We need some auxiliary
notions. Let f be an E~’-pol~nomial ; by a set fitting f we
shall understand a not empty, finite subset A of E such
that if then * Given two polynomials
f, g and sets A, B fitting them sespectively w e d e f i n e

(A, B) ae the set of ordered couples :

and w e put

exist sEA and t E B such that: 
dt

Given two El~-pol~rnoraials f, g, we define their product
f, g as the function such that :

- p
1) if u E A, B, we put h[u] = l: f[8] . g[t], where the

summation is extended over all couples (s, t) for which
s E A, t E B, s + t = u, the letters A, B denoting sets fitting
f, g respectively and where each couple (s, t) is 

once only ;
2) if we put The function hjaJ is

an B~’-pol~nomi~.l.
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One can prove that the above notion does not depend
on the choice of the sets A, B.

The multiplication is equality invariant, it admits Op as

annihilator, it is associative and commutative, and admits
as neutral element the unit-polynomial Ip, defined by

for all s ~ QE . We have 
The distributive law holds true. Thus, under the ope-

rations of addition and multiplication, P is organized into
a commutative ring with as zero and unit.

If we define the correspondence b with (I b = F, I) b C P
h h. h. p P- t d 

. 

has such one which is = I - invariant and carries the

quantity into the polynomial defined by
= a, a*[l] = OF for all s E E, then b is an addition

multiplication-zero-and-unit-isomorphism from the ring F
into the ring P. The set t a* a E F} I is organized within P
into a commutative ring F* with Op and Ip as zero OF*
and unit 1F* . 

,

~. - Let us suppose that F is linearly ordered;
this will mean that there exists a correspondence  
with domain and range E, which is ( E)-invariant, and

obeys the conditions: 1) if s  t, t  r, then s  r, 2) if
s  t, then s + r  t + r, 3) given any egponents s, t, we
have disjointedly either s  t, or t  s, 

Theorem. If E is a linearly ordered abelian half group
and F is a commutative ring with OF ~ 1, then the ring
P of EF-polynomials is an integrity-domain i. e. if 

then either f p Op or g p Op .

4. - In what will follow we shall a d m i t t h a t F i s a

commutative ring with and that E is the

linearly ordered half group 10, 1, 2,... ~ I of all

non negative integers ordered as usually,
Then the ring P of EF-polynomials is a commutative

integrity domain with 1 p. The ring P can be conceived
as extension of F* by adjunction of the single element

Ç=I;[8] defined by = = lF and = 0~ for all ~ 1.
Indeed let us define ~n+1 a f ~n ~ ~ for 1 ...

. 

df
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We have f or n = 0, 1, 2, ... = 1 ~ and = 0p
for s ~ n.

Hence, if f is an EF-polynomial and d = [s,  s2  ...  It]
a set f itting f, we get

Since [0, 1, ... , ale] is also a set fitting f we can write

where at = ([’1, (i = 0, ... , sk).
Given f ~ 0, we always have the representation of f in

the shape (1) :

with for some n &#x3E; 0.

For a given f this representation is 
~ 
-unique, i. e. if

then n = m bi for n.

&#x26;. - Theorem. The correspondence b which attaches to

each polynomial .

the function

where x is a variable with domain 1J’ 1 for all

x E 1~’, in an operation-zero-and unit homomorphism.
It is from P onto the ring of all above polynomial-fun-

ctions, where addition and multiplication of functions are
the usual ones, the zero and unit-fanctions being constant
f anctions with valus 0p and 1F respectively.

Remark. The above homomorphism may be not an iso-
morphism. E. g. If F is the field of all integers modulo 3,

5

the polynomial f anction 1 x4 vanishes for F.
;~o
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This circumstance does not allow to define polynomials
as functions of the variable quantity of the ring. On the
other hand, a definition of polynomials as expressions 2: Øtz’
where x is just a mere symbol or a variable with indeter-
mined domain is logically not clear-hence incorrect.

6. - If is a polynomial, we define its order, ord f,
as the maximal s for which f[s] The null-polynomial
does not admit any order. The polynomials of order 0 are
the polynomials where Those polinomials
and Op will carry the common name constant polynomials,
sometimes denoted by cp . We have ord ( f g) = ord f + ord g,
and if ord f  ord g, then ord ( f ± g) = ord g. We have
ord f = ord (c p · f ), where polynomials of order
n &#x3E; 0 can be represented in a F -unique way as +
= ... + where aft 12).

7. - We shall consider ideals in the ring of EF-polyno-
mials. By an ideal we understand, as usually, any non

empty subset J of E with the properties: 1) if f, g E J,
then f - g E J, 2) if f then f · p E J.

The sets P and i Op I are ideals. Op E J for every ideal J.
We define the equivalence modulo J, f J g as f - g E J.
By the equivalence class modulo J represented by the poly-
nonazat f we shall understand the set

f is termed representative of the equiualence class.
The equivalence class modulo I represented by f is

I f 1, and that modulo P is = P. Every element of an equi-
valence class is its representative. The intersection of any
non empty collection of ideals is an ideal.

If we change the equality dl governing on P into a ,

il) The so called c identification ~ of isomorphic elements whose
type is different can be applied only with caution; in a treatise where
the logical structure is emphasized, the identification is logically
disorderly and leads to- contradiction.
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then the ring operations, zero and unit will be invariant

with respect to ’~ . - E. g. If f J f’, g J g’, then f -i- g J f’ -f- 9’.
Thus an ideal organizes P into another commutative ring

termed equivatence ring rnodulo J of P. If we consider
the set of all equivalence classes modulo J and define, for
equivalence classes, the operations of addition and 

plication, zero and unit in the usual Way by means of

representatives, we get - as is well known - the quotient
ring, PIJ, which is operation - zero- and unit isomorphic
with Pj 18). Given a. non empty set M of polynomials, there
exists the smallest (unique) ideal containing M; it will be
termed the ideal spanned on M. By a principal ideal we
shall understand an ideal which is spanned on the set

composed of a single polynomial, say f. It will be termed
the principal ideal determined by f. The principal ideal
determined by lp is P. The principal ideal determined by
Op is ~ The principal ideal determined by f coincides
with the set

In what will follow we admit that F is a com.

mutative f ield with and B = 10, 1,2... J.
If is a constant polynomial, then the principal
ideal determined by f · cp coincides with the principal ideal
determined by f. We have the theorem: If ord f &#x3E; 1, J is
the principal ideal determined by f, and S an equivalence
class modulo J, 8 =t= J, then S contains a polynomial of
order  f. By its use we prove that the division algorithm
holds for polynomial, i. e.: If 1  ord q  ord p, then there
exists decomposition where
either B = Op or ord B  ord q. From that it follows that

every ideal in P is a principal ideal. The following are

equivalent: I. J is the ideal determined by fi and also the
ideal determined by f.. II. there exists a constant polyno-
mial such that fi = cPf$ .

Is) P·~ and P/~ are usually -a identified -. This identification will be
avoided i-n what follows.
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The following are equivalent: I. J is the ideal deter.
mined by f. II. f is a pol~nomial ~ Op of the lowest order
among those belonging to J.

