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REPORT ON THE RECENT

EINSTEIN UNIFIED FIELD THEORY 1)

Memoria (*) di VÁCLAV HLAVATÝ (a Bloomington, Indiana)

This short paper is a summary of some main results

( without proofs) which I obtained in trying to find a phy-
sical interpretation of the new Einstein unified field theory.
The proofs are given in the papers [2] - [14] mentioned at

the end. The paper consists of four sections: I. Mathematics,
II. Conjeetures, III. Restricted case, IV. Applications.

* * *

I. Mathematics.

The gravitational field is represented in the four-space of
the general relativity 2) by ten components of a quadratic
symmetric tensor, while the electromagnetic field is represen-
ted by six components of a skew symmetric quadratic tensor.
Therefore, it is understandable why Einstein, in his recent

attempt for unified field theory started with sixteen

components of a general quadratic real tensor 
The existence of such a tensor imposes an algebraic struc-

ture on the four-space. In order to deal with some conse-

quences of this algebraic structure, we introduce first the

symmetric part of 

(*) Pervenuta in Redazione il 29 marzo 1954.

1 ) Prepared under joint contract with the Office of Naval Research
and the Army Office of Ordinance Research.

2) The general relativity will always be referred to as pure gravi-
tational theory, even if the electromagnetic field is present.
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Assume that its signature is - - - +, so that its deter-

minant b is negative, and use it throughout this paper as

metric tensor. Moreover, denote by k).i1- the skew symmetric
part of glp.

and introduce the determinant h of kÀVo’ which is obviously
non-negative. The determinant g of is assumed to be

different from zero and by reason of continuity we have to
assume g  0. Later on we shall need also the following set
of scalars 

’

3) There are three algebrically different classes 

kD ~ 0, the first class
k _-__ 0, D ~ 0, the second class

k = 0, D = 0, the third class.
The second class splits into two different subclasses. The case k =1= 0,
D = 0 cannot occur for a real tensor 
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The tensor may be written

where I7~ , ... , are four mutually perpendicular unit

vectors. In the case of the first and second class, they are
uniquely determined by in the following way: the vectors
ulc , ull are uniquely determined up to ordinary rotations

in the bivector the vectors are uniquely
determined up to Lorentz rotations in the bivector 

In the case of the third class, only one nullvector, say

-E- ~ l7~° , is uniquely determined (up to a factor) by 
This classification will be very handy later on. It has also a

physical meaning with which we will deal later on.
We mention here, parenthetically, also another physical

significance of the existence of g,, . It leads in the most

natural way to spinor algebra and spinor analysis [2], [3],
[9].

The connection r¡p. of the Einstein unified theory (which

replaces the connection of Christoffel symbols y of the

pure gravitational theory based on is no longer symmetric

and is defined by the set of 64 equations

equivalent to

(4)b

Here D ~ is the symbol of covariant derivative with respect
to the connection r1p.. Before we try to solve (4) for rvx,,,
let us make the following remarks: there are tensors

glp. with 9 =1= 0 for which (4) does not admit any solution

]PV 1,L. There are tensors with 9 =1= 0 for which (4) admits
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more than one solution. Unlike in the pure gravitational theory
where the Christoffel symbols are (uniquely) defined by the
covariant constancy of the metric tensor, in the unified theory
the connection is not defined by the covariant constancy
of the basic tensor (cfr. (4)b). It may be proved that the re-
quirement of the covariant constancy of gÀp. leads to a solu-

tion only if g = const (which condition will turn out to
be a physical restriction).

Theoretically it is not difficult to solve 64 linear non-

homogeneous equations (4)a for 64 unknowns Practi-

cally, however, it is almost beyond control. Moreover, keeping
in mind our main goal, i.e. the physical interpretation, we
could need only a solution in tensorial form 4). In order to
obtain it, we start with the first 40 equations (4)b

which yield

Here are Christoffel symbols of h 11, , the tensor Svku
is defined by (3) and

The equation (6) shows the tensorial form of the solution

In order to we take in account the

last 24 equations (4)b

4) Schrodinger, who deals in [16] with a system of the form (4)a,
writes (1. c. p. 166), 4~... it is next to impossible to produce it (the
solution) in a survey able tensorial form ». Cf. also [ 1] ; for an (in-
complete) -bibliagraphy of non-tensorial solution in some very special
,c,ases, see [11].
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Substituting into (7)b from (6), one obtains finally

and V  is the symbol of covariant derivative with respect

to the connection I v i In order to solve the system of 24

linear non-homogeneous equations (8)a for 24 unknows 
we transcribe it first in the non-holonomic frame given by U~

