RAIRO. RECHERCHE OPERATIONNELLE

SHELDON H. JACOBSON

ENVER YUCESAN
Intractability results in discrete-event simulation

RAIRO. Recherche opérationnelle, tome 29, n°3 (1995),
p- 353-369

<http://www.numdam.org/item?id=RO_1995 29 3 353 0>

© AFCET, 1995, tous droits réservés.

L’acces aux archives de la revue « RAIRO. Recherche opérationnelle »
implique ’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=RO_1995__29_3_353_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Operations Research
(vol. 29, n° 3, 1995, p. 353 a 369)

INTRACTABILITY RESULTS
IN DISCRETE-EVENT SIMULATION (*)

by Sheldon H. Jacosson (') and Enver Yucesan (%)

Abstract. — Simulation is often viewed as a modeling methodology of last resort. This is due to
the lack of automated algorithms and procedures that exist to aid in the construction and analysis
of simulation models. Jacobson and Yiicesan (1994) present four structural issue search problems
associated with simulation model building, and prove them to be NP-hard, hence intractable under
the worst-case analysis of computational complexity theory. In this article, three new structural
issue search problems are presented and proven to be NP-hard. The consequences and implications
of these results are discussed.

Keywords: Simulation: Model Building, Computational Complexity, Discrete Event Systems.

Résumé. — La simulation est souvent considérée comme le dernier outil de modélisation et
d’analyse. Ceci est en raison de I’absence des algorithmes et des procédures qui peuvent soutenir
le développement et I’analyse des modeéles de simulation. Jacobson et Yiicesan (1994) présentent
quatre problémes associés a la modélisation et prouvent qu’ils sont NP-hard au sein de la théorie
de la complexité de computation. Dans cet article, trois nouveaux problémes sont présentés et sont
prouvés NP-hard. Les conséquences de ces résultats sont également considérées.

Mots clés : Simulation: Modélisation, Complexité de computation, Systtmes a Evénements
Discrets.

1. INTRODUCTION

Discrete event simulation models are used to analyze complex, large-
scale, real-world systems. A severe limitation of this modeling approach is
the lack of automated tools to help practitioners construct valid models. In
addition, once such models are built, there are no automated tools available to
efficiently analyze their structural properties. The best one can hope to have

The first author was supported in part by the National Science Foundation (DMI-9409266) and
the Air Force Office of Scientific Research (94NM378).

(*) Received December 1993. _ . ‘

(") Department of Industrial and Systéms Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia 24061-0118, U.S.A.

(3) INSEAD, European Institute of Business Administration, Boulevard de Constance, 77305
Fontainebleau Cedex, France.

Recherche opérationnelle/Operations Research, 0399-0559/95/03/$ 4.00
© AFCET-Gauthier-Villars

354 S. H. JACOBSON, E. YUCESAN

are model-specific techniques and procedures with little or no guidelines on
when these methods are valid.

Jacobson and Yiicesan (1994) define four search problems for discrete
event models, and prove them to be NP-hard, hence intractable under
the worst case analysis of computational complexity theory, unless P=NP
(Garey and Johnson, 1979). These four problems are accessibility, ordering,
noninterchangeability, and stalling. Informally, accessibility asks whether it
is possible to find a sequence of events in a simulation model such that,
when it is executed, a particular state is reached. Ordering asks whether it is
possible to find a sequence of events in a simulation model such that, when
executed with the order of the last two events interchanged, two distinct
states are reached. Noninterchangeability asks whether it is possible to find a
sequence of events in a simulation model such that when it is executed in two
separate implementations of the simulation model (e.g., the implementation
of the same model using two different simulation languages), two distinct
states are reached. Stalling asks whether it is possible to find a sequence of
events in a simulation model such that, when it is executed, a particular state
is reached where the future events list is empty and the stopping condition
is not satisfied.