8. - f, g being polynomials, we say that f
i8 divisible by g whenever f P g · h for some h E P. Given
two polynomials, f, g there exists a greatest
common divisor (i. e with the greatest order); it is unique
up to a multiplicative constant pol~nomial ~ Op. Two

polynomials f, g, both ~ Op are said to be prime to one

another if their greatest common divisor is a constant

polynomial 1’).
The following are equivalent for non-null polynomials

f, g : I. f, g are prime to one another, II. there exist poly-
nomials p, q such that p · f + q - g.

If p, q are non-null polynomials, p · q is divisible by d,
q and d are prime to one another, then p is divisible by d.

If a E lr’, b E I’, then a* is prime - b~.

If a, then % - a* is 

9. - If

then f is divisible a* .

If

are all different,

then f is divisible by

t4) We do not define divisibility and indivisibility involving null
-polynomials. The notion of  prime , or not « prime - will be not
defined for null-polynomials.
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If in addition to that we suppose that s &#x3E; n -~- 1, then

10. - A polynomial f with ord f &#x3E; 1 is said to be irre-
whenever there do not exist g, h E P such that ord

g &#x3E; ord f, ord h  ord f, f = g . · h. A polynomial f with ord
f - 1 is irreducible 11).

If a polynomial f is irreducible, it is divisible only by
Cp. f and by cp, where is a constant polynomial.
Conversely, if f is divisible only by and by 
and if ord f &#x3E; 1, then f is irreducible.

If f is irreducible, I and there

exists a E 11’ such that then ord f = 1.
If f is reducible, then s &#x3E; 2, ord

gs &#x3E; 1, where all polynomials gi have the coefficient 1p at

the term with highest power and where all gi are

irreducible with ord g~ ~ 1. This decomposition is p unique
up to permutation of factors.

11. - The ideal J is termed maximal (indecomposable)
whenever 1) J ~ P and 2) when for every ideal J’, such

that J C J’ C P, we have either J = J’ or J’ = P.
The following are equivalent: I. J is a maximal ideal,

II. J is the ideal generated by ain irreducible polynomial.
Remark. Notice that a prime ideal J, i. e. such that Pj

is an integrity domain, may not be a maximal ideal e. g.

put J 
If J is a maximal ideal, then PJ (and P/J) are commu-

tative f iel ds, and conversely.
If J is determined by the irreducible polynomial f =

tO + ... + ord f = n &#x3E; 1, then the elements of the
field Pj have the form + ... + b~ E F. This
follows from the theorem on the division-algorithm.

U) We do not define irreducibility and reducibility for constant!s) We do nnt define irreducibility and reducibilit~ for constant

polynomials.
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12. - Given a polynomial

by its derivative f’ we shall understand the polynomial

The notion of derivative does not depend on the choice
of the representation (1) of f. For a constant polynomial f
we have f=0r. We def ine f or r = 0, 1, 2, ... 

i. e. the 4. higher derivatives » of f.
The following f ormnlas are valid :

If ord f = n, then

then

and for ord f = 0 we have ao (~ -~- (Here 1 ! , 2 ! ...

stand for (1F t)*, (2p 1)*, etc).

Extension of a non trivial commutative field.

13. - Let F, G be two non trivial fields. (I’) C (G) will

signify that 1~’ is an all operations-genuine strict subfield
of (~. (see [Preface 8]). We shall also call I" partial field
of G, and G superfield of ~.

If A, B are correspondences, their composition will be
written B.A~ or A (7).

It is defined as I z, ø I, there exists y with xAy and
yAz 1. Both above manners of writing are useful.

2 0
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If E is a set, then card E will mean the power of E,
i. e. the cardinal number of E.

We also shall use the which will mean equality
of classes, (sets).

In the devolopment of the theory of fields the field Pj
is more convenient that P/J, though in some topics, P/J
is more useful. The field PJ is an all operations - zero -
and unit - genuine extension of F through isomorphism b
which is ~ ~ - invariant and carries a E h’ into the poly-
nomial d~. We call 1Ý standard. ", differs from h (defined
in [2]), in that b is F P - invariant only. Denote by t

the J cl - invariant isomorphism from PJ onto P/J, defined
by f f f where 7 is the equivalence class whose representa-
tive is f. The correspondence t, carries the polynomial

The correspondence tbJ carries o6F into ä*. It is ~ ~_
- invariant.

We call PJ elementary algebraic (equivalence) exten8ion
of F and P/J elementary algebraic extension of ~’.

14. - The ring P being an integrity domain with unit,
it generates another ring Q, whose elements are ordered

couples of polynomial, in the following way:
We consider only the couples (f, g) where We

define the equality A governing in Q by «(f1, gj) = ( f~ , g2)
means fi · g2 P f 2 and the operations by:

These operations are Q - invariant . If we define

lp), 1p), we get zero and the unit of the

ring Q. The ring Q is a field; we call it quotient field of
P (couple form). If we consider saturated classes of mutually
Q -equal couples (so called Q -equivalence ctasses), and
define the operations of addition and multiplication by
means of representatives, we get another field Q, called

quotient-field of P (cla88-form). Q and Q, are isomorphic
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with one another through the correspondence .v which is

Q el - invariant and which attaches to the couple ( f, g) the

equivalence class whose representative is { f, g). Denote by
(~ the correspondence which attaches to the polynomial f
the couple lp), and consider c as P Q - invariant.
The correspondence b I c = cb carries a E F into the couple
(a*~, lp) and is F Q - invariant.

The field Q is an all operations - zero - and unit ge-
nuine extension of F through the isomorphism cb. The

field Q is also so through the isomorphism scb. We call Q
elementary transcendental eztemion o f F (couple form), and
Q elementary transcendentat extension o f F (class form).
We have

where on the right the operations are those in Q.

15. - Let C (G) be two non trivial f ields, and let

u E (~. Denote by [F, u] the smallest partial field of G con-

taining l~’ and u. It does not depend on the choice of the
. superfield (~, provided that (1~’) c (G) and u E G. We call

[F, u] single element extension of F in 8uperfield. (In a
similar way we define [~’, ~2, ..., ~8]). Under these cir-
cumstances there can occur two and only two following
cases:

1) Algebraic case : There exists an irreductible EF-po-
lynomial

such that 4oUo + ... -~-- anu ~ n -- o G , 
This polynomial is unique up to a multiplicative con-

stant polynomial 
Let J be the maximal ideal determined by (1). Then

the J G - invariant correspondence øJ which carries

isomorphism from Pj onto {F, u). We have The corres-
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pondence carries the quantities of PIJ onto those of
[F, u]. The correspondences ad and t-1aJ will be termed

standard ; they are well determined by u. We call [F, u~
single element algebraic extens~aon of I’ . within superfields.

Such an extension is called apparent if [F, u] = 1J’; if

’U E G - 1’, it is termed proper. The quantity u, in both
cases is termed algebraic with respect to F, in superfields.

2) Transcendentat cacse : There does not exist any
EF-polynomial

such that

We term [h’, u] single element transcendental, extension

of F within super fietds. 
’

The quantity u of G is termed transcendental with

respect to F in superfields.
It never happens that [h’, u] = F, so the extension is

always proper. mapping ii, defined by

is an isomorphism from Q onto [F, The ~ G - invariant
correspondence d8-1 is an isomorphism from Q onto [F, u].

They both are called standard, and are well determined
by u.

16. - A field 1~’ can be isomorphic with its algebraic
single element extension. Exple.

