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A GOOD APPROXIMATION OF THE INVENTORY LEVEL
IN A (Ô, r) PERISHABLE INVENTORY SYSTEM (*)

by Huan Neng CHIU (*)

Communicated by Shunji OSAKI

Abstract. — This paper dérives a good approach to approximating the expected inventory level per
unit time for the continuons review (Q, r) perishable inventory system. Three existing approximation
approaches are examined and compared with the proposed approach. Three stockout cases, including
the Juli backorder, the partial backorder, and the f uil lost sales cases, which customers or mater ial
users generally use to respond to a stockout condition are considered. This study reveals the
fact that the proposed approximation is simple yet good and suitable for incorporation into the
(Q, r) perishable inventory model to détermine the best ordering policy. The results from numerical
examples and a sensitivity analysis indicate that severe underestimation or overestimation of the
expected inventory level per unit time due to the use of an inappropriate approximation approach
would result in great distortion in the détermination of the best ordering policy.

Keywords: Perishable inventory, approximation, backorder, lost sales, sensitivity analysis.

Résumé. - Cet article développe une bonne façon d'approximer le niveau moyen de stock par
unité de temps pour le système d'inventaire permanent (Q, r) dans le cas des denrées périssables.
Nous examinons trois approches existantes et les comparons avec celle qui est proposée ici
Nous considérons trois cas de ruptures de stock : celui du réapprovisionnement total, celui du
réapprovisionnement partiel, et celui où toute demande non satisfaite est entièrement perdue ;
ce sont les cas les plus généralement rencontrés. L'étude révèle que l'approximation proposée
est simple, et cependant bonne et appropriée à une incorporation dans le modèle (Q} r) pour
la détermination de la meilleure politique de réapprovisionnement Les résultats des exemples
numériques et une étude de sensibilité indiquent que d'une sous-estimation ou d'une surestimation
sévère du niveau moyen du stock par unité de temps, causée par Vutilisation d'une méthode
inappropriée d'approximation, résulterait une grande distorsion dans la détermination de la
meilleure politique de réapprovisionnement

Mots clés : Stock périssable, approximation, réapprovisionnement, ventes perdues, analyse de
sensibilité.
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1. INTRODUCTION

The study of the détermination of the optimal or the best ordering policies
for perishable or deteriorating inventory Systems has received a significant
amount of attention in the past three decades. Comprehensive reviews in this
area can be found in Nahmias [13] and Raafat [17]. Typically, goods having
finite lifetimes are subject to either perishability or decay. A perishable
inventory is one in which all the units of one material item remaining in
stock will simultaneously lose their utility. The remaining units must be
discarded if they have not yet been used (deterministic or random demand)
after storage for a fixed period of time. Common examples of perishable
inventories are fashion garments, blood, and foodstuffs. On the other hand,
a decaying or deteriorating inventory generally has a random lifetime. It can
be defined as one in which a fraction of the units of an item remaining in
stock loses its utility (e.g., radioactive materials and gasoline) or in which
the utility of each unit decreases over time (e.g., fruits and vegetables).

In this paper, the primary focus is placed on the continuous review
(Q, r) (order quantity/reorder point) perishable inventory system. Nahmias
[11, 12] and most of the other previous studies such as those of Cohen [4],
Chazan and Gal [2], and Nandakumar and Morton[14] have concentrated
on the periodic review and multi-period lifetime problem with zero lead
time. Their considérable efforts have been spent on the development of good
approximations of the exact expected outdating (ie,, the expected perished
units of an item during a time interval). This is because it is extremely
difficult to obtain the optimal expected outdating for a long lifetime item. In
fact, this requires solving a multi-dimensional program with corresponding
quantities for various ages at the beginning of each period, which involves
complex recursive computation. As far as we know, few papers have dealt
with the continuous review (Q, r) perishable inventory model, which is
known to be an intractable problem. Schmidt and Nahmias [20] commented
that the perishable problem appears to be extremely difficult when a positive
lead time is introduced. The difficulty is that perishability can only be
applied to units on hand, not on order.