There are several theoretical and practical implications of these four search
problems being NP-hard. On the theoretical side, these results provide a
unifying framework to explain the difficulty of seemingly different simulation
modeling and analysis issues. It also explains why simulation researchers
have been unable to automate simulation model building and analysis tasks,
and why there is a need for the many simulation languages and simulators on
the market (no one package can satisfy all the requirements of practitioners).
On the practical side, diverse issues such as model validation and verification,
guaranteed variance reduction, and validation of the applicability of sample
path based techniques are all impacted by the NP-hardness results in Jacobson
and Yiicesan (1994). For an extensive discussion of these implications, see
Yiicesan and Jacobson (1992).

In this paper, three new search problems associated with structural issues in
simulation modeling are defined and proven to be NP-hard. Their implications
are discussed not only for simulation model building and analysis but also for
performance assessment of general discrete-event dynamic systems (DEDS).
The paper is organized as follows: in Section 2, formal definitions are
presented that are needed to obtain the main results. Three new search
problems are also presented and proven to be NP-hard. Section 3 discusses

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 355

the implications of these results, while Section 4 summarizes the highlights
of the paper.

2. THREE SIMULATION SEARCH PROBLEMS AND THEIR COMPLEXITY

Three simulation model structural issue search problems are presented. The
first problem focuses on finding a sequence of events such that executing
the sequence in any valid order or permutation results in different states
being reached. The second problem focuses on finding a sequence of events
such that executing the sequence in any valid order or permutation results
in different future events lists being produced. The third problem focuses
on finding a sequence of events such that executing the sequence results in
future events being cancelled.

2.1 Definitions

To establish the complexity results, the concepts associated with a
simulation model must be defined. These definitions are taken from Jacobson
and Yiicesan (1994).

A model specification is a representation of the system under study,
reflecting the objectives of the study and the assumptions of the analysis.
A model specification can be in the form of a Generalized Semi-Markov
Process (GSMP) (see Glasserman and Yao, 1992a) or a Simulation Graph
(see Schruben and Yiicesan, 1993). The state of a system is a value that
provides a complete description of the system, including values for all of its
attributes as well as any schedule for the future. Events induce changes in the
state of the system. There are a countable number of event types. A model
implementation is a translation of the model specification into a computer
executable form. This could be in a high-level programming language or
in a particular simulation package. Informally, a model specification defines
what a model does while the model implementation defines how the model
behavior is to be achieved. An event sequence is said to be valid if the
sequence is well defined in a simulation model specification.

The theory of computational complexity provides a well-defined framework
to assess the tractability of decision problems (Garey and Johnson, 1979). A
decision problem is one whose solution is either “yes” or “no”. In general,
we are interested in finding the most “efficient” algorithm to solve a problem.
Typically, the fastest algorithm is considered as the most efficient. We then
define the time complexity function for an algorithm as the maximum amount
of time needed by the algorithm to solve a problem instance of a particular
size, which represents a worst-case performance criterion.

vol. 29, n° 3, 1995

356 S. H. JACOBSON, E. YUCESAN

Note that the size of a problem instance is defined as the amount of input
data needed to describe the instance. Various encoding schemes are possible
to describe a problem instance. The most widely accepted scheme, which is
the one adopted here, is the number of tape cells on a Turing machine.

A polynomial-time algorithm is one whose time complexity function
is O(p(n)), where p is a polynomial function and n denotes the size
of the problem instance. Any algorithm whose time complexity function
cannot be so bounded is called an exponential-time algorithm. Given the
explosive growth rates for exponential complexity functions, polynomial-
time -algorithms are much more desirable from a practical point of view. It
is well accepted that a problem is not “well-solved” until a polynomial-time
algorithm has been found for it (Garey and Johnson, 1979; p. 8).

Decision problems in the class NP are those problems for which a potential
solution can be verified in polynomial time in the size of the problem instance.
The complete problems for this class (that is, NP-complete problems) are
the hardest problems in NP such that, if one such problem could be solved
in polynomial time, then all problems in NP could be solved in polynomial
time. Moreover, NP-hard problems are search problems which are provably
at least as hard as NP-complete decision problems.