Let .R be the field of all ordinary rational numbers. Put
The field [F, 1t] is an a.lgebraic extension of F

and is isomorphic to F.
A field F can be isomorphic with its transcendental

single element extension. Expl. Let ai, a2, ... be an infinite

sequence of ordinary transcendental numbers, such that there
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does not exist any algebraic relation between 0153,.,

whatever n may be. Put F=[B, 01532, ...]. aiJ is a

transcendental extension of F and is isomorphic to F.
However, if (F) C (G), u, v E G, and we are only interested

in isomorphism for which ma = a for all a E 1~’, (F-rigrid
-isomorphzsm), then F is never isomorphic to any of its

proper single element extension. Under the above requi-
rement [1’, u] and [F, v] are isomorphic if and only if either
u, v are both transcendental or are both algebraic with the
same ideal J. This can be proved by considering various
standard mappings.

Concerning algebraic extension of F in superfields G,
given an irreductible polynomial of order n &#x3E; 2, there can
exist in G at most n dif ferent qnantities u., ..., y u~, such
that [F, ... , [F, un] are mutually F-rigid isomorphic.

17. - If (F) c (G) c (B7 we say that (G) is an extension

of F within H . (in 8uperfield). G is termed atgrebraic in
supe~r ftetd whenever every quantity u E G ia algebraic with
respect to F. It is known that if G is an algebraic extension
of h’ and v E H is algebraic with respect to G, then v is

also algebraic with respect to F. If (F) C (G) and f is an

EP-polynomial, then G is termed splitting field. of f, if f
can be decomposed into linear EG-polynomials in the

EG-ring. (G) is termed algebraic closure of F whenever 1)
every quantity of G is algebraic with respect to F, 2) G is
a splitting field of every Eh’-polynomial with order &#x3E; 2.

Our next purpose I s t o p r o v e t h e e x I s t a n c e

of the algebraic closure. To do this we shall give a
proof of the existence of a splitting field for a given EF-po-
lynomial. The proof of the main theorem will need only
some supplementary remarks. We shall need few prepara-
tions.

18. - We shall perform many elementary algebraic
extension of F, applied one after another. Now, such an
extension changes the logical type of quantities considered.
Indeed, let us fix the type of the numbers 0. 1.

2, ..., denoting it by v. Let a b~ the logical type
~ 0 *
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of quantities of the f ield F. An EP-polynomial,
being a function, is a correspondence between the elements
of type v and elements of type a. It has the type which we
may denote by v, a ~ I (see [Preface 6]). The elements of P/J
are classes of polynomials, so their type may be denoted by

a 1. The standard isomorphism from F into P/J is

and its type is a ; cl so the inverse corres-

pondence, (bJ)-lt-1, has the type ~ ( cl v; ; a 1.

19. - Let 0 be a set of any elements (abstract or cons-
tructed) provided with an equality =. Suppose that card

There exists one - to - one ~’ ~ - correspon-
dence which maps the quantities into 1&#x3E;. Choose such
a correspondence m and put The set Po can be

organized through m into a commutative field by defining
the operations:

and by defining

Thus, the given field can be isomorphically transformed
into another one with elements having a type given in
advance, satisfying only a condition concerning the power.
This device will be now applied.

20.. Let F be a non trivial commutative a set

as in [19], such that card 0 &#x3E; max [card 14’, 90]. If 1~’ is finite,
the P = P(F) is denumerable, and if F is infinite, card _

card 1~’. Thus in any case card P  ~. Transport F through
an isomorphism, as in [19] into a field such that C 0.
We shall operate only on Fo. Let J be a maximal
ideal in the El~’-ring and put

Let
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be an irreducible EFo-polynomial generating J . Since
card (G’ -  card Fo) we can choose a 1 --- 1

correspondence it which carries G’ into a subset G C ~
in such a way that = m. We organise G into a field
(G) by means of it as in [19]. We get (Fo) C (G).

Let u df Then We have

and the EG-polynomial (1) which can be written as

is divisible b(G)u. Every quantity of G has the shape
bou° + ... so G = [F°, u]. Thus we have extended
F through isomorphism to G. Of course the extension may
be apparent. Now we can proceed with G in the same way
as we did with Fo, and by the choice of an ideal in the

ring of EG-polynomials, extend G, getting a field H where
(F) C (G) c (H), H C We call the construction, sketched
above, [Fo, J, it,]-construction. It can be performed because
the cardinal of 4Y is sufficiently high.

21. - Now, we are going to prove the existance of the

splitting field of a polynomial.
Let F, Fo, be as before in [20] and let f be an

EFo-polynomial with order &#x3E; 1. Let 8 be the type of ele-

ments of 4Y, and v - that of the numbers 0, 1, 2, .... Con-

sider the class of all I - 1 correspondences which carry a
set of elements of the type cll 8 ~ ; 8 ~ 1 into 1&#x3E;, and order
well this class, getting the well ordering

Consider all functions defined on finite subsets of E =
= 0~ 1, 2, ... I and with values in 0. Order them well

It may happen that f has the shape
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where cP is a constant polynomial =1= Op and c¡ E Fo. In this
case we stop the process and put

H is the splitting field of f.
In the remaining case we have

where s~ &#x3E; 1, ... , s,~ &#x3E; 1, m &#x3E; 1, k &#x3E; 0, and where

fi are different irreducible polinomials of order &#x3E; 2 with the
coefficient - at the highest power of t.

The representation (3) is unique up to permutation of
factors. In general, if g is an EF-polynomial, say + ...
... -~- n &#x3E; 1, there corresponds to it a well

defined function ~ written in (2) which attaches to 0, 1, ..., n

the quantities bo, bn respectively. This having itoticed,
choose among fl , ... , f. the polynomial f. for which the

corresponding function x in (2) has the smallest index ~.
The polynomial fi is irreducible. Let the corresponding
ideal be J. Apply the construction [h’o, 9 J, na] by using the
correspondence n in (1) with the smallest index a.

~la. - We get a field [Foy in which the polyno-
mial f; is divisible Considering f as an

L~~’1-polynomial, we get the decomposition

If p .! 0, the process stops and Fl is a splitting field
~1 of f.

This process can carried through by ordinary induction
until it stops. It must stop, because o  k  kl  kZ  ...  n.

Thus we get a very definite sequence of nested fields

where the last, called H, is a splitting field of f. The
theorem on the existence of a splitting field is established.
We underscore that given P, ~,. m, f _ and the well order-
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ings (1) and (2), the constructed splitting field is well deter-
mined. We denote it by H(Fo , f).

33. - S k e t c h of a proof of the existence of the
algebraic closure of a given field F.

We take over the entities F, in, from [21] and
the well orderings t "’2. t, and Let us order well all

different ideals of the ring of EF-polynomials:

The power of (3) is  card 0. Let

be the corresponding irreducible polynomials, which we
suppose to have the coefficient lp at the highest power
of ~. Thus the sequence (4) is well determined. Determine the
splitting fields Hl = H(Fo, (1), H = H(H1, f.), etc. as in

[21]. They are well determined and we have

Indeed, suppose we have already defined all Hy for y  a.

If a 1 exists, we define [Ha,-1, and if a is a limit

ordinal, we define

, The construction can be carried through, because card
4Y ia enough high. We can prove that all Ha are algebraic
extensions of Fo . We have: if al  a2 , then (Ha,) C (H,).
The union of all Ha is the required algebraic closure of P
through the isomorphism m,. The theorem is established.

