RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIORGIO TREVISAN

Teoremi di unicità e confronto per problemi relativi a sistemi di due equazioni differenziali ordinarie del primo ordine

Rendiconti del Seminario Matematico della Università di Padova, tome 12 (1941), p. 12-21

http://www.numdam.org/item?id=RSMUP_1941__12__12_0

© Rendiconti del Seminario Matematico della Università di Padova, 1941, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

TEOREMI DI UNICITÀ E CONFRONTO PER PROBLEMI RELATIVI A SISTEMI DI DUE EQUAZIONI DIFFERENZIALI ORDINARIE DEL PRIMO ORDINE

Nota di Giorgio Trevisan a Padova.

In questa nota dò (¹) dei criteri di unicità per le soluzioni del sistema differenziale

(1)
$$\begin{cases} y' = f(x, y, z), \\ z' = g(x, y, z), \end{cases}$$

supponendo f e g reali e continue in

S:
$$a \le x \le b - \infty < y < + \infty - \infty < y' < + \infty$$

e supponendo soddisfatte a volta (n. 1-2) le condizioni

(2)
$$x(a) = x_a, \quad y(b) = y_b,$$

a volta invece (n. 3) le condizioni

(3)
$$z(a) = x_a, \quad \int_a^b y(x) dx = K.$$

Dò anche (n. 4, 5) dei teoremi di confronto per le soluzioni di due sistemi del tipo (1), le quali soddisfacciano a condizioni del tipo (2).

(1) A meno della forma, i teoremi di questa Nota si trovano già tutti nella mia Tesi di Laurea, discussa a Padova nell' Autunno del 1938.

Dai teoremi del n. 3 deduco dei criteri di unicità già noti e relativi al problema

$$y'' = \varphi(x, y, y'), \quad y(a) = \alpha, \quad y(b) = \beta.$$

Dimostriamo in primo luogo che:
 Se

- I) la funzione f(x, y, z) è crescente rispetto a z, e se
- II) la funzione g(x, y, z) è crescente rispetto a y e lipschitziana in z, il sistema (1) ammette al più una coppia di integrali soddi-

Infatti siano $y_1(x)$, $x_1(x)$ e $y_2(x)$, $x_2(x)$ due coppie di soluzioni del sistema (1) definite in $a \le x \le b$ e soddisfacenti alle

$$z_1(a) = z_2(a) = z_a, \quad y_1(b) = y_2(b) = y_b,$$

con x_a e y_b numeri reali prefissati.

sfacenti alle condizioni (2).

Se il teorema non è vero, si potranno presentare i seguenti casi, e solo questi:

- 1) In $a \le x \le b$ y_1 coincide identicamente con y_2 , mentre ciò non accade per x_1 e x_2 .
 - 2) y_1 non coincide identicamente con y_2 .

Mostreremo che entrambe queste alternative portano all'assurdo. Per il primo caso ciò è immediato, perchè nelle ipotesi poste, $f(x, y_1(x), x_1(x))$ e $f(x, y_2(x), x_2(x))$, cioè $y'_1(x)$ e $y'_2(x)$ non potrebbero coincidere in $a \le x \le b$, mentre $y_1(x)$ è identicamente eguale a $y_2(x)$.

Nel secondo caso sia β un punto tale che

$$y_1(\beta) = y_2(\beta) \qquad (a < \beta \le b)$$

e che in un intorno sinistro di β (β escluso) sia sempre $y_1 \pm y_2$, anzi

$$y_1(x) > y_2(x)$$
.

Sia $\alpha < x < \beta$ il massimo intorno sinistro di β in cui ciò accade.

Distinguiamo ora i seguenti casi:

- a) esiste un punto p ($\alpha) tale che <math>z_1(p) = z_2(p)$,
- b) nel punto α si ha $x_1(\alpha) = x_2(\alpha)$ e $x_1(x) \pm x_2(x)$ in $\alpha < x \le \beta$,
 - c) in tutto $\alpha \leq x \leq \beta \ \text{è} \ x_1(x) \neq x_2(x)$.

Vediamo come ognuno di questi casi porti ad un assurdo. Nel caso a) la II) dà

$$g(x, y_1(x), x) \ge g(x, y_2(x), x)$$
 $(\alpha \le x \le \beta)$

e quindi, in virtù di un teorema noto (2), riesce

$$x_1(x) \leq x_2(x)$$

per $\alpha \leq x \leq p$.

Ora se nel punto $q (\alpha \leq q < p)$ è

$$z_1(q) = z_2(q),$$

si ricava, con ragionamento analogo al precedente,

$$z_1(x) \geq z_2(x)$$

in tutto $q \le x \le \beta$, e quindi in $q \le x \le p$

$$z_{1}\left(x\right) =z_{2}\left(x\right) ,$$

da cui

$$z'_1(x) = g(x, y_1(x), z_1(x)) > g(x, y_2(x), z_2(x)) = z'_2(x) \quad (q < x < p);$$
 il che è assurdo.