Recently, this author [3] developed a simple yet good approximation of the
expected outdating for a fixed-life (Q, r) perishable inventory modelwith
a positive lead time. This author used an extremely rough approximation of
the expected inventory level per unit time since both the expected outdating
of the current order size and the expected shortage quantity per cycle are
assumed to be negligible in the calculation of the expected stock level.
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A GOOD APPROXIMATION OF THE INVENTORY LEVEL 3 1

Though this strong assumption can help simplify computation of the holding
cost, distortion in determining a best (Q, r) ordering policy may arise.
Brown et al [1] also demonstrated that the penalty associated with ordering
is related to not only the lot-size error but also to the holding cost function.
Therefore, the dérivation of a good approximation of the stock level function
to reduce this ordering distortion and cost penalty to a minimum is the
focus of this study.

The literature on the (Q, r) inventory System with random demand
includes the classical (Q, r) models presented in Hadley and Whitin [6,
Sections 4-2 and 4-3]. They discussed the backorder and lost sales cases
under the assumption that perishability or decay is not allowed. The optimal
policy is that when the inventory position (on hand plus on order stock)
reaches the reorder point, r, an order of size Q units is placed. Silver
[22] classified inventory management problems into an enormous variety of
research schemes. The (Q, r) inventory System with probabilistic lead time
demand, stockout, and item shelf-life considérations is of interest for future
application. He pointed out that commonly used distributions of lead time
demand are the Normal, Gamma, and Poisson distributions. However, there
always is a small probability that the lead time demand will be négative
when a normal distribution is used for the lead time demand. In this case,
a truncated normal distribution is recommended, but this may make the
computation difficult. Later, Das [5] introduced a (Q, r) inventory model
with time-weighted (time-proportional) backorders. Several (Q, r) inventory
models with a mixture of backorders and lost sales were proposed by Posner
and Yansouni [16], Montgomery et ai [10], Matthews [9], Rosenberg [19],
Park [15] and Kin and Park [7], Almost all the previous research works used
(3, a fraction of the unsatisfied demand backordered (the remaining fraction
1-/3 completely lost), to model partial backorders. Recently, Rabinowitz étal.
[18] modeled a (Q, r) inventory System using a control variable, which limits
the maximum number of backorder allowed to accumulate during a cycle.
Obviously, these previous research works did not include the underlying
perishability assumption in their model formulations.

In gênerai, the cost of a shortage can be assumed to be the time-
independent stockout cost ($/unit), the time-proportional shortage cost
($/stockout duration/unit), or the stockout cost per outage. The time-weighted
shortage cost is proportional to the duration of a stockout. On the other hand,
if the shortage cost is based on an outage, then according to Tersine [23,
p. 218], an outage can be defined as one time of the stockout without
regard to the number of units out of stock during a replenishment cycle.
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In this paper, three stockout cases in which customers or material users
can choose to react to a stockout condition are considered. As previously
stated, the three stockout cases are the full backorder, the full lost sales,
and the partial backorder cases, which influence computation of the expected
inventory levels per unit time and, then, the holding costs. Hère, we assume
that both the backorder and lost sales costs are independent of the duration
of the stockout. In addition, other important assumptions are the stochastic
demand, fixed item lifetime, f3 backorder fraction, and no quantity discounts.
Therefore, the proposed (Q, r) perishable inventory model is different from
Shiue's [21] model and the above mentioned (Q, r) models.

In this paper, we will examine three existing approximations and dérive a
new one to approximate the expected inventory Ie vel per unit time:

(1) An extremely rough approximation, as adopted by this author [3, p. 97,
équation (7)] and Hadley and Whitin [6, p. 156, équation (4-1)].

(2) An approximation without considering the stockout duration and the
outdate condition, as introduced by Wagner [24, p. 825, équation (14)].

(3) An approximation considering the stockout duration but excluding the
outdate condition, as proposed by Kin and Park [7, p. 233, équation (5)].

(4) A good approximation based on our [3, p. 96, équation (4)] approximate
expected outdating, as developed in this study.

