RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

S. C. CHAKRABARTI

On higher differences. Nota II

Rendiconti del Seminario Matematico della Università di Padova, tome 23 (1954), p. 270-276

http://www.numdam.org/item?id=RSMUP 1954 23 270 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1954, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON HIGHER DIFFERENCES

Nota II (*)

di S. C. Charrabarti (a Jadabpur College, Calcutta)

II. - The Relations between the Differential Coefficients and the Higher Differences of a Function,

- 1. Introduction. This paper is in continuation of Note I on the subject of Higher Differences. We make use of the same notations as employed in Note I. The object of this paper is to study the relations between the operators F and the operators in Differential Calculus.
 - 2. LEMMA (i).

If
$$(1)$$

then similarly formed

$$Z_{nr} = {}^{n+r-1}S_n .$$

$$[z_{0r} = 1]$$

 $[Z_{sr}]$ evidently develops into

$$\sum_{p=0}^{2} (-)^{p} r^{+2} O_{r+1-p}^{-} Z_{2-p}, r$$

Similarly develop Z_{nr} and then prove the theorem by induction].

^(*) Pervenuta in Redazione il 26 novembre 1953.

$$P_{4e} = \left| egin{array}{cccc} C & & 1 & & & & & \\ C^2 & & ^2O_4^- & 1 & & & & \\ C^3 & & ^3O_4^- & ^3O_2^- & 1 & & & \\ C^4 + (-)^4 & ^4S_4 & ^4O_4^- & ^4O_2^- & ^4O_3^- \end{array} \right|_4$$

then

$$P_{ne} = (-)^{n-1} (C)_n {}^n S_n$$

[Here develop P_{ne} in terms of C, C^2 etc. and then apply (1) above and Th. (5), Note I].

then

$$Q_{nr} = (-)^{n-1} (a^r)_n a^{-r} {}^n S_n + a^{-r} {}^n S_n, \ Q_{no} = {}^n S_n$$
[Put $C = a^r$ in Lemma (ii)].

3. By Differential Calculus and by § II, Note I,

$$F^{n}u_{x} = u_{x+n} = e^{n\frac{d}{dx}}u_{x}$$
and
$$F_{n}u_{x} = u_{a^{n}x} = e^{a^{n}x\frac{d}{dx}}u_{o}$$
(4)

where $\frac{d^m}{dx^m}u_0$ stands for the value of $\frac{d^{m'}}{dx^m}u_x$ when x is replaced by 0.

Thus the operators F are related to the operators in Differential Calculus.

4. $A^n u_x$ may be expressed in terms of the differential coefficients of u_x .

THEOREM. If u_x be a rational and integral function of x of degree l in x, then

$$A^{n}u_{x} = \sum_{p=0}^{l-1} \frac{1}{(1+p)!} A^{n}0^{1+p} \frac{d^{1+p}u_{x}}{dx^{1+p}}$$
 (5)

where $A^n O^m$ stands for the value of $A^n x^m$ when x = 0.

By Th. (26), Note I, we have

$$(\sum_{p=0}^{n} {}^{n}O_{p}A^{p})u_{x} = e^{n}\frac{d}{dx}u_{x}$$

In this equation, putting n=1, 2, 3 and 4, we have four equations from which eliminating Au_x , A^2u_x and A^3u_x , we have

$$= \sum_{p=0}^{l-1} \frac{1}{(1+p)!} \{ \sum_{m=0}^{3} (-)^m (1+m)^{p+1} Z_{3-m, r, 2+m} \} \frac{d^{1+p} u_r}{dx^{1+p}},$$

[Lemma (i)]

$$\begin{split} &=\sum_{p=0}^{l-1}\frac{1}{(1+p)!}\sum_{m=}^{3}(-)^{m}(1+m)^{p+1}{}^{4}S_{8-m}\}\frac{d^{1+p}u_{x}}{dx^{1+p}}\\ &=\sum_{p=0}^{l-1}\frac{1}{(1+p)!}\{(-)^{3}\sum_{m=0}^{4}(-)^{m}(4-m)^{1+p}{}^{4}S_{m}\}\frac{d^{1+p}u_{x}}{dx^{1+p}}\\ &=(-)^{3}\sum_{p=0}^{l-1}\frac{1}{(1+p)!}A^{4}O^{1+p}\frac{d^{1+p}u_{x}}{dx^{1+p}}\\ &\therefore A^{4}u_{x}=\sum_{n=0}^{l-1}\frac{1}{(1+p)!}A^{4}O^{1+p}\frac{d^{1+p}u_{x}}{dx^{1+p}}\,.\end{split}$$

The general case may be similarly treated.

Cor.

$$\begin{split} \Delta^n u_x = & \frac{d^n u_x}{dx^n} + \frac{1}{(n+1)!} \Delta^n O^{n-1} \frac{d^{n+1} u_x}{dx^{n+1}} \\ & + \frac{1}{(n+2)!} \Delta^n O^{n+2} \frac{d^{n+2} u_x}{dx^{n+2}} + \dots \end{split}$$

[This result of Finite Differences, follows from (5) when a - 1, for $\Delta^n O^1 = \Delta^n O^2 = \Delta^n O^3 = \dots = \Delta^n O^{n-1} = 0$ and $\Delta^n O^n = n!$].

5. $A_n u_x$ may also be expressed in terms of the differential coefficients of u_x .

THEOREM. If u_x be a rational and integral function of x of degree l in x, then

$$A_{n}u_{x} = {}^{n}S_{n} \left\{ \sum_{p=0}^{l-n} \frac{x^{n+p}}{(n+p)!} (a^{n+p})_{n} \frac{d^{n+p}}{dx^{n+p}} \right\} u_{0}, \quad (6)$$

where $\frac{d^m u_0}{dx^m}$ denotes what $\frac{d^m u_x}{dx^m}$ becomes when x = 0.

