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ON THE SOLUTION OF A CLASS OF LOCATION PROBLEMS.
A SAMPLE PROBLEM (*)

by Giancarlo PESAMOSCA (*)

Communicated by Franco GIANNESSI

Abstract. — In Section 2 of this paper the optimality conditions for the EMFL (Euclidean Multi-
Facility Location) minisum problem are shown to be a useful tool for finding the analytical solution
ofmany simple problems. In Section 3 the problem of Connecting by means oftwo new facilities the
vertices of an isocèles triangle is completely solved. © Elsevier, Paris

Keywords: Non-differentiable optimization, Euclidean Multifacility Location Problem.

Résumé. - Dans cet article on fait voir que les conditions d'optimalité pour le problème EMFL
(Euclidean Multi-Facility Location) sont un moyen efficace pour trouver analytiquement la solution
de plusieurs simples problèmes. Ensuite le problème de connecter les vertices d'un triangle isocèle
au moyen de deux nouvelles facilités est résolu. © Elsevier, Paris

Mots clés : Optimisation non différendable, Euclidean Multifacility Location problem.

1. INTRODUCTION

After the optimality conditions for the gênerai EMFL minisum problem
have been stated (see [1], [2], [3]), the analytical solution of many simple
problems has become possible. The form of the optimality conditions
presented in [2] gives an explicit expression of the subdifferential of the
objective function and represents a useful tool for this purpose, suggesting
the method proposed in Section 2. The problem solved in Section 3, as well
as the case considered in [4], show that the analytical solution of some
symmetrie problems may present simple and aesthetic features.

2. THE OPTIMALITY CONDITIONS AND THE ANALYTICAL SOLUTION
OF THE EMFL MINISUM PROBLEM

The optimality conditions in the form presented in [2] can be summarized
as follows.

(*) Received July 1995.
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34 G. PESAMOSCA

Let Xi , . . . , X m (Xj — (xj.yj)) be the New Facilities, Ai, ...,An

the Existing Facilities, and H the graph having Xj, Ar as nodes, and
the links interconnecting them as edges. The edges are assumed to
be ordered, for example in lexicographie order X1X2, X1X3 - • - XiXm,
X 2X 3 , . . . , X m _ i X m , X\Au • • •, XmAn (of course, only the edges present
in H appear in the séquence).

The EMFL minisum problem can be stated as

F(X)=F(Xu...,Xm)= ]T u>jr\\Xj - Xr\\2

O»en
wJr\\Xj - Arh = min (1)

where Q, Q are respectively the sets of the pairs (j, r) such that the edge
XjXr (or XjAr) exists in H, and Wjr (or Wjr) are the corresponding
positive weights. Let X = [X\, ...,Xm] be a given point of R2m. Two
facilities Xy, X r (or Xj, A^) adjacent in H are "Interacting" if they overlap,
Le. Xj = Xr (or Xj = Ad). The corresponding zero-length edges X 7X r (or
XjAd) are "active edges". As has been proved in [2], the components of
the subdifferential set dF(X) — [x\, y\, ... ,2;^, y^] can be characterized
as follows:

(2)

where:
• ^JT = ^E. | ̂ ? ̂  — ̂ . | ̂  are the partial derivatives with respect to

XJ, yj of the differentiable part of F(X), Le. the sums with respect to r
of the derivatives of Wjr\\Xj — Xr\\2 and Wjr\\X3 - Ar||2, restricted to the
non-interacting pairs XjXr and XjA r ,

• E~, E+ are the sets of the indices r (respectively r < j for S~ and
r > j for S+) of the facilities X r interacting with Xj. Hence, each pair of
variables (urj, vrj) [or (ujr, Vjr)] is associated with an active edge X rXj
[or XjXr],