With the aid of (1) and (2), the system (8)b splits in 6

systems of four equations for four unknows each. Hence, it

is not difficult to solve each of these six systems (and there-
fore also (8)) as well as to find a necessary and 8ufficient
condition for the uniqueness of the solution namely

If this condition is satisfied, then there exists a unique in-

verse tensor Y(Q§ to such that

and (6) yields the unique solution of (4) in the form

Denoting by the curvature tensors of ivy
( of we introduce the tensors
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which are related by

where one has to substitute for from (9) and for Uf,
from (7) and (9). Put

Then it turns out that

In order to obtain the field g;,~, from r~~, , one has to impose
some conditions on the connection. Einstein proposes (among
other conditions) to use either

in both cases coupled with

The conditions (13) may be condensed by virtue of (12) and
(14)a to

where X, is either an arbitrary gradient (in the case of (13)a)
or a suitably chosen vector (in the case of (13)b). The equa-
tions (14) are to be looked upon as gravitational and electro-
magnetic field equations.
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Remark. The 84 equations (4) and (14) for 84 unknowns

g,, and X, constitute a compatible system [11]. Cfr.

also [15].

I I. Conjectures.

So far we played mathematics only and the results of the

previous section might be looked upon as describing the

elementary geometric properties of the four-space of Einstein’s
unified theory, regardless o f its physical interpretation. If we
want to find a physicat interpretation of this purely geome-
trical description of the four-space, we have to make several
conjectures about the physical significance of these geome-
trical conditions. There are possibly many systems of such

conjectures. We will follow here one such system without

claiming that it is the only one which leads to physical inter- 
¡:

pretation.
The symmetric part of I ( 14)b together with I(11)a leads

to

where M~~, is a suitable function of Sip. and The form of

( 1) is familiar from the pure gravitational theory and suggests
the identification of with gravitational potentials. In the
pure gravitational theory, the gravitational field equation (1)
is a generalization of the Poisson equation, where on the left
hand side we have the second derivative of the potential func-
tion. This is also true for the left hand term in (1) if we

agree to look upon hlp. (and not on its derivatives) as gravi-
tational potential. This gives us a hint where to look for the
electromagnetic field, which has to satisfy Maxwell’s equations
(at least in a certain approximation). The Maxwell equations
contain only first derivatives of the field. Led by analogy
with the identification of the basic tensor in the pure

gravitational theory, we require that in the unified theory
the Maxwell equations be expressible in terms of the compo-
nents of the basic tensor glp. and its first derivatives alone.
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In other words we require that the electromagnetic field be
a function of alone.

As far as the relativistic Maxwell equations for an elec-

tromagnetic field m~~~, = are concerned, we may assume
them in the «idealized» form

Let us concentrate first on (2)a alone. According to our

assumption about the electromagnetic field (expressible by
means of gl.,. alone) this equation cannot be a consequence
of I ( 14)b. Hence, it must be a consequence of I ( 14)a. Now
the following problem has to be solved next. Is there any
skew symmetric tensor ml.,. , expressible by means of 

alone, such that it satisfies by virtue of I ( 14)a the equation
(2)a

a) either in a certain approximation (for instance for

a weak field only) 5) ;
b) or exactly?

It turns out [14] that infinitely many tensors satisfy
the requirement a) and that there is exactly one tensor (up to a
multiplicative constant) which satisfies the requirement b),
namely

Therefore we identi f y the electromagnetic f ield with the

tensor m~~, given by (3). If we define the class of in the

same way as we did for kÀp., then the tensors and mÀp.
are o f the same Therefore, there are three classes of

electromagnetic fields.

s) The exact meaning of the word «approximation» is given
in [14].

6) (lva¡! is the covariant tensor density, skew symmetric in all

indices whose components in every coordinate system are -[-1, -1, 0.

Moreover, x = - sgn exvzp kxv 
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The general algorithm may now be described as follovc-s :

the skew symmetric part of I (14)b leads to (2)b, while the
symmetric part of I (14)b leads to « gravitational » field equa-
tions (1).

