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ON CONVEX SETS IN ABSTRACT LINEAR

SPACES WHERE NO TOPOLOGY IS ASSUMED

(HAMEL BODIES AND LINEAR BOUNDEDNESS)

Nota (*) di D. T. FINKBEINER e di O. M. NIKODÝM
(Kenyon College Ohio)

1. Introduction.

This note continues the study, initiated by W. D. BERG
and 0. M. NIgODYbI, of basic notions concerning convex sets
in general linear spaces. In [1.] these authors exhibited many

paradoxical properties of such sets in infinite dimensional

spaces. The present investigation is concerned primarily with
the concept of linear boundedness in infinite dimensional spaces,
and attention is given to a particularly simple and useful type
of linearly bounded convex sets, called Hamel bodies. It is

shown that two Hamel bodies can be chosen in such a way
that their vector sum is the entire space. Also for any convex

body B there exists a symmetric image B’ of B such that the
vector sum of B and B’ includes the entire line of symmetry
and therefore is not linearly bounded. 

°

2. Hamel Bodies.

Throughout this paper L will denote a real linear vector
space. We first recall several basic definitions most of which

were stated by Berg and Nikod’m, in [1].
(1) A set S C: L is said to be convex if and only if the

conditions ~, y E S and 0  ~ ~ 1 imply X1c + ( 1 ~)y E S.

(*) Pervenuta in Redazione il 19 Giugno 1954.
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(2) A set S is said to be linearly bounded if and only if for
each line I in L set is contained in a finite segment of 1.

(3) A set S is said to be linearly closed if and only if for
each’line I in L the is closed in the natural topo-
logy of 1.

(4) A point x is said to be a linearly inner point of a set S
if and only if on each line through x there exists an open
interval containing x and belonging to S.

(5) A convex set which possesses at least one linearly inner
point is called a convex body.

(6) A Hamel basis for L is a set H of linearly independent
vectors with the property that if x E L there exist a finite

sequence of vectors hi, h2, ..., hn E H (where n depends on x)
and a sequence of real numbers ~1, À2, ..., À.. such that

~ = Xihi -y Xzh2 -i- ... + 
Let H be a Hamel basis for L and let - H = t z 

The Hamel body B (H) determined b y H is defined to be the
intersection of all convex sets containing both H and H ;
that is,

We shall ses that B (H) is a linearly closed, linearly bounded
convex body, symmetric about the zero vector 0 which is a

linearly inner point of B (H). The usefulness of Hamel bodies
is indicated by their relation to general convex bodies as given
by the following result.

THEOREM 1. If B is a convex body and if S E B. there

exist a Hamel body B (H) and a vector y such that x E B (H)
+ y C B.

Proof. Let B be a convex body, T, E B, and z a linearly
inner point of B. Then y = ( x + z)/2 is also a linearly inner
point of B. Let B’ - B - y = b y, for all b E the trans-

lation of B by the vector - y. Then x y E B’ and z y ==

= - B’. Since B’ is a convex body with Q as a

linearly inner point, a Hamel basis .g for L may be formed by
and then extending the set ( hi ) I to a Hamel

basis by choosing each ha in such a way that ha 
are in 13’. Then B.
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An immediate consequence of Theorem 1 is that any convex

body B is the union of all translated Hamel bodies contained

in B. Since every convex body contains many translated Hamel

bodies, it is natural to w onder whether each linearly bounded
convex body is contained in a suitably chosen translated Hamel

body. That this is not the case follows from a result of Klee [3]
who showed that in any infinite dimensional space L there
exists a linearly bounded, convex, ubiquitous subset U. This

implies that U C cl U L. On the other hand Theorem 3

below establishes that any Hamel body is linearly closed;
hence U is contained in no translated Hamel body.

Our next theorem and its corollaries provide simple geo-
metric descriptions of Hamel bodies.

THEOREM 2. If H is a Hamel basis, then the following are
equivalent:

( 1) ~ E B ( H).
(2) there exist a finite sequence of real numbers "1’ À?, ..., Xn

and a sequence of a distinct vectors hi E H such that

Proof. (- H)). From [ 1 ] , there
exist two positive integers, m and k, vectors 11’ ..., fm E H and

..., H, and non-negative real numbers a1, ..., I I

B1, Pk such that E a; =1 -[- Epigi.
1 1 I 1

It is quite possible that for some i and some j. We

may suppose that fu ..., f, are distinct from each other and
from all gi, and that gl, ..., are distinct from each

other and from all f ¡ (where ~==~2013(m2013r)~:0)y and that

and let
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Then we have

Furthermore the vectors h. are all distinct vectors of H, and

This completes the first half of the proof. To prove the con-
n

verse, let x = E where hi E H, the hi are distinct, and
n 1

£ À¡ c~ 1. We may assume X ; &#x3E; 0 for i  m and for
1

be distinct from hi, ..., and let

Then we have

Since this is a linear combination of vectors in H U ( H) in
which the coefficients are non-negative with sum equal to one,
x E hull 

THEOREM 3.