23. - Linearly ordered fields. Let I~’ be a non trivial

, field and ~P ~ 0 a subset of 1~’, satisfying the following con-
ditions : 1) &#x3E; if then one and only one of the relations
a E P, - a E P, a = 0 holds true; 2) if a, b E P, then 
and d · b E P. We call the quantities of P positive quantities
of 1’. We define the correspondence a  b a E P
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or b a = 0 ~. The correspondence « C » is ~ ~ invariant
and it organizes F into a chain. A non trivial field endowed
with thus defined ordering is termed linearly ordered field.
We define a  b as b - a E P, b&#x3E;aas a  b, and b &#x3E; a

as a  b. We define the absolute I of a as this one
among a, a which is &#x3E; 0. All usual formal rules of

ordinary algebra of real numbers, hold true in

linearly ordered fields.

24. - A linearly ordered f ield F has the characteristic 0
i. e. its smallest partial field is isomorphic with the field

of ordinary rational numbers. The power of F is infinite,
~~ ~ 

therefore a polynomial I ai ~~, such for all
i=O

c is necessarily the null polynomial (compare [5]). It

follows that there exists an all operations - zero - and - unit
tt

- isomorphism between the polynomials and the
II.. ’=0

pol~nomial - f unctions ~ a; x~ where x is a variabte with
i=O

domains F. This fact allows us to replace polynomials p by
pol ynomia t - functions p(x).

In the sequal, dealing with linearly ordered fields, w e

shall use polynomial-functions only. The

polynomial ~ will be replaced by polynomial-function z. The

derivative of the polynomial p can be denoted by de.p ~ p ~ dx ’ 
Y

fined not as the limit of the quotient of increments, but
~ 

- ~ da ’

in the pure formal way with da _-_ 0 x = 0~~ ~~~ ~°~~~~ ~’~’’~ "’~ 
.=1 

’ ~’~~~ 
dx C ) ~ ~

(see [12]). The Taylor formula

holds true for any h E .h’, and polynomial p.

2~. - If a &#x3E; fl, b &#x3E; 0, then there exists to &#x3E; 0 such that
n

for every  ho we have I I  a. Let f(x) = ~ 
$==?o

(a ~ ~j ; there exists M&#x3E;0 such that for all x with z ~ ~ 1
we have  M. If al , aZ , ... , aM E ~’, (n &#x3E; 1), b &#x3E; 0, then
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there exists h &#x3E; 0 such that if x ~ then alx + ... +

then there exists h &#x3E; 0 such that 1 x I  h, then

. 

-1 

. P(X,,,)there exists h &#x3E; 0, such that if then P(x) &#x3E; 9 .
The following «continuity-property» holds true : If for a

polynomial P(x) we have P(xo) = 0, then for every E &#x3E; 0

there exists 6 &#x3E; 0 such that if x then ( C E.

26. - If P(x) is a polynomial and P’(xo) &#x3E; 0, then there

exists h &#x3E; 0 such that if then

P(~~1) C P(x2). The proof uses the identity ·

If P’(xo) = 0, P"(xo) &#x3E; 0, then there exists ho &#x3E; 0 such

that if xo  Xl  X2  xo , then P(xl) &#x3E; P(X2)’ and if

The proof is based
on the inequality h2 -f - -~- ... + hi  (h2 -~- h1)r, valid for
non negative hi, h2.

27. - If for polynomial functions the Rolle’ s theorem
holds true, then the Lagrange’ s and Cauchy’s mean value
theorems are valid. Consequently we get also the Taylors
theorem « With remainder» :

where 0  6  1. Under this condition, if we suppose that

then 1) if r is even, there exists 5&#x3E;0 such that if 
then and 2) if r is odd, then

uhere exists 8&#x3E;0 such that if we

have and if then 
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If for polynomial-functions .f’(x) the Weierstrass Null
-theorem holds true, i. e. ~ if a, a  b, P(a)  o, P(b) &#x3E; 0,
then there exists c E F such that a  c  b, P(c) = 0 ~, then
the Belle’s theorem can be proved for polynomial-functions.

28. - Formslly real fields of Artin and Schreier, (4), (6).
Let F be a non trivial field. Il is termed formally-real

whenever (- 1) E F cannot be represented as the sum of a
finite number of squares of quantities of F. The field F
is termed atgebraicatty closed formally real (ac fr) if 1) it is

formally real, 2) there does not exist any proper algebraic
extension of .F which would be formally-real. A linearly
ordered field always is formally real.

An acrf can always be linearly ordered and in a

unique way. If F is an acrf, then the Weierstrass Null
-theorem holds true for polynomials, and consequently the
I~olle’ a theorem too. 

~

Let F be a linearly ordered field, and, G its algebraic
closure through isomorphism ’1l1. Put P,, = m 1~’ C G. Then
there exists at least one linearly ordered superfield G, of F,
within G, such that Q~l is an acfr and all operations, - zero
- unit - and order - genuine strict extension of F, within G.
(11 will be termed algrebraic real closure of F through iso-

morphism. If we suppose that F C G and that (~ is the

algebraic closure of 1’, then there may exist many real

algebraic closure Fi of F within G, such that (F) C C (G)
with preservation of order, but they all are all operations
-zero-unit - and order - F-rigid-isomorphic. In the seqnal
we shall rely on theorems taken from the theory of Artin
and Schreier.

Extension of linearly ordered fields.

29. - In what follows we shall suppose that the

given linearly ordered field F is a subfield of

its algebraic closure We select among all real alge-
braic closures of ~’ within l~A a single one, we shall keep
it fixed and denote it by ~’. So we have (F) 9 (F) ~ 

By a gap in (F) we shall understand a couple (A, B)
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of subsets of h’ such that 1) A ~ 0, B ~ 0, 2) AnB = 0,
A U B = F, 3) i. e. for every zEA and B

we have x  y in (F). A gap is a kind of Dedekind-section
of (F).

If (A, B) is a gap in (F) then the following is true:

if a E A, a’sa, then a’EA? if then b’ E B.

If (A, B) is a gap in (F), then it cannot happen that A
admits a maximum and, at the same time, B admits a
minimum. The expressions and are meaningful.
We put We call 0153*, *~ endings
determined by the gap (A, B). We have a*  *~ in the orde-
ring of F-endings.

29. - As we mentioned in [24], we shall consider polyno-
mials-functions instead of polynomials. The symbol PF(X)Ff,
where P, P’ are fields will denote a polynomial function
whose coefficients belong to 1~’ but whose range of the

variable x is h’’. We shall drop the indices and the dot if

no misunderstanding can occur, so e. g. p(x) can be under-
stood as p-v(x)F,. We shall ca,ll pF(x)g. polynomial in F with
doniain F’.

Let We define We have

p(M) C I’. The following are equivalent: I. M =1=0, II. 
If p = c is a constand polynomial in F, then p(M) is

composed of the single quantity c, for all M=t=0.

30. - We have supposed that ~’ is embedded in its alge-
braic real closure I’ with preservation of all operations
and order. A gap (A, B) in 1~’ will be. termed apparent
whenever either A admits a maximum, say ao, or B admits
a minimum, say 00.

In this case the single elements extensions [E, ao] or

[F; bo] within any supperfield of F coincide with F. These
extensions are apparent, and so are the corresponding
elementary extensions.