The resulting equations expressed in terms of h¡p. and m~~,
are somehow complicated. Therefore, we shall apply in the

next section the general algorithm to a restricted case which
leads more or tess easily to test devices.

The pure gravitational theory applied to celestial mecha-

nics leads to prediction of three phenomena, namely the ad-
vance of perihelion of Mercury, the deflection of light, and
the red shift. The « confirmation &#x3E;&#x3E; of these predictions by
observation tests have been looked upon as satisfactory. The-
refore we shall try in the last section to apply the unified
theory to the celestial mechanics for the special purpose of ob-
taining the corresponding predictions of the mentioned pheno-
mena. We shall carry out the computation under the same as-
sumption as used in the pure gravitational theory in the presence
of the electromagnetic field of the sun : We assume that the
electromagnetic field. of the sun is a weak f ietd so that

the quadratic (and higher) products of its components may
be neglected. The equation (3) shows that this is possible only
if the field 7f¡y is so weak that the quadratic (and higher)
products of its components may be neglected. Therefore the

condition

is automatically satisfied. On the other hand, the equation
(4) is a necessary and sufficient condition for

so that

Therefore, we shall apply in the next section the general al-

gorithm to the restricted case characterized by (4) or (5),
without making first any assumption about the weakness
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of the field mx,,. Then, of course, (4) (or (5)) represent a
structural condition imposed on the field Then in the

last section we shall apply the obtained results to celestial

mechanics under the above mentioned assumption about the
weakness of the field so that (4) (or (5)) becomes a

quantitative condition rather than a structural one.

III. The restricted case.

One of the first consequences of (4) and (5) is

Moreover, we assume

and define

so that we obtain an identity

and consequently

On the other hand II(2)a is equivalent to

where niz is a suitably chosen non-gradient. Using now

II ( 3), II(5), 11(6) as well as the identity (4), one sees that

7) These conditions are necessary if dealing with charged particles.
In the case of radiation they have to be replaced by

8) is the contravariant tensor density, skew symmetric in all
indices whose components in all coordinate systems are -~-1, -1, 0.
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the skew symmetric part of I ( I4)b is equivalent to six equa-
tions 

for twelve unknowns m,, vv, Xz (while hz, are looked upon
as auxiliary variables). Assuming that V" is not a gradient,
we substitute the solution Vv of (7) into the identity (4) and
obtain in this way the equation II ( 2)b. Therefore, we identify
ny with the"current vect6r density. Whenever W2 

del 
=t= 0 ~

we identify W with the electric charge density. The condition
(2) yields B?" =F 0 and bv b" &#x3E; 0. Later on we shall use also

the vector and the scalar

and in the case w2 ~ 0 also the vector

(the velocity  four-vector »).
A similar method applied to the symmetric part of I ( 14)b

yields

Hence, we have 20 equations II(2)b (7) (8) for twenty-two
unknowns mx, vv, Xx, hx,. Therefore, we may as well prescribe
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at least one condition more

which enables us to define a (rest) mass density by the
following requirements similar to the corresponding require-
ments in the pure gravitational theory : M is a non-negative
function of I~ such that 0 only if H = 0 and moreover,
it satisfies the (relativistic) continuity equations. These re-

quirements yield

u.here : ~ 0 is a function of position (to be found experimen-
tally) which is constant along the trajectory of the particle

Adopting this definition we see that 0153 == 0 if and only if

the particle moves with the velocity of light (photons). Mo-
reover, we see from (11) that has (besides the same

arguments as the total momentum energy tensor in the pure
gravitational theory whenever the electromagnetic field is pre-
sent. Hence, we identify T¡p. with the total momentum energy
tensor of the uni f ied theory and moreover, (still on the basis
of (8)) we identif y g ~ 0 with a constant multiple of the

gravitational constant 1°).
The ten equations II ( 2)b and (7) may be looked upon as

defining (besides VII) the electromagnetic field in terms

of the gravitational field tc~~, (and Xx). On the other hand,
the equations (8) may be looked upon as defining the gravi-
tational field h~~, in terms of the electromagnetic field m~~, .
The absence of m¡¡.t. is here excluded by the assumption

# 0 while there are cases (as we shall see later) without

9) As a matter of fact, we already used this condition for deri-

ving (8) and (9).
10) g is constant if and only if This conditions is satisfied

here by virtue of II (5) . 
ap.