(2) Si sa infatti (Kamke: Differentialgleichungen (Lipsia, 1930) pag. 91) che se H(x, y), K(x, y) sono due funzioni continue, lipschitziane in y, definite per $a \le x \le b$, $-\infty < y < +\infty$ e verificanti la

$$H(x, y) \geq K(x, y)$$

e se h(x) e k(x) sono integrali rispettivamente della y' = H(x, y) e y' = K(x, y), che assumono nel punto $p(a \le p \le b)$ lo stesso valore, allora in $p \le x \le b$ è

ed in $a \leq x \leq p$

$$h(x) \leq k(x)$$
.

Esclusa l'esistenza di q segue

$$x_1(\alpha) < x_2(\alpha)$$
;

il che porta alla $\alpha \pm \alpha$ e quindi per la definizione stessa di α alla $y_1(\alpha) = y_2(\alpha)$, ma allora la I) dà

$$f(\alpha, y_1(\alpha), z_1(\alpha)) < f(\alpha, y_2(\alpha), z_2(\alpha))$$

cioè, a destra di a, contro l'ipotesi

$$y_1(x) < y_2(x)$$
.

Il caso a) non si può quindi presentare. Nel caso b), per la II) e il teorema della nota (2), riesce

$$z_1(x) \geq z_2(x)$$
 $(\alpha \leq x \leq \beta);$

e quindi, poichè $z_1(x) \pm z_2(x)$ in $\alpha < x \le \beta$,

$$z_1(x) > z_2(x)$$
 $(\alpha < x \le \beta)$

e allora per la I)

$$y'_{1}(\beta) > y'_{2}(\beta)$$
.

Dunque, in un intorno sinistro di β , $y_1 < y_2$. Il che è contro l'ipotesi fatta.

Nel caso c), per essere $x_1 \pm x_2$ in tutto $\alpha \le x \le \beta$ è $\alpha \pm \alpha$ e quindi $y_1(\alpha) = y_2(\alpha)$; ma allora perchè a destra di α risulti $y_1(x) > y_2(x)$ deve essere

$$x_1(x) > x_2(x)$$
 $(\alpha \le x \le \beta)$

(perchè altrimenti in α si avrebbe, per la I), $y_1'(\alpha) < y_2'(\alpha)$) cioè, a sinistra di β ,

$$y_1(x) < y_2(x)$$
.

Anche il caso c) non si può quindi presentare e il nostro criterio resta così completamente dimostrato.

- 2. Si ottiene un altro criterio di unicità se ferme restando tutte le altre ipotesi, si sostituisce la I) con la
 - I') f è non decrescente in x ed in y.

Manteniamo le notazioni usate nel numero precedente.

Se fosse identicamente $y_1(x) \equiv y_2(x)$, si avrebbe $z_1(x) \equiv z_2(x)$ perchè è unico l'integrale di $z' = g(x, y_1(x), z) = g(x, y_2(x), z)$ soddisfacente alla $z(a) = z_a$, e questo perchè g è lipschitziana in z.

Supponiamo ora che $y_1(x)$ e $y_2(x)$ non coincidano identicamente. Si determini allora, come nel caso precedente l'intervallo $\alpha \le x \le \beta$, $\alpha < \beta$, nel cui interno è lecito supporre $y_1(x) > y_2(x)$ mentre $y_1(\beta) = y_2(\beta)$ e $[y_1(\alpha) - y_2(\alpha)](\alpha - \alpha) = 0$.

Distinguiamo i seguenti due casi:

- a) esiste un punto $p (\alpha \le p < \beta)$ in cui $x_1(p) = x_2(p)$,
- b) la $x_1(x) = x_2(x)$ è soddisfatta al più nel punto β e mai altrove in $\alpha \le x \le \beta$.

Nel primo caso si ha

$$y_1(x) \ge y_2(x) \qquad (p \le x \le \beta)$$

e dalla II) segue (sempre in virtù di quanto è detto nella nota (2))

$$x_1(x) \ge x_2(x)$$
 $(p \le x \le \beta)$;

quindi per la I') è

$$y_1'(x) \geq y_2'(x)$$
 $(p \leq x \leq \beta).$

Ma in $\alpha < x < \beta$ è $y_1(x) > y_2(x)$; epperò, contro l'ipotesi, è

$$y_1(\beta) \neq y_2(\beta)$$
.

In ognuna delle eventualità prospettate nel caso b) si giunge alla

$$x_1(\alpha) < x_2(\alpha)$$
.