31. - In the remaining case (A, B) will be termed proper
gap in F. Such a proper gap will be termed algebraic,
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whenever there exists in h’ a quantity z with

This is equivalent to ex*  z  *~ in the ordering of

F-endings and also to a*  z  ~ ~ in the ordering of

F-endings, where are the natural correspondents
of ~~ in 1~’ (see [§ 1G; 2]). The single element extension
[F; z] of F in F is algebraic and so is the corresponding
elementary extension of h’. The notion of an algebraic
proper gap does not depend on the choice of the real closed
algebraic extension F of F.

32. - Suppose that the proper gap (A, B) is not algebraic.
Hence there does not exist any quantity z E F with A  z  B
in F. 

~

Suppose that (A’, B’) is a gap in F, such that 
B C B’. We shall prove that

We have by [§ 3]

Suppose that a*  Then there exists a’ E ~.’ such
that a*  a’ [§ ID; 3].

Since a’ E A’, A’  B’ and hence  B, it follows that
a’  ~~(B), i. e. d’  *A. Hence a~  a’  * ~ and then
A  a’  B, i. e. B) is an algebraic gap in .F’, which is a
contradiction. Consequently a* = In a similar way
we prove that *~ ~ _ 2&#x26;(B). 

_

Def. We call (A’, B’) the gap in ~’ corre8ponding to (A, B).

33. - Theorem. If 1) (A, B) is proper but not a proper
algebraic gap, 2) is a polynomial function +-0, then
there exist b’ E B’ and s &#x3E; 0, such that either 16)

where t~’, ~’) is the gap

(ø’, means
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in F with d C d’, B C B’; (the gap corresponding to (A, B),
[Def. 3 2].

Proof. The thesis is true for constant polynomials. Sup-
pose that p is not constant. The polynomial-function pF(x)F
and its algebraic derivative may have roots in Fg 

B dx /jp

or not. Suppose that neither p nor dp has. Then by thepp p dx _ ~ _
Weierstrass null-teorem p is either &#x3E; 0 in P or p  0 in I’,

and the same holds for ::. It follows, by the mean valuedx ’

theorem [28], that p is in F either constantly decreasing
or constantly increasing. Take any a’EA’, b’ E B’. We have

a’  b’ and p is in ~a’, b’p decreasing or increasing and ha.s
the same sign. 

Suppose p &#x3E; 0. The polynomial-function p admits as

minimum in ~a’, either the quantity p(a’) or p(b’). Thus

we have, denoting by 2s this minimum, p(x) &#x3E; s in (’, 
s E P so, in this case the theorem is proved. Similar proof
is in the case where p  0. We get an inequality

Now suppose that the set of quantities which are

either roots of p or of 
dp is not empty. Let Zo  Z2  ...  z,~ ydx p ~ ’

(n &#x3E; 1) be all these roots.
Using the Weierstrass null-theorem and the mean-value

theorem we prove that in each open interval:

the polynomial has a constant sign and is either

decreasing or increasing, (being, of course, ~ 0). The

inequality

is not true, whatever k may be. Indeed Ok E F, and (A, B)
is a proper gap which is not algebraic. The equalities
1* = zk and *0 = zk are also not true. Indeed, if 
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we would have a* = Z1c too, and then, A would have a

maximum. In a similar way we prove that the equality
~ ~ = sk does not take place. Consequently one and only
one of the following inequalities takes place:

Suppose that

There exist a, bE F such that 
’

in the ordering of F-endings. Since, in (zf, Zt+l)p, the poly-
nomial p is either decreasing or increasing and has a

constant sign, so it is also in ~a, b), and p admits there

its minimum and maximum at the endpoints. Using a similar
argument, to that applied at the beginning of the proof,
we establish the thesis.

34. - We resume the notations of [33]. A polynomial p
is said to be positive, ~ ppos » with respect to (A, B)
whenever there exist a, b E F and s &#x3E; 0 such that a  b,
a 6 A’, b E B’, s E F and such that for the corresponding poly-
nomial-function we have p((a, b)) &#x3E; s.

The- notion of p being positive does not depend on the
choice of the algebraic real closure 1~’ of 1~. Indeed, any
two real- algebraic closures of F are operation, order

F-rigid-isomorphic.
Given a polynomial p in 1~’, we have disjointedly either

p pos or (- p) pos or p = 0. The notion - p pos » is inva-

riant with respect to equality of polynomials. If p pos, q

pos, then. (p -~- q) pos and (p · q) pos.
Having this, consider ordered couples of EF-polynomials

(p, q) with q ~ 0, and define their equality and opera-
tions as in [14]. The collection of couples, considered in

thus organized field Q, constitutes an elementary transcen-
dental extension of .F’ through the isomorphism cb which
carries a E F into the couple (a*, lp).



305

From [14] and [15] we see that Q is a single element
transcendental extension of within Q, namely
[F* ; ~·]. The quantities of Q are

where

Now we shall define an ordering on Q. If p ~ 0 is a

polynomial, define  sign po as -~- 1 or 1 accordingly to
whether p pos or (- p) pos. Having the couple (p, q) of

EF-pol~nomials with we call (p, q) positive, « (p, q) posv,
whenever sign p. sign q = + 1. We prove that the notion

« (p, is Q -invariant, and does not depend on the

choice of the real algebraic closure F of F. If (p, q) pos
and (p’, q’) pos, then [(p, q)+(p’, pos and [(p, q) - (p’, qf)] pos.
If q ~ 0 and p is any EP-polynomial, then either (p, q) pos,
or [ (p, q)] pos or (p, OQ, these alternatives excluding
one another.

It follows that Q is organized into a linearly ordered
field (Q). The correspondence ob transforms into the

couple (a~ ; lp) of polynomials, and the following are equi.
valent : I. a* is positive, II. (a~’ ; 1 P) is positive. Conse-

quently the correspondence cb transforms the linearly
ordered field (F) into an order-genuine linear partial field
of (Q), so (Q) is an extension of (F) with preservation of

order-through the isomorphism cb.
If b E B, we have a*~ x  ~~  b~ ~’, so if we denote

by B*a: the cb-correspondents of the sets A, B, we
have A*~ C ~~  B~’~. Thus we get, through isomorphism,
a linearly ordered transcendental extension of 1~’, which
introduces a now element into the gap (A, B) of F. The

above discussion yields a proof of the following theorem.

g4. - Theorem. If 2. F is a linearly ordered field,
2. (~, B) is a gap in I’, [31], which is proper but not alge-
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braic, 3. Q is the elementary transcendental extension of F,
4. We define on Q the linear ordering by considering the

couples (p, q) of EF-pol~nomials with q =1= 0 as positive
whenever for the corresponding polynomial functions 

where F is a real closed algebraic extension of F,
there exist b’ E B’, a’  b’ such that p((a’, b’~), q(~a’, 
are both &#x3E; 0 or both  0. ((A’, B’) is the gap in ~’ corre-

sponding to (g, B), [32]), then the linearly ordered field (Q)
iR an operation and order-genuine linear extension of F

through the isomorphism ob.
If we put for a E F, where 1 p)

for EF-polynomials f, the elements of Q are

and in the linear ordering (Q) we have cb(A)  gx  cb(B),
so (Q) is the single element to-transcendental extension
of within Q, i. e. ~].