2. PROBLEM DESCRIPTION

In this paper, only one perishable item (or product) is considered. Each unit
of the item has a fixed lifetime equal to m. The inventory le vel is reviewed
continuously and decreased by a satisfaction of demand or by disposai of
perished units. An order size of Q is placed when the inventory le vel reaches
the reorder point, r. There is a positive leadtime, L, for each replenishment,
and a fixed ordering cost, K, is incurred. All the units of a replenishment
order arrive fresh or new. Each unit does not lose or decrease in utility before
its useful lifetime ends, but it must be discarded if it has not been used before
the expiration date. An outdate cost equal to W per unit is charged. The
demand in unit time, di, is a nonnegative random variable. Assume that it
follows a spécifie continuous or discrete distribution with density or mass
fonction f\ (y) — dPr {d\ < y}/dy and mean D. We also assume that if
N (t) is cumulative demand by time t, then N (t) is a stochastic process with
stationary, independent incréments. This implies that N (m) has density or
mass fm (z) — dPr {dm < z}/dz and mean mD. In other words, N (m+L)
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has density or mass fm+L (v>) — dPr {dm+L < u}/du and mean (m + L)D.
Units are always depleted according to an FIPO (Le., First into stock are
consumed first) issuing policy.

The notation to be used throughout this paper is defined as follows:

Q = Order quantity.

T = Reorder point.

m — Fixed lifetime of the perishable item.

L = Positive order lead time.
di, = Demand during lead time with probability function JL (X) =

dPr{dL < x}/dx and mean LD, where FL(X) is an L-fold convolution
of h (y).

C — Replenishment cost per unit.

h — Holding cost per unit per unit time.

K = Fixed ordering cost per order.

W = Outdate cost per unit.

P = Backorder cost per unit.

0 = Lost sales cost per unit.
j3 — A fraction of the excess (unsatisfied) demand per replenishment cycle

can be backordered, and the remaining fraction 1 - /? is lost.

ET — Expected cycle length.
El — Expected inventory level per unit time.
ER = Expected outdate quantity of the current order size Q.

ES — Expected shortage quantity per cycle.
Additionnai notations will be introduced later when needed. Figure 1

shows a (Q, r) perishable inventory model with a mixture of backorders
and lost sales.

3. CHIU'S EXPECTED OUTDATING APPROXIMATION

Just as demonstrated by Nahmias [13], who dealt with the periodic review
and multi-period lifetime problem with zero order lead time, avoidance of
complex computation requires developing a good approximation of the exact
expected outdating. The continuous review perishable inventory problem
with positive order lead time also involves complex computation, as stated
by Schmidt and Nahmias [20] and mentioned before. Thus, this author [3]
presented a simple yet good approximation to the expected outdating for the
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34 H. N. CHIU

No depletion case Depletion case

îr

continuous review (Q, r) perishable inventory System with positive order
lead time L. Our approximate expected outdating of the current order size
Q is given by

rr+Q

771 7">

/ (r + Q-u) fm+L 0) du - / (r-u) fm+L 0) du,

if dm+L is a nonnegative continuous random variable,

if is a nonnegative discrete random variable,
(1)

where /m+L (w) is the probability function of the random variable
(/.e., the demand during m + L time units). Equation (1) has been shown
to be a fairly acceptable approximation of the exact expected outdating in
the situation where the continuous review strategy is used. It should be
noted hère that équation (1) is analogous to H (x + y) — H (x) presented in
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A GOOD APPROXIMATION OF THE INVENTORY LEVEL 35

Nahmias [11, p. 1004, équation (2-1)] with x, y, and m replacée! by r, Q,
and m + L, respectively. How équation (1) can approximate the expected
outdating effectively has been discussed in more detail elsewhere [3]. In the
following three sections, our attention will be focused on the dérivations
and comparisons of the expected inventory levels per unit time for the three
stockout cases.