• the pair (üjd, Vjd) is associated with the edge XjA^ (if a facility Ad
interacting with Xj exists).
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A R2m point X is a minimizer for (1) iff 0 G dF(X), Le. for any active
edge a pair (ujr, Vjr) or (ujd, Vjd) exists which satisfies the inequalities (3)
and the linear System of 2m équations obtained by setting (2) to zero.
These conditions reduce to Grad [F(X)] = 0 if no pair of interacting
facilities exists. Let z be the number of active edges in H(X)9 and (ji, r i ) ,
(J2j r2), <-.,(jz, TZ) be the ordered list of the pairs of indices of the
corresponding interacting facilities. Since for any j the first components
in (2) contains only gjx, urj, ujr, üjd and the second component only gjy,
vrj, Vjr, Vjd, then (2) can be split into two parts Gx + AU, Gy + AV, and
the related linear System dF(X) — 0 into two independent subsystems

Gx + AU = 0, Gy + AV = 0 (4)

where:

• U(z) = [Ujuri, Uj2tr2, . . . , W j Z ï r J T ; V(z) = [vjuri, Vj2,r2, • • • ,Vjztrz]
T

(some components of £/, V can be of the type (ûjkidki ^j'fc,dfc)'

• Gx(m) = [gix, #2z, . • • ,9mx,} , Gy(m) = [g\y, g2y, * -. ,9my,] >

• A(mxz) is the coefficient matrix, whose entries are 1, — 1, 0. In order
to détermine them, consider for k = 1, 2, . . . , z the pairs UjkTk, vjkTk. If
Xjk, XTk are new facilities (with jk < rk since they are ordered), construct
the k^ column of A by setting 1 in row j * . , - 1 in row r&, and 0 elsewhere.
If the &th pair is of the type ûjkdk, Vjkdk, then the fcth column of A must
have 1 in row j ^ and 0 elsewhere.

In the current literature, the new facilities Xj of a given R2m point X are
classified as belonging to one of the following catégories:

(i) Isolaîed points, Xj is an isolated point if it does not interact with
other facilities.

(ii) Coinciding points. Xj is a coinciding point if it interacts with a
facility Ad only.

(iii) Isolated cluster. A group of interacting new facilities is an isolated
cluster if their common location is distinct from ail other facility locations.

(iv) Coinciding cluster. A group of interacting new facilities is a coinciding
cluster if their common location coincides with a facility Ad (interacting at
least with a facility Xj of the cluster).

As has been proved in [2], the Systems (4) can be split into as many
independent subsystems as there are isolated points, coinciding points, and
clusters in the point X to be tested for optimality. Let if be a cluster, and
let us suppose that K is formed by all the new facilities of H (if not so, a
pair of subsystems must be considered instead of the Systems (4)). If K is
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36 G. PESAMOSCA

a tree, then the Systems have a unique solution which can be computed by
means of a recursive algorithm [2]. If K contains cycles, the Systems have
in gênerai more unknowns than équations, so that the solutions depend on
p = z — r (with r rank of 4̂) arbitrary parameters. As will be shown in the
problem in Section 3 (région Ri), in the case of p — 1 the solutions of the
two Systems can be expressed by means of two parameters a, ƒ?, and the
corresponding inequalities (3) represent circles of (a, (3) plane. Therefore,
(3) are satisfied if these circles have a common intersection.

If the solution of (1) is considered as function of the weights, it can be
completely described by deterrruning the sets of weights corresponding to any
possible type of solution (Le, any combination of isolated points, coinciding
points, and clusters), and then partitioning the space of the weights into
régions corresponding to these sets. The weights can be normalized so that
one of them is 1.

3. THE CONSIDERED PROBLEM AND ITS SOLUTION

The symmetrie EMFL problem shown in Figure 1 is considered. The
Existing Facilities are AQ — (0,0), A\ = (a, h), A^ — (—a,/i), the New
Facilities X\ — (xi, yi), X% — (^2, 1/2), and the weights are \x for the edges
A0.X1, A§X<i, 1 for X\A\, X2A2, and v for X1X2.L = Va2 + h2 is the side
of the triangle, and # = 2arctg(a//i) is the angle A1A0A2 [â G (0, 2?r)].