We assume that the size of a discrete event simulation model specification
is m. This is the number of tape cells on a Turing machine required to
represent a model implementation of the model specification such that it
can be executed. Note that model implementations are not unique, in that
there are several possible model implementations associated with each model
specification. Any event of the model specification is also assumed to be
executable in polynomial time in n; that is, p1 (n). This assumption restricts
our work to a subclass of simulation models. Such a subclass, however,
contains all of the relevant simulation models from a practical point of view,
as models whose events could take an exponential amount of time to execute
would not have much use in a simulation study. These assumptions will be
used in all the subsequent theorems, unless it is otherwise stated.

The notation Ey E1 F» ... Ep. — S denotes that the event sequence, when
executed, leads to the state S, while the notation Ey F1 F> ... Ep - S
means that the event sequence, when executed, leads to any state except
S. The initial event, Ej, establishes the initial state of the system and
schedules further events to initiate the execution of the simulation model
implementation.

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 357

2.2 Search Problems and Results

Consider the following structural problem, termed STRONG PERMUTA-
TION. Informally, STRONG PERMUTATION asks whether a sequence of
events and a one-to-one (valid) permutation of these events can be found
such that when the sequence of events and the permutation of the events

are executed, both starting from the same initial event, different states are
reached.

STRONG PERMUTATION

Instance: — A discrete event simulation model specification with an
associated simulation model implementation,

— An initial event, Fy,
— Two distinct states, S; and So,
— A non-negative finite integer, K.

Question: Find a sequence of events £y, Fa, ..., Ej, with £ < K, and a
one-to-one permutation function

7:{1,2,,...k} = {1,2,..., k}
such that
EyE1Ey...Ex — 51
and
Eo Er1) Ex(2)---Er iy = 2,
where Ey Er(1) Er(2)-- - Er (x) is a valid event sequence.

The following theorem proves STRONG PERMUTATION to be NP-hard.

THeoREM 1: STRONG PERMUTATION is NP-hard.

Proof: To show that STRONG PERMUTATION is NP-hard, a polynomial
Turing reduction from ACCESSIBILITY to STRONG PERMUTATION will
be constructed. First, ACCESSIBILITY is formally defined.

ACCESSIBILITY (Jacobson and Yiicesan, 1994)

Instance: — A discrete event simulation model specification with an
associated simulation model implementation,

— An initial event, FEp,

vol. 29, n° 3, 1995

358 S. H. JACOBSON, E. YUCESAN

— A state, S,
— A non-negative finite integer, M.
Question: Find a sequence of events Ey, Ey, ..., Ep, withm < M, such
that the execution of the sequence yields Fy 1 E> ... E, — S.
For a general instance of ACCESSIBILITY, define the associated particular
instance of STRONG PERMUTATION as follows:

The discrete event simulation model specification and the associated
simulation model implementation are the same as for ACCESSIBILITY
with the following modifications: one additional state Sz and one additional
event F' are defined. The initial event F is defined in the same way as
for ACCESSIBILITY except for one additional feature: it schedules event
F with time delay ¢. Define state Sy = S from ACCESSIBILITY, and state
S1 = Sz, a new state reachable only through the new event F', defined as:

F = {If STATE = S, set STATE <« Sz and continue.}

Lastly, K = M + 1.

This reduction can be made in polynomial time in the size of the
instance of ACCESSIBILITY. To complete the proof, it is necessary to
show that a solution to STRONG PERMUTATION can be used to solve
ACCESSIBILITY. Suppose that a solution to STRONG PERMUTATION
can be found. Then there exists a sequence of £ < K events and a one-to-one
permutation function 7 such that

E()E1E2...E;\'—>Sl and E()E,r(l)Eﬂ(g)...Eﬂ(k)—-)SZ.

Suppose F' is not one of the k events, Fy, Fa, ..., Ey. This is impossible
since S; = Sz can only be achieved through event F'. Therefore, F' must
be executed at least once in the sequence. By definition, however, F' can
be scheduled at most once in the sequence. Thus, F' must be executed
exactly once.