Infatti, se $x_1(\beta) = x_2(\beta)$ allora in $\alpha \le x \le \beta$ è $x_1(x) < x_2(x)$, in virtù della $y_1 \ge y_2$, del solito teorema della nota (²) e del fatto che in $\alpha \le x \le \beta$ è $x_1 \ne x_2$; e quindi

$$z_1(\alpha) < z_2(\alpha)$$
.

Se $z_1(x) \pm z_2(x)$ in tutto $\alpha \le x \le \beta$, supponiamo se possibile che sia $z_1(\alpha) > z_2(\alpha)$.

Allora poiché in $\alpha \le x \le \beta$ è $y_1(x) \ge y_2(x)$ si ricava, ragionando come nel caso a) di questo numero, $y_1(\beta) \neq y_2(\beta)$.

Quindi nel caso b) è

$$x_1(\alpha) < x_2(\alpha)$$
;

perciò $\alpha \neq a$ e $y_1(\alpha) = y_2(\alpha)$.

Ma allora dico che a sinistra di α finchè $x_1 < x_2$ riesce $y_1 \ge y_2$.

In fatti se in $\gamma \leq x \leq \alpha$ ($\gamma < \alpha$) è $x_1(x) < x_2(x)$ e se nel punto ξ ($\gamma \leq \xi < \alpha$) è

$$y_1(\xi) < y_2(\xi)$$
,

detto p il primo punto a destra di \$ in cui

$$y_1(p) = y_2(p) \qquad (\xi$$

in tutto $\xi \leq x \leq p$ dalle $y_1 \leq y_2$, $x_1 < x_2$, e dalla I') segue

$$y_1'(x) \leq y_2'(x),$$

ma allora la differenza $y_1 - y_2$, negativa in ξ e non crescente in tutto $\xi \leq x \leq p$ non potrebbe annullarsi in p.

Ciò premesso, detto q il primo punto a sinistra di a in cui

$$x_1(q) = x_2(q)$$

(tale punto sarà al più uguale ad a), in tutto $q \le x \le a$ risulta

$$y_1(x) \geq y_2(x)$$
.

Il che è assurdo perchè in $q \le x \le \alpha$ riesce allora per la II) ed il teorema della nota (2)

$$x_1(x) \geq x_2(x)$$
,

mentre, p. es., $z_1(\alpha) < z_2(\alpha)$. E con ciò il teorema è dimostrato.

3. Dai due teoremi di unicità che ho dato se ne ricavano due altri lasciando ferme tutte le ipotesi, rispettivamente considerate, e sostituendo le condizioni (2) colle (3). Mostriamo infatti che se $y_1(x)$, $z_1(x)$ e $y_2(x)$, $z_2(x)$ sono due coppie di integrali del sistema (1), soddisfacenti alle (3), dalle

$$x_1(a) = x_2(a)$$

$$\int_a^b \{y_1(x) - y_2(x)\} dx = 0$$

segue $y_1 \equiv y_2$ e $z_1 \equiv z_2$.

Per la $\int_a^{x} \{y_1(x) - y_2(x)\} dx = 0$ segue che esisteranno punti in cui $y_1 - y_2 = 0$, e sia p il punto più prossimo a b in cui $y_1 = y_2$.

Per i teoremi precedenti possiamo supporre p < b.

A sinistra di p per i teoremi dei n. 1, 2 si ha $y_1 \equiv y_2$ e $z_1 \equiv z_2$ e a destra, per la definizione di p, $y_1 \ddagger y_2$ cioè in definitiva si ricaverebbe $\int\limits_{-a}^{b} \{y_1(x) - y_2(x)\} \ddagger 0.$

I criteri ora dimostrati valgono per il sistema

$$\begin{cases} y' = f(x, y, z), \\ z' = y, \end{cases}$$

definito in S, quando la funzione continua f soddisfa o alla I) o alla I') (le II essendo in questo caso evidentemente verificate).

Tale sistema equivale all'equazione differenziale

$$x'' = f(x, x, x')$$
e le (3) alle
$$x(a) = x_a \quad x(b) = x_a + K.$$

Si ritrovano così criteri già noti (3).

- (3) G. Scorza Dragoni: A proposito di alcuni teoremi relativi ad un problema ai limiti per una equazione differenziale del secondo ordine. (Atti della R. Accademia dei Lincei, serie 6, vol. 22, 1935).
- G. Scorza Dragoni: Il problema dei valori ai limiti studiato in grande ecc. Giornale di Battaglini, Vol. 69, 1931.

4. Consideriamo adesso i due sistemi

(5)
$$\begin{cases} y' = f_1(x, y, z), \\ z' = g_1(x, y, z), \end{cases}$$
 (6)
$$\begin{cases} y' = f_2(x, y, z), \\ z' = g_2(x, y, z), \end{cases}$$

con f_1 , \dot{f}_2 , g_1 , g_2 funzioni continue in S.

