RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ARNO PREDONZAN

Osservazioni sulle varietà algebriche a tre dimensioni a superficie irregolari

Rendiconti del Seminario Matematico della Università di Padova, tome 23 (1954), p. 245-254

http://www.numdam.org/item?id=RSMUP 1954 23 245 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1954, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

OSSERVAZIONI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI A SUPERFICIE IRREGOLARI

Nota *) di Arno Predonzan (a Trieste)

In questa Nota considero varietà algebriche irriducibili a tre dimensioni, V_3 , aventi irregolarità superficiale $q_2 > 0$. In relazione alle stesse determino alcune condizioni, in virtù delle quali resta stabilita la loro equivalenza birazionale a varietà S_2 -luogo, cioè a varietà luogo di un fascio di piani. Una V_3 per la quale sussista tale equivalenza verrà, nel seguito, detta varietà pseudo S_2 -luogo.

Le condizioni di cui sopra si riferiscono all'ordine di una V_3 in relazione al genere delle sue curve-sezioni (Teor. I, n. 7); oppure assicurano che la V_3 è varietà pseudo S_2 -luogo appena contenga un sistema lineare, Σ_r , di superficie algebriche, di dimensione r sufficientemente elevata rispetto al genere della sua curva caratteristica generica (Teor. II, n. 12). Appena esista tale sistema lineare viene altresì precisato come, mediante opportuna trasformazione birazionale, la V_3 possa mutarsi in una varietà S_2 -luogo, V_3 , in guisa che alle curve caratteristiche di Σ_r vengano a corrispondere curve direttrici di V_3^{-1}).

1. — Si consideri una varietà algebrica irriducibile a tre dimensioni, V_3 , di uno spazio lineare S_r $(r \ge 4)$, a superficie-sezioni irregolari ed avente l'ordine n.

^{*)} Pervenuta in Redazione il 4 dicembre 1953.

Per curva direttrice di una varietà S₂-luogo s'intende una curva che seghi in un solo punto i piani generatori della varietà stessa.

Indicato con π il genere delle sue curve-sezioni e supposto

$$n>2\pi-2$$
,

da un classico risultato di Castelnuovo-Enriques 2) discende che la generica superficie-sezione, F, della V_3 è birazionalmente riferibile ad una rigata non razionale, quindi sulla stessa esiste un (determinato) fascio irrazionale Σ di curve razionali Γ .

Sia inoltre $\pi \geq 3$.

La totalità delle curve Γ , relative a tutte le superficiesezioni della V_3 , costituiscono, ovviamente, un sistema algebrico irriducibile, Ω , la cui dimensione, ove si indichi con ρ $(1 \le \rho \le r - 1)$ la dimensione dello spazio ambiente della generica Γ di Ω , vale

(1)
$$d = r + 1 - (r - \rho - 1) = \rho + 2.$$

Il luogo delle curve del sistema Ω che passano per un punto generico della V_3 , risulta chiaramente una superficie algebrica irriducibile Φ ; quindi sulla V_3 stessa esiste un fascio (non razionale) $|\Phi|$ di superficie Φ , le curve di Ω appartenenti alla generica delle quali costituiscono un sistema che indicheremo con Ω^* .

2. — Supponiamo, in primo luogo, $\rho=r-1$. Dalla (1) discende allora d=r+1, il che comporta che sia r la dimensione del sistema Ω^* , quindi che la generica Φ del fascio $|\Phi|$ sia una superficie di S_r a curve-sezioni razionali, cioè una rigata razionale, oppure una superficie di Vernonese (o una sua proiezione) s).

Vogliamo provare che la generica Φ può essere mutata in una quadrica (o in un piano) mediante una trasformazione birazionale a coefficienti appartenenti al campo di razionalità della Φ stessa.

²⁾ Ved. G. Castelnuovo-F. Enriques, Sur les intégrales simples de première espèce d'une surface ou d'une variété algébrique à plusieurs dimensions, « Ann. de l'École Norm. Sup. de Paris », s. III, t. 23, (1906).

³⁾ Ved., ad es., F. Conforto, Le superficie razionali, Zanichelli, Bologna, (1939), Lib. II, cap. II.

Basterà, a questo scopo, provare la suddetta proposizione ove si supponga la Φ normale in uno spazio lineare S_m , quindi avente l'ordine m-1.