Event F' can be executed with STATE = S or with STATE # S. The latter
case is impossible since then state Sy cannot be reached. Therefore, event F
must be executed with STATE = S, thatis, By E1 By ... E; — S, 5 <k-1.
The resulting subsequence of events solves ACCESSIBILITY. [

The following example illustrates the search problem STRONG
PERMUTATION.

Example 1: Consider the simulation model specification for a single-
server queueing system. This specification is fully defined by the events

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 359

INITIALIZE, BEGIN, and COMPLETE, corresponding to initializing the
system, customer arrivals, and service completions, respectively. For
simplicity of notation, label these events I, B, and C, respectively.
Define the state () to be the number of customers in the system. Set
K = 7 and suppose E initializes = 0. For this system, every valid
permutation of events results in the same state being reached, hence a
solution to STRONG PERMUTATION cannot be found. For example, the
event sequence IBBBBBCC can be permuted into 21 different event
sequences, of which 14 are valid. It is easy to verify that all 14 of these
valid event sequence permutations result in state Q = 3 being reached.

Suppose that the single-server queueing system is embellished with a
restriction on the system size, namely, a capacity of two, such that customers
are denied access to the system if they find, upon arrival, one customer
already in service and another in the queue. For this model specification, the
event sequence / BCBBCB results in state () = 2), while the permutation
of this event sequence IBBBC BC results in state (() = 1). For this model
specification, the state () is a function of the event sequence order, hence
a solution to STRONG PERMUTATION exists for S = 2, So = 1, and
K >6. U

Consider the following problem, termed WEAK PERMUTATION.
Informally, this problem seeks to find a sequence of events and a valid
one-to-one permutation of these events such that when the sequence of
events and the (valid) permutation of the events are executed, both starting
with the same initial event, different future events lists result.

WEAK PERMUTATION

Instance: — A discrete event simulation model specification with an
associated simulation model implementation,

— An initial event, Fy,
— Two distinct future events lists, A; and A3,
— A non-negative finite integer, M.
Question: Find a sequence of events FEi, Ey, ..., E,,, withm < M,
and a one-to-one permutation function :
m:{1,2,...,m} —={1,2,...,m}
such that

A(E() El E2 ..-E‘rn) = Al

vol. 29, n°® 3, 1995

360 S. H. JACOBSON, E. YUCESAN

and
A(Ey E7r(1) E7r(2) i Eﬂ(m)) = A

where Eo E; (1) E(3) ... Ex () is a valid event sequence and
A(Ey E1 E; ... Ey,) is defined as the set of events scheduled
to occur after the event sequence Fy Fy E» ... E, has been
executed (i.e., the resulting future events list).

This problem is termed “weak”, in contrast to the previous search problem
(termed “strong”) because each state uniquely defines an associated future
events list. However, the converse is not necessarily true.

The following theorem proves WEAK PERMUTATION to be NP-hard.

TueoreM 2: WEAK PERMUTATION is NP-hard.

Proof: A polynomial Turing reduction from STRONG PERMUTATION
to WEAK PERMUTATION will be constructed.

For a general instance of STRONG PERMUTATION, define the associated
particular instance of WEAK PERMUTATION as follows: the model
specification and model implementation are the same as for STRONG
PERMUTATION, except for the definition of three additional events, F,
G, and H, where

F = {If STATE = S, then cancel all events on the events list and
schedule event G with the highest priority.
If STATE = S, then cancel all events on the events list and
schedule event H with the highest priority.

Else cancel all events on the events list and terminate the
simulation}.

G = {Terminate the simulation}.

H = {Terminate the simulation}.

Note that events F, G, and H are uniquely defined for WEAK
PERMUTATION and are not part of STRONG PERMUTATION. F is
initially scheduled by Fj with a time delay ¢. Also define 4; = {G} and
Ay = {H}. Lastly, set M = K + 1.