/|\y

A2(-a,h)Or a,h)

It is required to locate X\ and X2 so as

= F{XUX2)

U(X) = min (5)
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with

The solution of (5) is symmetrie with respect the y-axis. A proof is given
by the following

THEOREM 1: Let X\, X2 be a solution of (5) with X\ — (#, y), and let
//, v > 0. Then X2 = (—x, y).

Proof: Let us first assume that X\, X2 are isolated points, and consider
the two Weber problems having respectively Xi, X2 as new facilities, and
(Ao, Ai, X2), (Ao, Xi, A2) as existing facilities (see Fig. 1). Such problems
must be also solved when X is optimal: in fact, if not so Xi (or X2) could
be moved from its position, with a decrease of F(X). For a property of the
3-point Weber problem, the angles

ai = A0X1A1, <%2 = Ai'XiX2} «3 = X2X1A0,

A = A2X2A0, fc - A2X2XU h

depend at optimality on the weights only, and their cosines (see [5]) are

cos ai = (y1 - 1 - //2)/2^, cosa2 = (/i2 - 1 - v2)/2v,
cosa3 = (1 - fi2 - v2)j2\±v, co${3j = cosaj(j = 1, 2, 3). ^

Therefore aj — j3j (j — 1, 2, 3). But these equalities can hold only if the
solution is symmetrie, Le. if X\ — (#, y), X2 = (~x, y).

If Xi, X2 are non isolated, two clearly symmetrie cases are possible:
(i) X\ = X2 belonging to the y-axis;

(ii) Xi = Ai, X2 = A2. Both can be thought as a limit of a case of
isolated points. 4

The problem (5) allows of four different types of solution, corresponding
to the régions R\, R2, R$, R4 of the space of the weights as shown in
Figure 2 for the special case of ê = TT/4. The coordinates of P , 5, Q are
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R i

0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4

Figure 2.

P ( l , 0), 5(0, 1) and Q(s, c), with 5 = sin(tf/2), c = cos(#/2). T h e shape
of the régions dépends on $, but it is independent of h. It can be observed
that Q moves along the arc of circumference \x — cos(t?/2), v — sin(t?/2)
as ê varies in (0, 2-K).

The following statements define the régions and the corresponding type
of solution.

1. R\ is delimited by the ray (S, +oo) of the ^-axis, by the ray (Q, +oo)
parallel to the iv-axis, and by the arc SQ of the hyperbole

- v2 + 2vs = 1 (7)

If (zv, }j) £ R\, the coinciding cluster X\ = X% = AQ solves the problem (5).

2. i?2 is bounded by the segments OP, OS and by the arc PS of the ellipse

/x2 + v2 + 2\ivs = 1 (8)

If {y, \x) e R2 the solution is in the coinciding points X\ = Ai, X% = A2.

3. The région Rz is bounded by the ray (Q, +00) parallel to the v axis
and by the arc PQ of the curve

F + J 2 = ̂ 2 (9)y* - c

with

x 2 - l
' l - M 2 , (0 < M < c) (10)
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If (i/, ji) G Rs the solution is an "Isolated Cluster" X\ — X2 = (0, y)
located on the y-axis. The ordinate is y — Ly*, with L side of the triangle.

4. The région R4 is bounded by the arcs SQ, PS, PQ of (7), (8) and (9).
If (i/, /i) G #4 the problem is solved by the isolated points X\(x, y),
X2(~x, y), with

x -
- h

- m\
y - m\x (H)

— \i —v \x —\ — vl

These statements will now be proved.