(2) B ( H) is a linearly bounded and linearly closed con-
vex body.

Proof. From Theorem 2 it follows immediately that if

x E B (H), then x E B (H). The convexity of B (H) is explicit
in the definition of a Hamel body. To prove that B (H) is a

body, we show that 0 is a linearly inner point. Let I be an
arbitrary line through 0. 0 and x E 1, we have

x = Eaihi ; -, let y = ( I ) ai Then y % 0 and y E 13(9) n Z.
1 

° 

1

Thus the closed segmenti ry, - y] of I is in B (H), and 0 is a

linearly inner point of B (H).
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m

To verify that is linearly bounded, 

and y = E be 
- 

two arbitrary but distinct points. For each

point z on the line determined by s and y there exists a real
number X such that + (1 À)y. Define n real numbers
~,~ by letting for 1  2  m and Ii, = (I - ),)Pi for

Consider the real function p defined by

-i- ~ ~ ~3; ~ &#x3E; 0, p(X) increases without bound as X - oo. Then

for sufficiently large X, p (X) &#x3E; 1, and z Thus B (H) is

linearly bounded. Furthermore, p is a non-negative, continuous

function which assumes a minimum value M = min (£ I cxi E 

at either = 0 or = 1. If M &#x3E; 1, then the line joining x and
y does not intersect B ( H). If M ~ 1, the equation 
determines tw o and only two values À1 and À2 (possibly e4ual)
such that p (k,) = p (À2) = 1, p (X)  1 for ~1  ~  À2, and

p ( ~) &#x3E; 1 otherwise. Hence in all cases the intersection of B ( H)
with the line joining x and y is a closed set in the natural topo-
logy of the line. Since s and y are arbitrary, B (.H) is linearly
closed.

3. The Vector Sum of Hamel Bodies.

We first recall the definition of the vector sum of two

sets, S, and 82:

It has been shown by Berg and Nikody.m [2] that the convex
hull of two linearly bounded convex bodies is not necessarily
linearly bounded. Here we obtain a corresponding result for
the vector sum of two linearly bounded convex bodies by showing
(in Theorem 4) the even more surprising result that the vector
sum of two Hamel bodies may include the entire space.

LEMMA. If L is a linear space with a finite or denumerable
Hamel basis H, then there exists a denumerable sequence of

00

vectors such that -~- ~~).
1
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Proof. We first recall the well known result of L6wig [4]
that any two Hamel bases for a given space have the same
cardinal number. This number is often called the dimension of

the space. If a Hamel basis for L consists of a single vector h,
then B (H) is the segment [h, - h], Clearly the entire real line
is contained in the denumerable union of +he translations of

by all integral multiples of h. We proceed by induction,
assuming the lemma valid for any space with a finite Hamel
basis of fewer than k vectors. Let H = I h,, ..., hk I be a Hamel
basis for L, and let L’ be the space spanned by H’ ‘ { ~Cl, ..., 

For iz E L we + where ~’ E L’. By the in-

duction hypothesis L’ is contained in a denumerable union of

translations of B(H’), and hence L’ is contained in a denume-
rable union translations Ts, i = 1, 2, ..., of B (H). Likewise, the
line generated by hk is contained in a denumerable union of

translations =1, 2, ..., of B (H). Let Rij be the translation
obtained by following Ti by Renumbering the Rij by a dia-
gonal process, we see that the RsJ are denumerable. Further-

more L is contained in the union of all the translations R;~
of B (H). Hence the lemma is valid in any space with a finite
Hamel basis. But any space with a denumerably infinite Hamel
basis is the union of denumerably many spaces with finite

Hamel basis, and a denumerable union of denumerable sets

of translations is denumera.ble. Hence the lemma is valid in

any space with a denumerable Hamel basis.

With the aid of this lemma we now show the existence of

two Hamel bodies whose vector sum includes the entire space.

THEOREM 4. If L has a denumerably infinite Hamel basis H,
there exists a Hamel basis l~ such that

Proof. From the lemma we obtain the representation
00

L = (J Bi, where each Bi is a translation of the Hamel body
1

B (H), and therefore each Bi is a convex body in L. For each
n = 1, 2, ..., choose gi E Bi, for i  n such that the set

{~ ~ "-1 9*1 is linearly independent. This is clearly possible
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for n = 1, For fixed m suppose that gi E Bi for i ~ m such

that I 91’ g2, ..., 1 9- 1 is linearly independent. If for each

Blithe set gl, ..., .g,", , gtn+1 I is linearly dependent,
then Bm+i is contained in the space spanned by the vectors
91’ ..., g., which contradicts the fact that Bm+1 is a convex
body in L. By induction, a Hamel basis G = gi t may be

chosen for L with We next verify that L = B ( H) +
+ B ( G). Let x E L, and consider the vector 2s. For some in-

teger k, + yk for some vector But gk E Bk so

Thus, 2~ = gk -~ (02 - b1).