Supponiamo che in S

- III) g_1 sia decrescente in y e lipschitziana in x;
- IV) g_2 sia crescente in y e lipschitziana in α ;
- V) f_1 sia crescente in α ;

e che si abbia inoltre

VI)
$$f_1(x, y, x) \le f_2(x, y, x)$$
;

VII)
$$g_1(x, y, z) \leq g_2(x, y, z)$$
.

Nelle ipotesi poste se $y_1(x)$, $z_1(x)$ verificano le (5) e $y_2(x)$, $z_2(x)$ le (6), in tutto $a \le x \ge b$, e se inoltre è

$$z_1(a) < z_2(a)$$
 $y_1(b) > y_2(b)$

in tutto $a \le x \le b$ riesce

$$x_1(x) < x_2(x)$$
 $y_1(x) > y_2(x)$.

Infatti, detto α il primo eventuale punto a destra di α in cui $x_1(\alpha) = x_2(\alpha)$, mostriamo come ognuno dei seguenti casi porti ad un assurdo.

- a) $y_1(\alpha) > y_2(\alpha)$;
- b) $y_1(\alpha) < y_2(\alpha)$;
- a') in un intorno sinistro di α è $y_1(x) \ge y_2(x)$ (α incluso);
- b') in un intorno sinistro di α è $y_1(x) \leq y_2(x)$ (α incluso);
- c) in $\alpha \in y_1(\alpha) = y_2(\alpha)$ e in ogni intorno sinistro di α la $y_1(x) y_2(x)$ cambia segno.

Nel caso a) la $y_1(\alpha) > y_2(\alpha)$ con la III) dà

$$g_1(\alpha, y_1(\alpha), z_1(\alpha)) = g_1(\alpha, y_1(\alpha), z_2(\alpha)) < g_1(\alpha, y_2(\alpha), z_2(\alpha))$$

inoltre per la VII) è

$$g_1(\alpha, y_2(\alpha), z_2(\alpha)) \leq g_2(\alpha, y_2(\alpha), z_2(\alpha));$$

e quindi, combinando le due diseguaglianze,

$$z'_1(\alpha) < z'_2(\alpha);$$

cioè a sinistra di a dovrebbe essere contro l'ipotesi

$$x_1(x) > x_2(x)$$
.

Analogamente si procede per il caso b) sfruttando la IV) e la VII).

Nel caso α'), in un intorno sinistro di α riesce per la III) e per la VII)

$$g_1(x, y_1(x), x) \leq g_1(x, y_2(x), x) \leq g_2(x, y_2(x), x);$$

e allora per il teorema della nota (2) a sinistra di α (nell'intorno in cui è valida la a'))

$$x_1(x) \geq x_2(x)$$
,

cadendo in un assurdo.

Analogamente si procede per il caso b').

Nel caso c) esisterà un punto p(a in cui

$$y_1(p) = y_2(p),$$

ma poichè $z_1(p) < z_2(p)$ per la V) sarà

$$f_1(p, y_1(p), z_1(p)) = f_1(p, y_2(p), z_1(p)) < f_1(p, y_2(p), z_2(p))$$
 e per la VI)

$$f_1(p, y_2(p), z_2(p)) \leq f_2(p, y_2(p), z_2(p));$$

cioè in un intorno destro di p

$$y_1(x) \leq y_2(x),$$

e poichè p è un punto generico, a sinistra di α , in cui $y_1 = y_2$, sarà in tutto un intorno sinistro di α

$$y_1(x) \leq y_2(x)$$

il che è contro l'ipotesi del caso c).

Concludendo dovrà essere in tutto $a \le x \le b$

$$z_1(x) < z_2(x)$$
.

Ora sia \beta il primo eventuale punto a sinistra di b in cui

$$y_1(\beta) = y_2(\beta).$$

A destra di β sarà per ipotesi $y_1(x) > y_2(x)$, ma da questa e dalla $x_1(\beta) < x_2(\beta)$, ragionando come poc'anzi, si ricava, in virtù della V) e della VI), a destra di β ,

$$y_1(x) < y_2(x)$$
;

il che è assurdo. E il teorema è dimostrato.

5. Un altro teorema di confronto si ottiene per i sistemi (5), (6) mutando le ipotesi per f_1 , f_2 , g_1 , g_2 nelle seguenti: g_1 decrescente in g_1 , g_2 crescente in g_2 , g_3 decrescente in g_3 , g_4 decrescente in g_4 , g_5 e mutando le (7) nelle $g_1(a) < g_2(a)$; $g_1(b) < g_2(b)$, allora infatti si può dimostrare, con ragionamenti del tipo usato nei teoremi dati in precedenza che in tutto $g_1(a) < g_2(b)$ è

$$y_1(x) < y_2(x), \quad z_1(x) < z_2(x).$$

(Pervenuto in Redazione il 6 marzo 1941-XIX)