4. FULL BACKORDER CASE

With full backorders, there is no loss of sales since customers or material
users are willing to wait for the arrivai of the next order or an outstanding
order. The unsatisfied demand is then filled by the arrived order immediately.
Four approaches can be used to approximate the expected inventory level
per unit time in the (Q, r) perishable inventory System:

(1) Extremely rough approximation

This approach assumes that the values of ER and ES are considerably
smaller than the current order size, Q. Hence, ER and ES can be neglected,
and the expected inventory level per unit time is

EIr = r-DL + g /2 . (2)
Equation (2) implies that there are no différences among the three stockout
cases. As mentioned earlier, this approach has been adopted by this author
as well as by Hadley and Whitin [6], Ho wever, stock level was not correctly
accounted for when there was a depletion case (Le., an out of stock condition).

(2) Wagner approximation

In contrast to extremely rough approximation, Wagner [24] considered both
the depletion case and the non-depletion case during a lead time. Suppose
that ER is much smaller than ES and can be ignored in this approximation.
Then, Wagner introduced

EIW = (r-DL + Q/2) + DL (ES)/(2Q), (3)
where

/ (x- r) fL (x) dx,

if (II is a nonnegative continuous random variable,

x>r

if di is a nonnegative discrete random variable,

(4)
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The function fc (x) in équation (4) is the probability fonction of the
random variable d^. In équation (3), DL (ES)/(2 Q) is called the correction
term of the expected inventory level per unit time. Clearly, this approximation
is reduced to the extremely rough approach when ES is ignored. However,
this approach does not take into account the duration of the stockout since
it assumes that when di > r, the inventory level becomes zero just before
the replenishment arrives. The purpose of this approximation is to make the
holding cost formulas uncomplicated.

(3) Modified Wagner approximation

EIW in équation (3), which will be demonstrated in Section 6, is an
overestimation of El due to negîect of the stockout duration and the outdate
condition. In this paper, the Kin and Park approximation [7] without the
outdate condition is called the modified Wagner approximation. Referring
to the dérivation of the average carrying inventory in Kin and Park, the
expected inventory level per unit time of the modified Wagner model can
be expressed by

EIm = (r- Q/2) + DL j ƒ°°[(x - rf fL (x)/x] da: 1/(2 Q). (5)

If the right side of the equal sign in équation (5) is multiplied by h9 then
the result is equivalent to Kin and Park's [7, p. 233, équation (5)] full
backorder model with j3 = 1. After further manipulation, équation (5) can
be rewritten as

EIm = (r - DL + Q/2) + DL (ES/(2 Q)

} (6)

where ES is from équation (4). Note that in équations (5) and (6), the
intégral notation should be replaced with the summation notation if the
lead time demand, d^, is a discrete random variable. Also, it should be
emphasized here that only équations used in the continuous random variable
case will be presented later.

(4) Chiu approximation

It is a fact that équation (5) is derived under the assumption that ER
is considerably smaller than ES and can be neglected. Inevitably, this will
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result in an inaccurate value of EI obtained by using the modified Wagner
approach. Now, let

L\ — expected average inventory level during a lead time;
L2 = expected average inventory level after order arrivai until next

reorder.
In order to simplify the dérivation of the expected inventory level per unit

time, it is assumed that when d^ > r, the inventory level becomes zero just
before the ordered units arrive. Then,

Li= f \[r+(T-x)]fL{x)àx+ f°° hr + 0)fL(x)dx. (7)
JO * Jr l

In fact, équation (7) can be further simplified to

^ (8)

In équation (8), JJ (r — x) fi, (x) dx can be easily proved to equal
r — DL + ES. On the other hand, L2 can be approximated precisely
by considering a rectangle, a triangle, and a parallelogram as shown in
Figure 1. Thus,

L2=r+(Q-Dl- ER)/2 + ER(m-aET)/{ET - L), (9)

where,
ET=(Q-ER)/D, (10)

ER is from équation ( 1 ), and a dénotes the expected number of
replenishment cycles that the item lifetime (m) can over; moreover,
0 < (m — a ET) / (ET — L) < 1. In other words, the lifetime of m time units
consists of \m/ET\ replenishment cycles, where [̂ J dénotes the greatest
integer less than or equal to v. For example, in Figure 1, we set a equal to 1.
In addition, Tm represents an outdate point of time dropped in a given cycle,
which dépends on the actual demand during an m + L time unit interval.