This reduction can be made in polynomial time in the instance of
STRONG PERMUTATION. To complete the proof, it is necessary to
show that a solution to WEAK PERMUTATION can be used to construct
a solution to STRONG PERMUTATION. Suppose a solution to WEAK
PERMUTATION exists. Therefore, there exists a sequence of M or fewer

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 361

events and a permutation function = such that A (Ey E1 Es ... Ep,) = {G}
and A (Eo Er (1) Er(y)... E; (m)) = {H?}. To establish that this can be used

to construct a solution to STRONG PERMUTATION, the following cases
must be considered:

(1) Event F' can be executed at most once. This follows by the fact that
event F' can only be scheduled by event Ej.

(i1) Event F' must be executed exactly once. This follows since event G
or event H are on the resulting future events lists, and events G and H can
only be scheduled by event F.

(iii) It is impossible for either event G or event H to be part of the solution
sequence. This follows by the definition of event F, which can schedule
events G or H at most once.

(iv) It is impossible for event F' to be F;, 1 < i < m — 1, nor E, ()>
1 < j < m~- 1. To see this, suppose that event F' were one of these
events in the resulting event sequence. If the state is not equal to S; or Sy
when event F is about to be executed, then, by the definition of F, it is
not possible to achieve the given future events lists. If the state is equal
to S1(S2) when F' is about to be executed, then G (H) must be executed
immediately, which contradicts (iii).

Therefore, events Ey, and E, (m) must both be event F'. In addition, since
AEyE1 Ey...Ep 1 F)={G}
and
A(Eo Br(1) Er(2)---Ex(2) - Ex(m—1) F) = {H},

then Eo E1 E2...Ep—1 — S1 and Ey Er(l) E, (2)-- 'Eﬂ'(m—l) — Sy,
which provide a solution to STRONG PERMUTATION. [

The following example illustrates the search problem WEAK PERMU-
TATION.

Example 2: Consider the embellished simulation model specification for the
single-server queueing system of Example 1. For this model specification, the
event sequence I BCBBC results in A(IBCBBC) = {B, C}, while the
permutation of this event sequence IBBBCC results in A(IBBBCC) =
{B}. For this model specification, the resulting future events list is a function
of the event sequence order; hence, this event sequence solves WEAK
PERMUTATION for A; = {B, C}, Ay ={B},and M >5. O

Consider the following structural problem, termed INTERRUPT.
Informally, INTERRUPT seeks a sequence of events such that events on the

vol. 29, n°® 3, 1995

362 S. H. JACOBSON, E. YUCESAN

future events list can be cancelled at some point during the execution of this
event sequence. In other words, this condition requires that some pending
event be interrupted before it is executed.

INTERRUPT

Instance: — A discrete event simulation model specification with an
associated simulation model implementation,

— An initial event, Fj,
— A non-negative finite integer, K.

Question: Find a sequence of events Eq, Ey, ..., Eg, Exyq, withk < K
and an event F' such that

Fe A(EyE1 Ey...Ep)\Egy1
while
F ¢ A(Ey E1 Ey ... Ey Epyq).
The following theorem proves INTERRUPT to be NP-hard. The proof

establishes a polynomial Turing reduction from 3-SATISFIABILITY (3-SAT)
to INTERRUPT. First, 3-SAT is formally defined.

3-SATISFIABILITY (Garey and Johnson 1979, p. 46)

Instance: — A collection of clauses V = {V1, Va, ..., V;.} on a finite set of
Boolean variables U = {u1, ug, ..., ut} such that |V;| =3
fore=1,2,...,r.

Question: — Does there exist a Boolean assignment for
U={ui, uz, ..., u}

that satisfies all the clauses in V?

TueoreM 3: INTERRUPT is NP-hard.

Proof: A polynomial Turing reduction from 3-SAT to INTERRUPT will
be constructed. The reduction is constructive, in that it creates a one-to-one
mapping between the 3-SAT Boolean variable assignments that solve 3-SAT
and the inputs, hence the sequence of events, to the discrete event simulation
model specification instance of INTERRUPT.