The gap spoken of in [theor. 34] yields a well determined
linearly ordered extension of I’. We call it elementary
linear tra8cende~Ztat extension of F determined by the

(A, B).

3~. - The i-somorphism s, in [14], transforms the couple-
form field Q into the class - form - quotient field Q. If we
define through s, the order in Q, we get a linearly ordered
field (0). Thus (0) is an elementary extension of Ir’ through
the isomorphism which preserves operations, zero, unit
and order.

The type c~(a) of quantities of Q is that of a class of

couples of polynomials. Now, by [18], the type of a poly-
nomial is ) 0153 I, where a is the type of elements of 1~’.

Hence

36. - In [30 - 35] we have proved the existence of elemen-
tary linear extensions of a linearly ordered field F, by
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placing a new element into any gap of I’. We have obtained

three categories of extensions : apparent, algebraic and

transcendental. The apparent extension can be considered

as an algebraic extension, so we have obtained two different
kinds of extensions, if the type of elements is only consi-

dered : the algebraic, apparent or not, where the elements
of the extended field have the type

and the transcendental, where the type of elements is §(a),
[35, (1)].

Now since we shall need to perform many times these
extensions, we shall unify the types of elemen-

tary extension, as follows:

Denote, in general, by 0(p) the empty set whose elements
have the type p. Let M, N, be sets whose elements have
the type 7~, p respectively. Then the ordered couples

have the same type cl X ; cl tt I. Applying this remark to
extensions of a linearly ordered field F, whose quantities
have the type a, consider the elements x of an extension

F/J and the elements y of the extension Q. Let us make
correspond, to e~ery x, the ordered couple

This one - to - one correspondence organizes the class
of all couples (2) into a linearly ordered f ield, as in [19],
which is isomorphic to 

Analogously let us make correspond to every y the

couple

We get a field isomorphic to Q. Now the type of (3)
and (4) is the same, viz,
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Thus we have obtained for any elementary gap-extension
a field whose elements have the same type (5).

~7. - Let us remark that the real algebraic closure F of
of F had only the capacity of a tool for proving the exis-
tence of a gap-extension. The type of F does not influence
the type of extensions, since is can be always performed
through a suitable isomorphism.

38. - Thus we have proved the following

Theorem. If 1. F is a non trivial, linearly ordered field
whose elements have the type a,

2. (A, B) is a gap in 1~’,

then there exists an elementary linear extension Q~ of F,
(induced by the gap), trough isomorphism, such that

1) the type of elements of G is a(a), [36; (5)],
2) if we denote by u~ this isomorphism, then there

exists p E G such that

39... Notice that, if I’ is given, and we need to perform
many elementary linear gap-extension, step by step, (as we
shall do in § 7), we always can arrange so as to have, for
all these extension, the same type 0 of elements. To do

this, we can use the method indicated in [19]. This is

possible whenever the cardinal number of the set of all

elements of type 0 is sufficiently great.

§ 7. - Construction of a well ordering of :fields.

1. - All necessary preparations having been made, we
shall proceed to the problem of extension of measure.

Let B be a non trivial finitely additive Boolean tribe

and B’ its all operations, zero and unit genuine strict
extension. So we have 1 B ‘ OB . - B 9 B’.
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We suppose that B =t= B’. Let cpo be a linearly ordered
not trivial field, and finitely additve measure on B,
such that E qo and &#x3E; 0 for ever~ ac E B.
We shall prove that the measure can be extended,

through isomorphism, to B’. Of course cpo may not suffice
for the extension, so qo should be extended to a sufficiently
wide linearly ordered field. This will be made by stepwise
extension of cpo , so we shall construct a suitable well

ordering of more and more wide linearly ordered fields.
Each step will be a proper or apparent elementary linear
extension. Since a proper elementary extension of an abstract
field can be made only through isomorphism, therefore the
elements of the amplier field will be of a logical type
differing from that of the elements of the given field. Now,
there may occur, in the general case, that an infinity of

proper extensions will be needed, so we may obtain an infi-
nity of fields of different types. Finally, we must construct a
field which would contain them all through isomorphism ;
hence we shall make a union of these fields. Consequently
we shall apply results and methods, shown in § 6, con-

cerning unification of logical types of various elementary
extensions.

2. - A set cp organized into an ordering, field or linearly
field will be sometimes, for mor clarity denoted by (cp), [cp]
[(c~)] or ([~]) respectively. In accordance with [§ 6; 13], and
[Preface 8], ~ will mean that (y) is an order-genuine
strict subordering of (~). If [~], [~] are fields, then C [~]
will mean that is an all-operations-genuine strict sub-
field of [~], (partial field of [~1). [(cp)] c [(c~)J will mean that
the linearly ordered field [(~)] is an order - and operation -
genuine strict subfield of the linearly ordered field [(~)].

3. - Let

be a distinguished well ordering of different elements of

any kind, with power %4, where 9 &#x3E; max (card qo , card B’;.
2 1 *
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Its domain will be denoted by ~ Let .

be a well ordering of different somata with domain B’.

4. - Let vo be the linear space composed of all

We define the functional go(z) of the variable Bio-aggre.
gate x, as, (see [§ 5 ; 14])

whenever

~ &#x3E; 1, where ... and where ai, ... , an are

disjoint. We know that this definition is independent of
the choice of the representation (5) of x. We also know
that go(x) is a linear functional with multipliers taken from
yo. It is c~o - valued and its domain is composed of all

Bcpo - aggregates.
m

- If X = ~ (m &#x3E; 1), where Ak E B’ and where
k=i

Xk are quantities of a given linearly ordered field §,
denote by (see [§ 5]) the Bp-norm of X in ~. This is
a left ending in 
We know that

6. - We shall construct, as in [19], a linearly ordered
field ([ct&#x3E;]) whose quantities belong to ~ I and which is
order - and operations - isomorphic to ([~o]).

Let (Do be the smallest ideal (segment) in the well order-
ing (1), such that card (Do = card cpo . Choose a 1 -· 1 mapping
(io of yo onto This correspondence induces on 00 a



311

chain ordering (1&#x3E;0)’ defined by

It also organizes ~o into a field [~o] by means of the
definitions

thus ao gives a linearly ordered field isomorphic to

([cp]) through Its quantities belong to ~ 

6.1. - The correspondence ao induces another one, also
denoted by tio, which transforms the aggregates x = E aiqi,

.

where ai E B, q; E 4po into X = ~ = which are
.

B(Do-aggregates. Their collection makes up a linear space,
denoted by Vo whith multipliers taken from It also

transforms the functional go(z) into defined by

The quantity for a E B is a finitely additive

’Do-valued measure on B. Go(X) is a ~o-valued linear fun-
ctional defined on Vo with multipliers taken from 4Yo.

6.2. - We have for all X E V:

We have here the B - norm of X in ~o . It is

a left ending in 

7. - Let us denote by a the logical type of the elements
Q~ . In [§ 6; 36] we have shown that an elementary proper
or apparent extension of can be made so as to have the

type for the quantities of the amplified field, this type
being the same whatever be the extension, transcendental,
proper algebraic or apparent. NoW, consider all chains (C)
whose domains are composed of elements with type a, and
also consider all chains (C’) whose domains are composed
of elements with type Q~a}. Having two chains (C), (0’) and
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supposing that card C card C’, there may exists an order-
isomorphism t)t from (C) onto (C’). Such an isomorphism is

a correspondence between elements of type a and elements
of type a(a). Consider the class of all order-isomorphism
having the above logical type. Let us order it well, getting
a well ordering

where all elements of (7) are different.