Se la Φ è rigata ed ha l'ordine m-1=2h (pari), un generico iperpiano S_{m-1} di S_m , la sega in una curva direttrice C, dell'ordine m-1, che può notoriamente mutarsi, con una trasformazione birazionale, Π , a coefficienti razionali, in una conica C'. Una coppia di punti A_1' , A_2' , scelta genericamente su C', determina razionalmente su C, mediante la trasformazione Π^{-1} , una coppia A_1 , A_2 ; di conseguenza si può razionalmente determinare il gruppo di m-3 punti A_3 , A_4 , ..., A_{m-1} , secondo cui un S_{m-2} generico di S_m per A_1 , A_2 , sega la superficie Φ , fuori dei punti A_1 , A_2 stessi. Proiettando Φ dall' S_{m-1} congiungente i punti A_3 , A_4 , ..., A_{m-1} su un S_3 complementare, si ottiene una quadrica.

Se l'ordine della rigata Φ è invece m-1=2h-1 (dispari), la direttrice C di cui sopra può razionalmente mutarsi in una retta, un punto A' della quale viene a determinare razionalmente un punto A di C. Un S_{m-2} generico per A incontra Φ , fuori di A, in un gruppo di m-2 punti, dall' S_{m-3} dei quali la Φ si proietta biunivocamente in un piano.

Se invece Φ è la superficie di Veronese (m=5), è notorio che può mutarsi in un piano con una trasformazione birazionale a coefficienti razionali. Basta infatti proiettarla su un S_3 da una retta generica dell' S_5 ambiente per ottenere la superficie di Steiner (del quarto ordine) con tre rette doppie per un punto triplo; quindi proiettare quest'ultima da tale punto triplo su un piano generico dell' S_3 .

3. — Qualora la generica superficie del fascio $|\Phi|$ si possa mutare, con una trasformazione birazionale a coefficienti appartenenti al campo di razionalità della Φ stessa, in un piano, è ovvio che la V_3 è birazionalmente equivalente a una varietà S_2 -luogo, quindi essa medesima è una varietà pseudo S_2 -luogo.

Se invece la generica Φ si muta, mediante una trasformazione birazionale a coefficienti razionali, in una quadrica,

la V_3 è birazionalmente equivalente ad una varietà V_3^* , luogo di un fascio irrazionale $|Q_2|$ di quadriche.

Tale fascio ammette una curva unisecante k; ciò deriva dal fatto che, segando V_3^* con un iperpiano generico del suo spazio ambiente, si ottiene una superficie F^* contenente un fascio irrazionale di coniche (sezioni con l'iperpiano suddetto delle quadriche di $|Q_2|$), e per una siffatta superficie l'esistenza di una curva unisecante è nota 4). Naturalmente per determinare la stessa bisogna introdurre un certo numero di irrazionalità aritmetiche.

Proiettando ciascuna quadrica del fascio $|Q_2|$ dal punto in cui essa incontra l'unisecante k, su un iperpiano generico dello spazio ambiente della V_3^* , si ottiene su tale iperpiano una varietà S_2 -luogo. Anche in questo caso, dunque, la V_3 è una varietà pseudo S_2 -luogo.

4. — Si supponga, in secondo luogo, che la dimensione ρ dello spazio ambiente della generica Γ di Ω soddisfi alle limitazioni $3 \le \rho < r - 1$.

Proiettando la V_3 da un generico $S_{r-\rho-2}$ di S_r su un $S_{\rho+1}$ complementare, si ottiene una varietà V_3 di $S_{\rho+1}$ contenent un sistema Ω , di dimensione $\rho+2$, di curve razionali Γ di S_ρ (analogo al sistema Ω della V_3); ne segue che sulla V_3 esiste un fascio irrazionale $|\Phi|$ di superficie Φ di $S_{\rho+1}$, a curve-sezioni razionali. Per la V_3 in questione valgono, pertanto, le conclusioni a cui si è giunti nei nn. 2, 3.

5. — Facciamo, in terzo luogo, l'ipotesi $\rho = 2$. La varietà V_3 contiene allora un sistema Ω di curve piane F.