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 363

Let U = {u1, u2,..., w4} be a set of Boolean variables and let
V ={W1, Va, ..., V;} be a set of clauses making up an arbitrary instance
of 3-SAT. Without loss of generality, assume that a true (false) clause is
represented by a 1 (0). A discrete event simulation model specification can
be constructed in polynomial time in tr, whose implementation results in a
solution to INTERRUPT that can be used to identify a Boolean assignment
for U that satisfies all the clauses in V. The input to the simulation model
specification consists of values for the a; variables, deterministically set by
the simulation user. These values are delay times in scheduling future events.
Simultaneously scheduled events are executed using a first-in-first-out (FIFO)
priority rule. Each event assigns a value of zero or one to Boolean variable.
After all the Boolean variables are assigned a value, if all the clauses for
the instance of 3-SAT are true, then an event on the future events list is
cancelled, hence solving the instance of INTERRUPT constructed from the
arbitrary instance of 3-SAT. In particular, the simulation is designed such
that the solution to INTERRUPT yields a solution to 3-SAT.

Formally define the events for the discrete event simulation model
specification as follows:

E¢ (Initialization):

Read values of input variables

ai —0orl, i=1,2...,¢tj=1234
a%+a% =1 and a’i —I—aé-l—ag—}—afl =3, 1=23,..., ¢,
with the following constraints:

if al =0, then a? + a3 =1, af = o}

Il
=

I

if a%:O, then a%—l—ai:l, a%:a% 1,
and for j = 2,...,t -1,
if a{ = 0 or aé = 0, then a{H + aé“ =1, J+1
if aJé = 0 or a,i = (, then aé“ + aff"l =1, a{’H = a%“ 1.
Set STATE — —1. '
Schedule E; with a time delay of af.

Schedule E, with a time delay of a%.
For k=1,...,t—L

vol. 29, n°® 3, 1995

364 S. H. JACOBSON, E. YUCESAN

E3 k-1 (Assign the value 0 to Boolean variable uy):
Set up «— 0.

k+1

1 .

k+1

2 .

Schedule Ejj41 with a time delay of o
Schedule Ejyo with a time delay of a

E5 i (Assign the value 1 to Boolean variable u;):
Set up «— 1.

Schedule Ly with a time delay of a’3°+1.

Schedule Ej 4o with a time delay of ai“.

E2¢—1 (Assign the value 0 to Boolean variable u;):
Set u; « 0.

Schedule E3:y1 with no time delay.

E2¢ (Assign the value 1 to Boolean variable u;):
Set Us — 1.

Schedule E9¢y; with no time delay.

E2¢+1 (Check the number of clauses to be true):

T
Set STATE— Y _V;.
=1
Schedule FE3¢42 with no time delay.
Schedule E7:43 with no time delay, but with lower execution priority
than E2 t+2-

E3¢+2 (Cancel events):

If STATE = r, cancel Fy;43 and terminate the run.
If STATE # r, continue.

E3¢+3 (Terminate):
Terminate the run.

The simulation model implementation associated with the simulation model
specification can be in Sigma (Schruben, 1992). Lastly, K = ¢ + 2. This
discrete event simulation model specification is constructed im polynomial
time in the size of the instance of 3-SAT. Suppose a solution to INTERRUPT
is found. Then there exists a sequence of events such that the future events
list has an event cancelled at some point in time. By the definition of the
simulation model specification, this can only occur at event Ey44p with

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 365

STATE = r. However, if STATE = r, then the answer to the instance of
3-SAT is yes. O

Note that a nonconstructive proof of Theorem 3 can be formulated by
compressing events Ey, Ey, ..., Eyy into a single event. However, the
resulting simulation model specification will no longer yield a one-to-one
mapping between the Boolean variable assignment that solves 3-SAT and
the event sequence that solves INTERRUPT.

The following example illustrates the search problem INTERRUPT.