By Th. (27), Note I, we have

$$(\sum_{p=0}^{n} {}^{n}O_{p}A_{p})u_{x} = e^{a^{n}x^{\frac{d}{dx}}}u_{0}$$

If in this equation we put n = 1, 2, ..., n, we have n equations from which eliminating

$$A_1u_x$$
, A_2u_x , ... $A_{n-1}u_x$, we have

$$(-)^{n}A_{n}u_{x} = \begin{vmatrix} u_{x} - e^{ax}\frac{d}{dx}u_{0} & 1 \\ u_{x} - e^{a^{2}x}\frac{d}{dx}u_{0} & {}^{2}O_{1}^{-} & 1 \\ \dots & \dots & \dots \\ u_{x} - e^{a^{n}x}\frac{d}{dx}u_{0} & {}^{n}O_{1}^{-} & {}^{n}O_{2}^{-} \dots & {}^{n}O_{n-1}^{-} \end{vmatrix}_{*}$$

$$= Q_{n_0} u_x - \sum_{p=0}^{l} \frac{(ax)^p}{p!} Q_{np} \frac{d^p u_0}{dx^p}$$
 [Lemma (iii)]

$$= {}^{n}S_{n}u_{x} - \sum_{p=0}^{l} \frac{(ax)^{p}}{p!} {}^{n}S_{n} \left\{ (-)^{n-1}(a^{p})_{n}a^{-p} + a^{-p} \right\} \frac{d^{p}u_{0}}{dx^{p}}$$

$$= {}^{n}S_{n}u_{x} - \sum_{p=0}^{l} \frac{x^{p}}{p!} {}^{n}S_{n} \frac{d^{p}u_{0}}{dx^{p}} + (-)^{n} {}^{n}S_{n} \sum_{p=0}^{l} \frac{x^{p}}{p!} (a^{p})_{n} \frac{d^{p}u_{0}}{dx^{p}}$$

$$= (-)^n {}^n S_n \sum_{p=0}^l \frac{x^p}{p!} (a^p)_n \frac{d^p u_0}{dx^p}$$

$$\therefore A_n u_x = {}^{n}S_n \sum_{p=0}^{l-n} \frac{x^{n+p}}{(n+p)!} (a^{n+p})_n \frac{d^{n+p}u_0}{dx^{n+p}}$$

for $(a^p)_n = 0$ when p < n.

This follows from (6) when $a \rightarrow 1$.

6. $\frac{du_x}{dx}$ may be expressed in terms of A^1 , A^2 , A^3 , etc.

THEOREM. If u_x be a rational and integral function of x of degree n in x, then

$$\frac{du_x}{dx} = \sum_{r=1}^{n} \left\{ \sum_{p=r}^{n} (-)^{p-1} {}^{n}C_{p} \frac{{}^{p}O_{r}^{-}}{p} A^{r} u_x \right\}. \tag{8}$$

By Th. (26), Note I and by (4), § 3, we have

$$(\sum_{p=0}^{n} {}^{n}O_{p}A^{p})u_{x} = e^{n}\frac{d}{dx}u_{x}$$

$$(9)$$

Let us consider the particular case when u_x is a rational and integral function of x of the third degree. If we put n=1 in (9), we have

$$Au_{x} = \left(\frac{d}{dx} + \frac{1}{2!} \frac{d^{2}}{dx^{2}} + \frac{1}{3!} \frac{d^{3}}{dx^{3}}\right) u_{x}$$

Putting n=2 and 3, two similar equations may be obtained. From these three equations, eliminating $\frac{d^2u_x}{dx^2}$ and $\frac{d^3u_x}{dx^3}$, we have

$$\begin{aligned} \frac{du_x}{dx} &= \Big\{ \sum_{p=1}^{3} (-)^{p-1} {}^{3}C_{p} \frac{{}^{p}O_{1}^{-}}{p} \Big\} A^{1}u_{x} - \Big\{ \sum_{p=2}^{3} (-)^{p-2} {}^{3}C_{p} \frac{{}^{p}O_{2}^{-}}{p} \Big\} A^{2}u_{x} \\ &+ \Big\{ \sum_{p=3}^{3} (-)^{p-3} {}^{3}C_{p} \frac{{}^{p}O_{3}^{-}}{p} \Big\} A^{3}u_{x} \end{aligned}$$

ie

$$\frac{du_x}{dx} = \sum_{r=1}^{3} \left\{ \sum_{p=r}^{3} (-)^{p-1} {}^{3}C_{p} \frac{{}^{p}O_{r}^{-}}{p} A^{r} u_x \right\}$$

The general case may be similarly treated

Cor.

$$\frac{du_x}{dx} = \Delta u_x - \frac{\Delta^2 u_x}{2} + \frac{\Delta^2 u_x}{3} - \dots$$
 (10)

which is a well-known theorem in F. D.

[If $a \rightarrow 1$, the coefficient of $(-)^{r-1}A^ru_x$ in (8) becomes

$$\sum_{p=r}^{n} (-)^{p-r} {}^{n}C_{p}{}^{p}C_{r}/p$$

which may be written

$$\sum_{p=0}^{n-r} (-)^p \frac{1}{r+p} {}^n C_{r+p} {}^{r+p} C_r$$

$$= {}^n C_r \sum_{p=0}^{n-r} (-)^p \frac{1}{r+p} {}^{n-r} C_p$$

$$= {}^n C_r \frac{(n-r)! (r-1)!}{n!} \quad \text{by Finite Differences}$$

$$= \frac{1}{r}$$

Hence (10) follows from (8)].