But B ( G), the Hamel body determined by G, so gk/2 E B(G).
Likewise b2 E B (H), so (b2 - bi) /2 E B (H). There-

+ B (H), which completes the proof.

COROLLARY. For every convex body B in a space L with a
denumerable Hamel basis, there exists a Hamel body B ( G)
such that

Proof. By theorem 1, B contains a translated Hamel body,
so for some y E L and some Hamel body B (H), B (H) C B y.
From theorem 4 a Hamel body exists such that

L = B (H) + C B y + B ( G). Since L -~- y - ~, we have
.T3 -~- B ( (~) L.

4. Symmetric Images of Linearlg Bounded Convex

Bodies.

In this final section we study the linear boundedness of the
vector sum of two very simply related convex bodies, namely
any convex body B and a symmetric image of B. To define the
term symmetric image, we let M and N be cdmplementary sub-
spaces of L ; that is, L - M + (0). It follows
that every vector of L is the sum of two uniquely determined

vectors, x m + n, where m E ill and n E N. The symmetric



image ~’ = m + n relative to the ordered pair (M, N) is
defined = m - n.

The symmetric image S’ of a set S relative to the ordered
pair (M, N) is defined by S’ = I x’ I x From these defi-
nitions it is clear that (S’)’ - S and (S + T)’ = S’ + T’. Also
if S is a convex body, so are S’ and S -~- S’, and if S is linearly
bounded, so is S’.

We shall be concerned here with the particular case in

which is a one dimensional space I (a line through 0) and
N is a hyperplane P. A set will be said to be symmetric rela-
tive to (1-, P) if and only if S - S’. The line I is called the

tine of s ymnletry.
"7e shall show that for any convex body B in an infinite di-

mensional vector space there exists a hyperplane P such that if
then the vector sum of B and it symmetric image B’ rela-

tive to (1, P) contains the entire line of symmetry 1.

In this connection w e shall make use of the following theo-
rem [1].

THEOREM ( Berg.Nikodym). If B is a convex body in an in-
finite dimensional vector space L, there exists a hyperplane
P such that every translation of P intersects B.

This result may be restated in the following equivalent
form.

THEOREM 5. If B is a convex body in an infinite dimensional
vector space L, there exists a hyperplane P such that 

Proof. Let B, L and P be as described in the Berg-Nikodym
theorem. For each x E L there exists b E B such that b E P + x.
Then there exists p E P such that b p -f - ~ ; since P is a

hyperplane, p E P and hence ~ p + b E P + B. A re-
versal of this argument shouTs that the Berg-Nikodym state-

ment follows directly from theorem 5.

THEOREM 6. If B is a convex body in an infinite dimensional
vector space L, if P is a hyperplane such that L - P + B,
if I is a line such that t n P = (0), and if B’ is the symmetric
image of B relative to (l, P), then t C B + B’.

Proof. Theorem 5 guarantees the existence of a hyperplane
P such that L == P + B. Let I be any line for which
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1 fl P== (0). For we have

for some b E B and some p E P,
~’~b’-~p’=b’ p.

Thus x + ~’ b + b’ E B + B’. For any y E 1, y/2 E 1, and

t/ = ~ so y = y/2 + y’/2 E B + B’. Hence contains

the entire line of symmetry.
In an n-dimensional space the n-dimensional sphere with

center at 0 has the following property : for every hyperplane
P there exists a line I such that the sphere is symmetric relat-
ive to the pair (l, P). Hence the symmetry, of the sphere can
be considered as being « perfect &#x3E;&#x3E;, and of course many bodies
other than spheres have the same property. However, in an in-
finite dimensional space, no convex, linearly bounded body
with « perfect &#x3E;&#x3E; symmetry exists. This paradoxical absence of

perfectly symmetric, convex, linearly bounded bodies is esta-

blished as our final result.

THEOREM 7. If B is a linearly bounded convex body in an
infinite dimensional space L, if P is a hyperplane such that
L P + B, and if I is any line for which P = (0), then
B is not symmetric relative to the pair (1, P).

Proof. Let B, L, P and I be as described in the hypothesis.
If B is symmetric relative to (1, P), then by theorem 6

since B is convex. Hence 2B is not linearly bounded, and
neither is B, contradicting the hypothesis.
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