1. As concerns the cluster X\ — X2 — AQ, tacking into account that

9\x = dfa/dx\\AQ = -s, — ~c

92x = dfb/dx2\A0 = s, 523/ = dfe/dy2\A0 = - c

the optimality conditions (4), (3) can be written as

«12 + «10 — s

-uu + «20 = —s '
+ V10 = C (13)

& \ f**** £*** i £* 77T^ I TTT^ — - L 1 TT-" (13')

Let a, ƒ? be two real parameters. Then the gênerai solutions of (13) are

u =

v =
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where U\ = [a, - a , a], V\ = [/3, - /? , ƒ?] are the gênerai solutions of the
homogeneous parts, and U2 = [s, 0, 0], V2 = [0, c, c] are particular solutions
of the complete Systems. Hence the inequalities (13') can be written as

(a + s)2 + 01 < v2

a2 + (-/? + c) 2 <^ 2

a2 + (P + c)2 < M2

which in an auxiliary (a, /3) plane define three circles Ci, C2, C3 of centres
Cl ( - s , 0), C2(0, c), C3(0, - c ) , and radii u, /i, /x (5ee Fig. 3).

,(0f-c)

Figure 3.

It follows by simple inspection of the isosceles triangle C1C2C3, that
ji > c is a necessary condition for Ci, C2, C3 to have a common intersection.
Let us assume that \i > c is satisfied, and v = Ci P. Then the circles intersect
onlyif//2 > S C 3 + Ô P 2 , / . e . \x2 > c2 + (s-v)2 or/x2 > l + v2-2vs, which
is the hyperbole (7). If both these conditions are satisfied then (/x, 1/) G i?i
and (13), (13') are also satisfied, so that the cluster X\ = X2 = 4̂o solves
the problem.

2. The conditions (4), (3) of optimality for X\ — Ai, X2 = ^2 can be
written as follows:

vn = -giy => g\x + g\y < l (14)

(15)

Let us first consider (14) (condition for Xi = Ai). After Computing the
derivatives

g\x = M:
dyi dy\ \A1,A2

Recherche opérationnelle/Opérations Research
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in Ai = (a, h) and A2 = (-a , h) and by using some well known
trigonométrie identities, the inequality in (14) becomes ^2 + v1 + 2fivs < 1,
which is the ellipsis delimiting the région R2. The same resuit can be
obtained by considering (15) instead of (14).

3. If the solution is not in the vertices, two cases can occur: an isolated
cluster located on the y-axis or two isolated points Xi ^ X2. Let us consider
the first case. The optimality conditions (4), (3) are:

= -giyf «12 = -gix f vu = -giy
\ -W12 — -52a: ' \ —V12 = -92

(16)

12 + ^12 9Îx + <

and the consistency of the Systems requires

9\x + 92x = 0, giy + g2y = 0 (17)

Since a solution on the y-axis is required, we can set X\ — (0, y),
X2 = (0, y) in the derivatives, thus obtaining (after introducing the notation
X* = (X1,X2)):

gix = _ ^dxi

dyi

—a

y -h

X' - y)2

522/ =
9/2

X' (h-y)2

Therefore, the first of (17) is always satisfied, and the second reduces to
giy = 0 (or to g2y — 0). Moreover the inequality in (16) becomes

a2 + (h - y)2
y-h

(h-y)2
(18)

Since h — Le and a — Ls, the solution y G (0, h) of the équation giy — 0
can be written as

= V (19)
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By setting y = Ly* and taking the equality sign (18) can be rewritten in
the form (9), (10) which is the left bound of the région R%. The upper and
lower bounds are given by the inequalities 0 < fi < c, which follow from
(19) since lim^-^?/ = 0, lim^_>oy = Le = h. Hence the isolated cluster
X\ = X2 is optimal if (^, v) G R%.

4. The rernaning case of isolated points X\ ^ X2 corresponds to the
remaining région R4. The Systems (4) reduce to the gradient System Gx = 0,
Gy = 0, which can be numerically solved. However a more simple way
to obtain the solution is to intersect the two straight lines passing through

and A\X\\

y ~ m\x} y — h = rri2(x — a)

whose coefficients m\ and m% can be easily computed, since the three angles
in X\ are known at optimality (their cosines are given by (6)). The solution
is expressed by (11), (12).
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