328

gravitational field. Therefore we look at the electromagnetic
field as a primary field, so that the previous statements may
be worded as follows: The gravitational field as well as AB
are built up from the electromagnetic field,. However, there
are electromagnetic fields, which do not create any gravita-
tion. Thus, for instance, if we are dealing with radiation

only so that (2) has to be replaced by (2)* then the system
of equations 11(2), (7), (8), (10) (as well as (2)*, 11(5))
admits a solution

where a = a (Z), b = b ( Z) are periodic functions of the argu-
ment so that represents the plane wave of
the electromagnetic theory of light. Hence, this electroma-

gnetic field does not create any gravitation as it was to be

expected. Incidently, this case might be looked upon as a
first con f irmation of the unified theory, at least in this very
special case.

The equations of motion follow from

which is a consequence of (8) and of the well know-n Bianchi
identity for They are equivalent to

The last result suggests a -slight change of the theory which
would result in the law of inertia in the usual form: The

skew symmetric part of I ( 14)b is equivalent to
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Let us replace this system of four equations by another one
of the same number of equations

Here a is a scalar to be chosen in such a "-ay that

which is equivalent to (10). Then we obtain again the Max-
well equations 11(2) and the gravitational field equations ( 8),
but the equations of motion derived from (12) are now

or in equivalent form

Hence the law of inertia based on (16) runs as follows : I f a

particle moves in the field without external forces, then
it describes a path which is an autoparallel line of the connec-
tion given by 1(4) (cf. also I ( 10)). Despite the presence
of the electromagnetic field, this path is the same as in the

pure gravitational theory in the absence of the electromagnetic
field, nanzely a geodesic of 

IV. Applications.

Let us now apply the previous results to celestial mecha-
nics under the assumption that the electromagnetic field 
of the sun is weak so that the quadratic products of its com-
ponents may be neglected (and consequently 11(5) is auto-

matically satisfied).
Under this assumption, the equation III { 8) reduces to

From now on we denote by hx, the Schwarzschild solution
of (1). Moreover applying (as in the pure gravitational theory)
the method of successive approximation (i.e. neglecting. in
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III ( 12) only cubic and higher products of mlJJo)’ we obtain
the equations of motion in the form III ( 13) where now Vp. refers
to the Schwarzschild solution If we assume for the time

being that we know the electromagnetic field of the sun

and substitute it into III ( 131, then the solution wy of 111(13)
gives rise in the usual way to the path of a particle. This path
has to be identified either with an orbit of a planet (if 0)
or with the path of a photon (for iv = 0). Hence, we are able
(at least theoretically) to predict the three phenomena dealt
with in the pure gravitational theory: The advance of peri-
helion of Mercury, the deflection of light as well as the

red shift. However this prediction is based orc the knowledge
of the electromagnetic field of the which is ac solution

of II I ( 7) and 11(2).

The situation is much simpler in the changed theory based
on 111(14). We obtain again (1) from III(8), and denote by
h¡p. its Schwarzschild solution. Then the equations III(16)b
define the geodesics of so that we do not need the know-

ledge of the electromagnetic field of the sun to define them.
Identifying these geodesics either with orbits of planets (for
w # 0) or with paths of photons (w ‘ 0) we obtain exactly
the same predictions for the three above mentioned pheno-
viena as in the pure gravitational theory.

. 

However the equations III ( 16)b are a consequence of

equivalent to III ( 14). Consequently, the crucial test for this
theory (at least as far as the three above mentioned pheno.-
mena are concerned) will consist zn checking whether the

electromagnetic field of the sun satisfies (2). Here the last

word belongs to the astrophysicist.

11) Here wv is a known solution of III(16)b and 
has to satisfy II(2)b.
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This statement might be looked upon from another angle
(which leads to the same results): The confirmation of the

(pure gravitational) relativistic predictions of the three pheno-
mena has been looked upon as a sufficient proof for the pure
gravitational relativistic theory (in these three cases). We have
obtained the same predictions in the unified theory. Hence,
adopting the same judgement we may claim that the unified
theory has been proved (in these three cases). Then (2) has to
be looked upon as a predictions f or te electromagnetic field of
the sun. Here again the last word belongs to the astrophy-
sicists.
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