Clearly, équation (8) must be weighted by DL/(Q — ER) (due to
L/ET = DL/(Q-ER)). Correspondingly, équation (9) should be weighted
by 1 — DL/(Q ~ ER). Multiplying the two équations by the two weights,
respectively, the expected inventory level per unit time has the following
form:

EIC = \ [DL/(Q - ER)] [r + j f (r - x) fL (x) darj

+ [1 - DL/{Q - ER)}
x [r + (Q - DL - ER)/2 + ER(m - aET)/(ET - L)]. (11)

vol. 33, n° 1, 1999
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After some manipulations, it is given by

EIC = [r -DL + (Q- ER)/2] + DL (ES)/[2 (Q - ER)]

+ ER[l-DL/(Q-ER)][(m-aET)/(ET-L)]. (12)

Note that EIC is reduced to EIW if ER is ignored (that is, ER is set to
zero). Furthermore, EIC becomes EIr when both ER and ES are neglected.
The last two terms in équation (12) are the correction terms used to make this
approximation more effective. In order to reduce the computational effort, it
is reasonable to set Tm to the middle point of the time length {ET - L).
As a resuit, (m - a ET)/{ET - L) becomes 1/2; thus,

EIC = (r~DL + g/2) + DL {ES - ER)/[2 (Q - ER)]. (13)

From équations (2), (3), and (6), we conclude that

EIr < EIm < EIW. (14)

In gênerai, we have 0 < ES < Q, Thus, (ES - ER)/(Q - ER) < ES/Q
since ER > 0. Equations (2), (3), and (13) imply that

EIr < EIC < EIW. (15)

However, it is difficult to compare EIC with EIm. We find that EIm < EIC

when the value of ER is very small in équation (13). This can be seen by
comparing équation (13) with équation (6) directly. Now, the total expected
average cost per unit time for the full backorder case is given by

EAC (Q, r) = [K + CQ + P (ES) + W (ER)]/ET + h (El), (16)

where EI is one of the above four approximations. It is noted that ET,
as given in équation (10), is also a function of the current order size, Q,
and the reorder point, r

5. PARTIAL BACKORDER AND FÜLL LOST SALES CASES

In a full lost sales situation, any unsatisfied demand is completely lost,
and the customer or material user has presumably filled her or his need
from other sources. However, in most practical situations, when the item
is out of stock, some customers or material users are patiently waiting for
their demand tö be satisfied upon initial receipt of the next order while
others are impatient and make purchases from other sources to fill their
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demand. Under these circumstances, it is reasonable to assume that only a
fraction, 0(0 < 0 < 1), of the shortage quantity is backordered, and that
the remaining fraction, 1 — ƒ?, is lost forever. The dérivation of the expected
inventory levels per unit time for the two stockout cases is similar to that in
the full backorder case. The major différence between the full backorder and
the partial backorder cases is that in the partial backorder case, on average,
Q + (1 — 0) ES units are required in each replenishment cycle, as compared
to only Q units in the full backorder case. It should be noted that the
quantity of Q (including (3 (ES) units backordered) is satisfied while that of
(1 — 0) ES is lost forever. As a resuit, the extremely rough approximation
remains unchanged, and the other three approximations can easily be derived
by simply substituting Q + (1 — f3) ES for Q in the relevant équations of the
full backorder case. The résultant équations for the partial backorder case are:

Q/2, (17)

EIW = {r-DL+[Q+(l~P)ES]/2}+DL(ES)/{2[Q+(l-0)ES]}, (18)

EIm = {r - DL + [Q + (1 - 0) ES]/2}
+ DL (ES)/{2 [Q + (1 - 0) ES]}

- DL | ƒ °° [r (x - r) fL (x)/x] dx| /{2 [Q + (1 - /?) ES]}, (19)

and
EIC = {r-DL + [Q + (l-0) ES}/2}

+ DL (ES - ER)/{2 [Q + (1 - 0) ES - ER]}, (20)

where ER is from équation (1), and ES is from équation (4). At one
extreme, 0 = 0, the partial backorder case reduces to the full lost sales
case. At another extreme, 0 = 1, it reduces to the full backorder case.
Analogously, the partial backorder and the full lost sales cases have the
same properties as expressed in relations (14) and (15). The total expected
average cost per unit time for the partial backorder case is given by