⁴⁾ Ved. F. Enbiques, Sopra le superficie che posseggono un fascio ellittico di curve razionali, «Rend. Acc. Lincei», sez. V, v. 7, (1898); Sopra le superficie che posseggono un fascio di curve razionali, ivi; Sopra le superficie algebriche che contengono un fascio di curve razionali, «Math. Ann.», Bd. 22, (1899). - F. Conforto, loc. cit. in 3), Lib. II, cap. I. - E. D. Tagg, Surfaces which contain an irrational pencil of rational curves, «Journal of the London Math. Soc.», v. 14, (1939).

Proiettando tale V_3 da un $S_{\tau-5}$ generico di S_{τ} su un S_4 complementare, si ottiene una varietà V_3' di S_4 . Il relativo sistema Ω' di curve piane razionali F' (analogo al sistema Ω della V_3) ha, in questo caso, a norma della (1), la dimensione d'=4; inoltre le curve di Ω' , passanti per un punto generico P della V_3' , formano un sistema algebrico irriducibile di dimensione due.

Fissata genericamente una retta p per P, si consideri la stella Δ_2 (di dimensione 2) degli S_3 dell' S_4 ambiente di V'_3 passanti per p. Un S_3 generico di Δ_2 sega la varietà V'_3 in una superficie, F', contenente un fascio Σ' di curve Γ' , una (ed una sola) delle quali passa per P. Viceversa gli S_3 per la curva ultima considerata formano un fascio, un solo S_3 del quale appartiene a Δ_2 . Ne segue che il sistema delle curve Γ' di Σ' per P è una congruenza razionale K.

Vogliamo provare che la congruenza K è di indice uno. Facciamo a tale scopo, l'ipotesi assurda che ciò non si verifichi; ciò equivale a supporre che per due punti generici della V_3 passi un numero finito $v \ge 2$ di curve del sistema Ω' .

Si consideri una generica superficie-sezione, F', della V_3' e il relativo fascio Σ' di curve F'. Sia poi $\bar{F'}$ una curva generica di Σ' .

Per due punti generici di $\overline{\Gamma}'$ passano, oltre a $\overline{\Gamma}'$, $\nu-1 \geq 1$ curve del sistema Ω' . Le curve di Ω' incidenti $\overline{\Gamma}'$ formano pertanto un sistema algebrico ∞^2 , $\overline{\Omega}$.

In un S_3 generico per $\overline{\Gamma}'$ giacciono ∞^1 curve del sistema $\overline{\Omega}$: quindi formano un sistema ∞^1 le curve di $\overline{\Omega}$ situate nell' S_3 ambiente della F' prima considerata. Da ciò discende che quest'ultimo sistema ∞^1 coincide con il fascio Σ' .

Poichè $\overline{\Gamma}'$ è generica nel fascio Σ' , da quanto precede deriva che le curve di Σ' si incontrano in coppie (almeno) di punti, uno dei quali deve necessariamente descrivere $\overline{\Gamma}'$ al variare di Γ' in Σ' ; ma ciò è assurdo in quanto Σ' è un fascio (quindi per un punto generico di $\overline{\Gamma}'$, che risulta, per la genericità di $\overline{\Gamma}'$, generico anche su F', non può passare, oltre a $\overline{\Gamma}'$, alcuna ulteriore curva di Σ').

Si conclude che la congruenza razionale K, dovrebbe risultare di indice uno, dal che seguirebbe che la V_3 ' sarebbe linear-

mente razionale 5): e ciò appare manifestamente assurdo appena si pensi che, per l'ipotesi del n. 1, la V_3 (e quindi la V_3 ') è a superficie-sezioni irregolari. La condizione iniziale di questo n. $(\rho=2)$ resta pertanto esclusa.

- **6.** Supponiamo, infine, $\rho = 1$. Da ciò segue che la generica superficie-sezione F della V_3 è una rigata non razionale, quindi la V_3 stessa è una varietà S_2 -luogo ⁶).
- 7. In virtù dei risultati dei nn. precedenti, resta stabilito il seguente

Teorema I: Una varietà algebrica irriducibile a tre dimensioni, a superficie-sezioni irregolari e a curve-sezioni di genere $\pi \geq 3$, è una varietà pseudo S_2 -luogo appena il suo ordine n soddisfi alla limitazione $n>2\pi-2$.