8. - LEMMA. If 1. Ci’, CZ are fields with elements of

type a(a), 2. (Cl ) C (CZ ), 3. card O2’  X, 4. ([Ci]) is a field

whith 01 C I Q, 1, 5. tl is an order - and operation-iso-
morphism from (Ci ) onto (Ci), then there exists O2 with
O2 c and an order and operation-isomorphism t2 from

0./ onto O2 such that

In addition to that and t;-1 belong to (7).
Proof. It suffices to suppose that (C,,)-+(C2). As card

and card 01 = card Ci C card CZ’  ~, it follows
that has the power X. Since card Ci’) 
card C2  ~, there exists in t Ql } Ci a set D such that
card D = card 2013 C.,’). Putting D’- C/ 2013 C7, there exists
a 1 -- 1 correspondence s from D’ onto D. Put 01 U D.
We have 01 f 1 D = 0.

Let ti be the correspondence, defined by 
D’ 1 t2 = B.

1, is a one-to-one - mapping carrying C~’ into C2 , and Cl’
into Cl ; ~2 induces on CZ an ordering (C2) and it reproduces
on 01 the given ordering (Ci). We have (Cl) C (~2). We also
have ([Cil) C ([C2]). Si nce and to 1 are order isomorphism s
between chains with elements of type a and chains with
elements of type a(a), therefore ti I and t21 are elements
elements of the well ordering (mr).

9. - Let
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be well ordering of different elements, each of which being
a linear superfield of ([~o]), with elements belonging to

Starting with the entities ([~o]), Yo, defined in [6]
and [6.1], we shall construct a well ordering

of linearly ordered, more and more ample fields with do-
mains C ~ I Q, 1. The construction will be based on the corres-
pondence ao from [6], on the well ordering i Q, 1, on (sp)
from [13], on from [7], and on [9 ; (7a)] which were
chosen arbitrarily. The construction will yield well deter-
mined entities.

Let a &#x3E; 1 be an ordinal where card a  N.
Suppose that we have already constructed the fields

([~~J), the spaces Vp and the linear functionals Gp(X) for

and suppose that the following hypotheses
are satisfied for every 0 x, ~0: 1) 2) if 
then ([~~~]) C ([~~~~]) ; 3) Vp is a linear space with multipliers
taken from Oo and composed of some B’1&#x3E;o-aggregates; 4) if
~’  ~"  ~, then Vp, C Vp,,; 5) Gp(X) is a linear ~s-valued
functional, defined on Vp with multipliers taken from

o ; 6) if and X E Vp,, then = Gp,,(X);
7) for every X E Vp we have  Nbf3(X), the B, 
norm of X in ~~). 8) card cf)f3  N.
We shall construct ([~])y Va and and prove that

for 0 = a the conditions 1) - 8) are satisfied.

10. - Notice that from 1) - 8) the following properties
are resnlting : -

11. - First we shall define the auxiliary entities
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as follows : The type of all sets (Pp being the same, [Hyp. 1]
and since, by a&#x3E; I, there exists 0 with 0~Xy the union

is meaningful. We shall organize (DO into a chain by the
definition: If (f, then there exist ~’, ~" with

~’  a, ~"  a such that

Supposing ~’  ~’·, we have C cÐf¥" [§ 7 ; 10, 2°)].
Now, if Q’ ~ Q" in (~~~~), we put Q’ c Q’’ in (0?).

This definition does not depend on the choice of ~’, ~"
satisfying (9), and it organizes 09 into a chain (~~. We
have for all ~  a

We shall organize (Do into a field as follows: Admitting
(9) and ~’  ~", we define Q’ -~- and Q’ · ~aQ" as Q’ + Q"
and Q’ · Q" in [4)p,,].

This definition does not depend on the choice of §’ and
~", [§ 7 ; 10, 20)], and organizes (DO into a field Thus

we obtain the linearly ordered field ([~]) such that for

every 0  a we have

Since and as, by [Hyp 8) J, card Op C ~, it

follows that

12. - By [Hyp. 3)], Vp is composed of some B’~o-aggregates,
and there exists 0 with 0  a. Consequently the union

is meaningful. V? is composed of somme B’~-aggregates.
V? is a linear space with multipliers taken from «P~.
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13. - By [Hyp. 5)] GriX) is a linear W-valued functional,
defined on V~ , with multipliers taken from Oo.
Hence, by (8), -

We define G?(X) on v! as follows: Let X E v!8. There
exists, by ( 11 ), ~  a such that X E Va . We put

This definition does not depend on the choice of ~, this
by [§ 7; 10, 6°) J. We have (I G~ = Y~. We see that 
is a 4Y9-valued linear functional on V~ with multipliers
taken from ~o .

14. - Let X E V9. There such that X.E V~.
By [Hyp ~) ] we have

where the right hand side is the B, ao(l1) - norm of X
in Op. It is a left ending in Now, by [§ 7 ; 11, (10)],

We get Ga(g)  and then, by Def (12), 
 f or all X E v!8, (14) where the right hand side is

a left ending in 09. It is the of X in 4Y9.

15. - Notice that if a 1 exists, then the entities ([W!]),
T.0 and G.~(X) coincide with ( [~a_1 ] ), Va-1 and 

respectively.

16. - It may happen that the space V~ contains the

characteristic aggregats of all somata of (B’). If so, the

process stops through the formation of ([~~]).

17. - Let us suppose that To. does not contain the cha.

racteristic aggregates of all somata of (B). Under this hypo-
thesis we are going to construct the entities V~ and

as follows. For the sake of simplicity we shall drop
the index a, if no ambiguity will be feared of.
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18. - There exists a soma do of (B‘) whose characteristic
B’CPo-aggregate (see r~ 5; 11]) Xo = _-_ Ao . 1 + co Ao - 0
does not belong to v8. (The coefficients 1,0 can be under-
stood as taken from ~. We shall apply the known Banach
device (1) :

Let We have, by (14),

Now, the B«o(p)-norm in 00 has a meaning for all

B’~o-aggregates. 
’

Since - are so, [12], we get, by [~ 5 ; 6],

Hence, by [13] and [§ 5; 8],

Applying [§ 1G ; 4], we get

which is valid for all x2 E v8. -
The left hand side in (15) is a right ending in (Ofi, and

the right hand side is a left ending in (Ð8).
By [§ 1 G ; 6] we obtain for iterated endings:

in the chain of all By [§ 1K; 2, 3] there exists
a unique smallest right ~~-ending y* such that C*  -~ ~,
and there exists a unique greatest (4Ypending *8, such
that ~S C ~D. Besides we have y**8. Thus we get for

O-endings the relation

valid for all :
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19. - Concerning y*, *8 two cases may occur. It may
happen that there exists a quantity p’ E ~ such that

Suppose this be so. We take the element Qf3 from
[§ 7; 3, (1)] with the smallest index for 
We denote this Qp bx p", getting

20. - It may happen that the quantity 8’, mentioned

above, does not exist. In this case the couple (Y *~, ~ S) of

endings represents a gap in (Oe) which is eithar algebraic
or transcendental, (see [§6; 31, 34. 37]). To proceed with
necessary correctness, take the case [§ 7; 19.1] and denote
by ya the linearly ordered field, with elements of type a(a)
which constitutes the corresponding elementary linear exten-
sion of ([Oe]) through a well determined isomorphism
denoted by Let q9 be the image of and
let p" (of type a(a)) be a quantity in ya which fills up the

gap, according to [§ 6 ; 37]. We have ([cp?]) and A!
is the isomorphism from y9 onto -vt where

In the case ( 19) denote by the linearly ordered
field with elements of type which constitutes the iso-

morphic image of ~~ through isomorphism denoted by 
Put ~~ = CP0153- · We have, as in (19), and ~~ is
the isomorphism from onto ([~~]), where

We are in the conditions of Lemma [8]. Indeed, we
have (19) and (20), and, by [11; (11.2)] card ~~  ~, hence

In the case, considered in [19], we have
card qa "N. Now consider the case involving a true exten-
sion.