EAC(Q, r) = [K
(21)

where
ET = [Q. + (1 - /?) ES- ER]/D. (22)
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6. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

Iii this section, numerical examples will be given and the results of
sensitivity analysis will be presented. Twenty-four test problems which
appeared in Chiu [3] were used and are listed in Table 1.

TABLE.I

Cost parameters and relevant data of24 test problems.

Test problem No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Cost parameter

C

5
5
5
5
5
5
15
15
15
15
15
15
5
5
5
5
5
5
15
15
15
15
15
15

P

20
20
20
40
40
40
20
20
20
40
40
40
20
20
20
40
40
40
20
20
20
40
40
40

K

10
50
100
10
50
100
10
50
100
10
50
100
10
50
100
10
50
100
10
50
100
10
50
100

W

5
5
5
5
5
5
5
5
5
5
5
5
15
15
15
15
15
15
15
15
15
15
15
15

L = 1, h = 1, m = 3, 0 = P, and d1 ~ a Poisson with D — 10.

For the purpose of illustration, Test Problem 1 in Table 1 was chosen.
Then, the relevant équations of the proposed approach (including. équations
(1), (4), and (20)-(22)) were applied for (3 = 1, 0.5, and 0, respectively. After
solving this test problem with Gino [8], a summary of the final solution was
a given in Table 2.

It can be seen from Table 2 that the values of EIC are 11.4899, 11.4080,
and 11.0981 for P = 1, 0.5, and 0, respectively. We may conclude hère
that the expected inventory level per unit time decreases as the fraction /3
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TABLE 2
Summary of results using the proposed approximation and Test Problem 1 for (3 — 1, 0.5 and 0.

Final
solution

Q
r

EIC
ER
ES
ET

EAC(Q,r)

0 = 1
(Full backorder)

13.8417
14.5414
11.4899
0.0571
0.1331
1.3785

71.0898

/? = 0.5
(Partial backorder)

13.9178
14.3792
11.4080
0.0549
0.1471
1.3936

70.8247

0 = 0
(Full lost sales)

13.6224
14.1564
11.0981
0.0431
0.1693
1.3749

70.5319

decreases. A more detailed analysis to verify this conclusion was further
conducted in this study.

Table 3 présents the solution values of EIC using the proposed
approximation and Test Problem 1 for various values of m. The results
indicate that for each fraction of ƒ?, the expected inventory level per unit
time converges to a fixed value when the lifetime, m, increases to a large
value (this value of m is five in this example). The longer the lifetime
of a perishable item has, the greater is the tendency that the perishability
assumption being released. This implies that ER —> 0 as the lifetime, m,
increases to a sufficently large value, and that équation (20) then approaches
équation (18). Consequently, the (Q, r) perishable inventory model reduces
to the (Q, r) no-outdating model in the extremely long lifetime situation.

TABLE 3

Solution values of El using the proposed approximation
and Test Problem 1 for various values of m.

m

2
3
4
5
6
7

(3 = 1

8.7777
11.4899
12.5202
12.5803
12.5803
12.5803

0 = 0.5

8.5570
11.4080
12.3676
12.4032
12.4032
12.4032

0 = 0

8.4990
11.0981
12.1288
12.1890
12.1890
12.1890

A question anses about whether careless approximation of the expected
inventory level per unit time has a significant impact on détermination of
the ordering policy (Q, r). Table 4 présents a summary of the results of
sensitivity analysis in which 24 test problems, given in Table 1, were used.

Each average percentage in Table 4 is the resuit of, first, subtracting
the policy parameter (e.g., Q) which was obtained using the proposed
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TABLE 4

Average percentages for ordering policy déviations.