Se poi fosse $\pi=1$ o $\pi=2$, le superficie-sezioni, F, della V_3 risulterebbero rigate (in quanto irregolari), per cui il teorema ora enunciato sarebbe evidente.

* * *

8. — Sia Σ_r un sistema lineare (di dimensione r) di superficie algebriche Φ , a curva caratteristica (variabile) irriducibile di dato genere $\pi \geq 3$, situato sopra una varietà algebrica irriducibile a tre dimensioni, V_3 , avente irregolarità superficiale $q_2 > 0$.

Si supponga inoltre

$$(2) r \geq 3\pi + 6.$$

Il sistema Σ_r non risulta, ovviamente, composto con un'involuzione di specie q>0, quindi la sua imagine proiettiva è una varietà V_3 , appartenente ad uno spazio lineare S_r , la cui dimensione r uguaglia quella di Σ_r . Tale imagine V_3 può otte-

⁵⁾ Ved. U. Mobin, Sulle varietà algebriche che contengono un sistema di curve razionali, «Rend. Sem. Mat. di Padova», v. IX, (1938).

⁶⁾ Si può facilmente verificare che l'unica V_3 a superficie-sezioni rigate e non S_2 -luogo è l'iperquadrica generale di S_4 .

nersi (come noto) riferendo proiettivamente le superficie Φ di Σ_r (considerate come elementi) agli iperpiani di S_r .

In virtù di tale riferimento proiettivo si viene a stabilire tra le varietà V_3 e V_3 una corrispondenza algebrica d'indici (1, m).

Se (e soltanto se) il sistema Σ_r è semplice, risulta m=1, cioè V_3 ' e V_3 sono birazionalmente equivalenti. Negli altri casi V_3 ' rappresenta i gruppi di punti di un'involuzione I_m (d'ordine $m \geq 2$) con la quale è composto il sistema Σ_r .

Per le successive considerazioni giova ancora ricordare la seguente proposizione 7):

- (i) Una superficie non rigata, a curve-sezioni di genere π , non può appartenere ad uno spazio lineare di dimensione $r-1>3\pi+5~(\pi \mp 1)$, oppure $r-1>9~(\pi = 1)$. Se poi $r-1=3\pi+5~(\pi \mp 1)$, o $r-1=9~(\pi = 1)$ la superficie è razionale.
- 9. Dalla (2) discende che la generica superficie Φ di Σ_r è birazionalmente riferibile a una rigata di genere π . Se infatti così non fosse, il sistema Σ_r sarebbe semplice, tale essendo il sistema caratteristico Σ_{r-1} (di dimensione r-1) segato da Σ_r su una generica superficie Φ °). Ne verrebbe che la generica superficie-sezione, Φ' , della varietà V_3' (imagine del sistema semplice Σ_r , quindi trasformata birazionale della V_3), sarebbe a curve-sezioni di genere π e quindi non potrebbe risultare rigata °). Ciò porterebbe di conseguenza [tenuto an-

⁷⁾ Ved. F. Enerques, Sulla massima dimensione dei sistemi lineari di curve di dato genere appartenenti ad una superficie algebrica, «Atti Acc. Sc. di Torino», v. 29, (1894), n. 5.

s) È noto infatti [ved. F. Enerques, loc. cit. in 7), n. 6] che un sistema lineare Σ_{r-1} , di genere $\pi \geq 0$, appartenente ad una superficie non riferibile a una rigata di genere π , è semplice se la dimensione $r-1>2\pi+6$. Tale limitazione, in virtù della (2) e della $\pi \geq 3$, resta sempre soddisfatta.

⁹⁾ Se infatti Φ' fosse rigata dovrebbe avere (in quanto le sue curve-sezioni sono di genere π) il genere π , contro l'ipotesi assurda che la generica Φ di Σ_{τ} (e quindi la generica superficie-sezione Φ di V_3 ') non sia riferibile ad una rigata di genere π .

che conto della proposizione (i) del n. 8 e del fatto che Φ' ha irregolarità $q_2 > 0$] $r < 3\pi + 6$, il che è in contrasto con la (2).

10. — Andiamo, in primo luogo, a considerare il caso che il sistema Σ_r sia semplice.