The extension is defined by polynomials in ~~ or by
couples of polynomials. The cardinal number of the class
of all polynomial of the nth order is (card ~~~’~1= card y
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hence the cardinal of the class of all polynomials is No . ·
- card 4)?. Since the fields are linearly ordered, their

characteristic is 0 and they contain a partial field isomorphic
with the field of all ordinary rational numbers. Hence

Consequently the power of the class of all

ordered couples of polynomials is (card f)~)2 = card Con-

sequently we have card  N, whenever the case may be.
By Lemma [8] there exists an isomorphism my, taken from
[7, (7)] such that a9 = c~! 1 ~nr 1 and where C 

Take with the smallest index and denote it by ~ca 1. Put

We have 
If there is no true extension of (D4D, we get back [~~]) =

= ([c¡.0153]), and P0153 = p". .
If the gap yields an apparent extension, it is well

determined, and so is also the extension if the gap is

transcendental. However an algebraic gap may admit many
extensions with type a(a). For each such extension we

obtain by te above construction a well determined element

To have a well defined construction, take this extension
of in ~ I which in [9, (7a)J has the smallest index, and
if, nevertheless, there will be more than one element pa
which fills up the gap, take among them one which has
in ~ I the smallest index. In this way the extension and
the element p, will be well determined.
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21. - Consider the relation (16) in [18]. Since (-~) C 
the ordering of endings in (~!) constitutes an order (and
operation)-genuine subordering of the ordering of endings
in ~a .
We get for the isomorphic images of endings

in the ordering of «I»a-endings. Since in ~a we have

we obtain

in valid for all x E 

22. - Define the space as the set of all aggregates
where t E 4Yo . First we notice that if 

then Y admits a unique representation

where

Indeed let

where

We get

If we had t2 =1= t1, we would get

which we excluded in [17], Hence t2 = tl, and then xl = x2 .
I say that Va is a linear space with multipliers taken

from Oo. It is composed of some B’(D,,-aggregates. Indeed
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where

where

Let Since z E V9, it is a B’~o-aggregate
and since f E fl)o, is also a W4D.-aggregate, therefore
x -~- tXo is a B’~o-aggregate.
We have

Indeed if x E ~, we can w~rite x = x -t- 0 · ~o .

. - Define for all aggregates Y = x -f- tXo E Va the

functional by putting

The definition is meaningful on account of the unique-
ness of representation (24.1) of Y. We see that Gx is a

linear functional in Vx with multipliers taken from ~o .
Indeed, let .

be elements of Va .
We have

hence
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If Y E ~ , then G4Y) = Indeed Y = Y -~- 0 Xo.
Hence = 0.0(y) -~- ~ ’ ·

24. - We shall prove that if then

i. e. the Bao(ppnorm of Y in 

Proof. Let Y = x ~-- tXo . Case 1) t = 0. We have, by [23],
= 0?(Y), and then, by [14, (14)] C N‘~a(Y), hence,

since [(21), 10],

for every x E Vl. Since

Hence, by [§ 5 ; 7],

Hence, by [§ IF; 7], since t &#x3E; 0,

Hence, by 1§ 10, 7],

Hence, by [~ 10; 3],

and then
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for ail z E ~. Sine.,-

Applying [§ 1F ; 27], we get - G~ N C 0 ~-- pQ hence,
by a theorem similar to [§ 1(~r ; 4], 0 C~  N -.~- pa and,
by [§ 1F’; 27]

Hence, by [5; 8].

Hence, by [~ 5 ; 7],

Using [§ IF; 10], we get  N(Y), so the assertion

(27) is proved in all cases.

2~. - Having defined ([~aj) and we shall prove
that all properties 1) - 8) in [9] hold true for § == a. We
have Q ~ . This follows from (21).

If 0’ 0":!!~ a, then ([(Do,]) ç;; ([(D This f ollows from

[9, 3)], [11, (11.2)j and [20, (21)].
Va is a linear space with multipliers fronr ~o, and its

elements are B’~0-aggregate8. This follows from [22].
If ~’ C ~" C a, then This follows from [9, 3],

[22, (25)] and [12, (11)].
Ga(X) is a linear (D,,-valued functional, defined on Va

with multipliers, taken from Oo , This follows frem [23].
If ~’ C ~" C a, and then = This

follows from [9, 6], [23] and [13].
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For every X E V. we have  This was

proved in [24]..
We have card 0,,,  U. This follows from [20], because

C ~ and 4D. is an isomorphic image of qa.

26. - This concludes the inductive process. We have

got a well ordering

of linearly ordered fields, a well ordering of linear spaces

and a well ordering of linear functionals

defined on (29) respectively.
The elements of all spaces (29) are B’f)o-aggregaies;

is lt0153-valued with multipliers taken from Oo .
All fields (28) have the same logical type.

§ 8. - The extended measure.

1. - The construction process exhibited in § 7 must stop
at (DO for a certain index y, where card y  M. Indeed, each
step of the process is conditioned by the existence of a

soma E B’, whose characteristic aggregate does not belong
to V9.

Now, since card B  My the well ordering must have its
power  M, Take this index, consider the field ([Ð,.D, the

space ~ and the linear functional The space V~
contains the characteristic aggregates of all somata belon-

ging to B’. We have

To simplify notions, put
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2. - We define f or d E B’ :

We have

If A1,
and then

Consequently represents the extended measure ti
from B over all B’ ; it is finitely additive.

3. We have supposed that the measure given on B
is non negative. We shall prove that 1L8 is also non nega-
tive. To do this, consider the formula (27)

proved in [24, (27)].

which gives

This is true for any A E B’ . Applying (4) to coA, we get

hence

and then

Since ~, ~ (.~) &#x3E; 0 for every E B’, it follows that

We have proved the following
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Theorem. If 1. B and B’ are finitely additive Boolean

tribes,
2. B is a finitely genuine strict subtribe of B’, i. e.

with equality, finite operations, zero and unit taken from B’,
3. yo is a non trivial linearly ordered field,
4. p~a) is an ~o-valned, finitely additive, non negative

measure on B,
then there exists a linearly ordered field 0 and a 0-valued,
finitely additive, non negative measure M(a) on B’ such that

1) rfo is an operation and order genuine subfield of 4Y
through isomorphism,

2) if we denote this isomorphism by t, then M(a) _
for all a E B,

3) for every A E B’ we have

where p*, *p are Jordan B~o-eaterior and exterior, ending
valued measures on B’ ,

4) max (card card B’).
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