Approximation
approach

Extremely
rough

Modified
Wagner

Wagner

Q

-0 .10%

-0 .14%

- 0.03%

r

- 0.53%

- 0.49%

- 0.52%

0 = 0.7

Q

+ 0.10%

- 0.24%

- 0.35%

r

- 0.84%

- 0.37%

-0 .18%

0 = 0.4

Q

+ 0.29%

+ 0.82%

-0 .16%

r

- 0.92%

- 1.20%

- 0.03%

0 - 0

Q

+ 0.54%

- 0.52%

-0 .07%

r

- 1.82%

- 0.40%

-0 .19%

approximation from the policy parameter which was obtained using one of
the other three approximations, and then dividing this value by the proposed
policy parameter. A positive average percentage shows the extent to which
the policy parameter obtained by using an approximation approach has been
overestimated while a négative one means that the policy parameter obtained
has been underestimated. Some important conclusions drawn from Table 4
are as follows:

(1) For each fraction of /?, the reorder points obtained by using the
extremely rough, modified Wagner, and Wagner approaches are consistently
underestimated.

(2) In the full lost sales case (/? = 0), déviations on the order quantity
Q are greater than those in the full backorder case (/? — 1). This may be
because order quantity, Q, does not include the backordered quantity of ES
in the full lost sales case.

(3) Most of the policy parameters obtained by using the Wagner approach
have much smaller déviations than do those obtained using the extremely
rough and modified Wagner approximations. Presumedly, the main reason
is that the solution value of ER is very small (one example is shown
in Table 2). Thus, équation (18) is almost identical to équation (20).
Nevertheless, ail policy parameters determined by using the Wagner approach
are underestimated.

Table 5 présents the sums of 24 solution values of EL Figure 2 gives
the associated graph which shows the relative values of El for the four
approximations and three stockout cases. Hère, we conclude that the expected
inventory level per unit time decreases with the decrease of the fraction, j3.
It is also evident that Relations (14) and (15) are consistent with the results
shown in Table 5 or Figure 2. Furthermore, just as expected, the values of
El obtained by using the modified Wagner approximation are smaller than
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those obtained using the proposed approximation since the solution values
of ER are very small in this analysis.

TABLE 5
Total solution values of El (24 test problems).

Approximation approach

Extremely rough
Modified Wagner
Chiu
Wagner

299.4603
299.5945
301.2300
302.4031

13 = 0.7

293.4229
295.4538
297.8750
298.7430

0 = 0.4

283.7080
290.4995
293.2553
294.8651

p = o

268.7160
283.3413
286.8325
287.9539

g
0
•H

H
0

H

0

Extremely
rough

7. CONCLUSIONS

Modified
Wagner

Chiu

Figure 2.

Wagner

This paper has presented a good approach to approximation of the expected
inventory level per unit time for the (Q, r) perishable inventory system. Three
stockout cases which customers or material users may adopt in response
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to a stockout condition have been considered. The study has compared
the proposed approximation approach with three existing approaches which
have been used in a situation where persishability or decay is not allowed.
Obviously, the proposed approximation is much simpler than the modified
Wagner approach. This can be observed by comparing équation (20)
with équation (19). It is not complicated, as compared with the Wagner
approximation. Therefore, équation (20) is a practical formula, suitable for
incorporation into the (Q, r) perishable inventory model, which can be
formulated in the form of équations (21), (22), (1), and (4). The best
ordering policy (Q, r) can, thereby, be obtained correctly, and distortion in
determining Q and r can be reduced to a minimum.

In addition, results from numerical examples and a sensitivity analysis
indicate that the solution values of El are underestimated when the extremely
rough approach and the modified Wagner approach are used. This resuit
often causes déviations in the policy parameters. More importantly, severe
underestimation of El due to the use of the extremely rough approach
will resuit in great distortion when determining the best ordering policy.
It is worth noting hère, as pointed out by Brown et al [1, p. 607], that
the importance of accurately estimating the holding cost function is readily
apparent for décision makers whose firms operate in an environment of
diseconomies of scale (e.g., perishability, decay, or détérioration).
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