Poichè la generica superficie Φ , a norma di quanto stabilito nel n. 9, è riferibile birazionalmente a una rigata di genere π , tale risulta anche la generica superficie-sezione Φ' della varietà imagine V_3' . La Φ' è poi a curve-sezioni di genere π e quindi, per la proposizione (i) del n. 8, è una rigata di genere π . Da ciò segue immediatamente ¹⁰) che la V_3' è una varietà S_2 -luogo di genere π ¹¹) ed ha come direttrici le imagini delle curve caratteristiche del sistema Σ_{τ} .

11. — Consideriamo, infine, il caso che il sistema Σ_r sia composto con un'inoluzione I_m (d'ordine $m \ge 2$).

Indicato con π' il genere della generica curva-sezione della varietà V_3 [in corrispondenza (1, m) con la curva caratteristica di Σ_r di cui tale curva-sezione è imagine], vogliamo provare che risulta

$$(3) r \geq 3\pi' + 8.$$

Da una classica formula di Zeuthen discende

$$m(\pi'-1) \leq \pi-1$$
.

quindi, tenuto conto della $m \geq 2$,

$$\pi' \leq \frac{\pi+1}{2} .$$

Per giungere alla (3) basterà, pertanto, far vedere che

$$r \geq 3 \frac{\pi + 1}{2} + 8,$$

e questa è evidente in virtù della (2) e della $\pi \geq 3$.

¹⁰⁾ Ved. nota 6).

¹¹⁾ Per genere di una varietà S_2 -luogo s'intende il genere delle sue curve direttrici.

La (3), a norma della proposizione (i) del n. 8, ci permette di affermare che la generica superficie-sezione Φ della V_3 ' è rigata, quindi [ricordando anche quanto affermato nella nota 6)] che la V_3 ' stessa è una varietà S_2 -luogo.

Ad un piano generatore della V_3' corrisponde sulla V_3 una superficie che si può supporre spezzata in $\frac{m}{s} \ge 1$ superficie componenti Ψ , essendo m un multiplo dell'intero s ($m \ge s \ge 1$).

La totalità delle superficie Ψ costituisce, ovviamente, un fascio.

Se s=1, al generico piano generatore della V_3' corrispondono sulla V_3 , m superficie Ψ , e ciascuna di queste è in corrispondenza birazionale con il piano generatore ora menzionato: sulla V_3' esiste dunque un fascio $|\Psi|$ di superficie razionali.

Un $S_{\tau-2}$ generico dell' S_{τ} ambiente della V_3' , sega il generico piano generatore in un solo punto, quindi la varietà V_3' in una curva C' alla quale corrisponde su V_3 una curva C, unisecante le Ψ di $|\Psi|$. Sulla generica Ψ si può dunque determinare razionalmente un numero opportuno di punti, e pertanto — con semplici operazioni di proiezione — la V_3 può mutarsi in una varietà S_2 -luogo, nella quale alle curve caratteristiche del sistema Σ_{τ} corrispondono curve direttrici.

Se poi s > 1, risulta di conseguenza $r \le 2\pi + 4^{-12}$), il che contrasta con la (2).

12. — A norma dei risultati ottenuti nei nn. 8-11 si può enunciare il seguente

Teorema II: Una varietà algebrica irriducibile a tre dimensioni, a superficie irregolari e contenente un sistema lineare Σ_{τ} di superficie algebriche a curva caratteristica (variabile) irriducibile di genere $\pi \geq 3$ e di dimensione $r \geq 3\pi + 6$, è una varietà pseudo S_2 -luogo e può birazionalmente mutarsi in una varietà S_2 -luogo nella quale alle curve caratteristiche del sistema lineare Σ_{τ} corrispondano curve direttrici.

¹²⁾ Ved. F. Enriques, loc. cit. in 7), n. 3.

Si può infine osservare che nessuna limitazione superiore può essere stabilita per la dimensione del sistema Σ_r in quanto una varietà S_2 -luogo, di dato genere π , può ottenersi come proiezione di una varietà S_2 -luogo, di uguale genere, appartenente ad uno spazio di dimensione comunque alta. Questa proprietà è l'immediata generalizzazione di quella analoga (dovuta a C. Segre) riguardante una superficie rigata a curve-sezioni di dato genere.