Example 3: Consider the simulation model specification for the single-
server queueing system, with events and notation as described in Example 1.
For this system, there are no events cancelled in every valid event sequence.
For example, the event sequence IBCBBCBDB results in

A(IB)={B,C}, A(BC)={B),

A(IBCB) = A(IBCBB) = A(IBCBBC) = A(IBCBBCB)
= A(IBCBBCBB) = {B, C}.

Therefore, this particular event sequence does not yield a solution to
INTERRUPT.

Suppose that the single server queueing system is embellished with the
added feature that the server breaks down due to an overload (a new
breakdown event, D), resulting in the cancellation of the service completion
event and the scheduling of a repair event (a new repair event, R). For
this model specification, the event sequence IBB results in A(IBB) =
{B, C, D} and A(IBBD) = {B, R}, hence C € A(IBB)\{D}, yet
C ¢ A(IBBD). Therefore, for this model specification, this event sequence
is a solution to INTERRUPT for K > 2. O

3. CONSEQUENCES AND IMPLICATIONS

The search problems STRONG PERMUTATION, WEAK PERMUTA-
TION and INTERRUPT have been shown to be NP-hard. This implies
that it is highly unlikely to obtain event sequences to solve these problems
using a polynomial-time algorithm, unless P = NP. These results have a
number of consequences for practitioners interested in building and analyzing
simulation models.

Glasserman and Yao (1992a) define the concept of monotonicity.
Informally, they state that this condition means that “the occurrence of

vol. 29, n°® 3, 1995

366 S. H. JACOBSON, E. YUCESAN

more events in the short run never leads to the execution of fewer events
in the long run.” Using the GSMP framework, they prove that verifying
monotonicity is equivalent to verifying two conditions: permutability and
non-interruptive. If there exists a valid event sequence that solves WEAK
PERMUTATION, then the permutability condition does not hold. Similarly,
if there exists a valid event sequence that solves INTERRUPT, then the non-
interruptive condition is violated. They further define two other equivalent
conditions within the framework of antimatroids (Glasserman and Yao, 1991).
Since all of these problems are NP-hard search problems, then obtaining a
polynomial-time algorithm to check the monotonicity condition in any given
form can be done only if 7 = NP (Garey and Johnson, 1979).

There are, however, some easy instances where these conditions can be
readily verified. In a Simulation Graph, for example, potential interruptions
can be identified as cancelling edges on the graph (Schruben and Yiicesan,
1993), though one must still verify whether there exists a sequence of events
that leads to an event cancellation. STRONG and WEAK PERMUTATION,
however, are still hard to verify. Glasserman and Yao (1991), on the other
hand, assert that STRONG and WEAK PERMUTATION automatically holds
in a stochastic Petri net representation. In this case, however, INTERRUPT
is hard to establish.

The complexity results in this paper have further practical implications.
A special case of STRONG PERMUTATION is the commuting condition,
which is a necessary condition for the applicability of the infinitesimal
perturbation analysis technique in derivative estimation (Glasserman, 1991).
Our results establish that the verification of the commuting condition is an
intractable search problem. Note that this result was first obtained through
the search problem ORDERING in Jacobson and Yiicesan (1994).

The results for STRONG and WEAK PERMUTATION also imply that
it is unlikely to construct a polynomial-time algorithm to determine the
outcome of permutations in a sequence of events. It is therefore desirable
to assign execution priorities to avoid arbitrary handling of simultaneously
scheduled events in a simulation model implementation. Therefore, a priori
determination of such priorities to ensure correct execution of model
implementations is a difficult problem. This would be an important
issue, for instance, in capacitated queueing systems, queueing systems
with state-dependent routing as well as preemptive and non-preemptive
priority and multiple customer-class queueing systems. Schruben (1983)
and Sargent (1988) propose rules of thumb to signal potential problems with

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 367

simultaneously scheduled events. Som and Sargent (1989) develop conditions
to identify when event execution priorities need to be established. Our results
show that such conditions are impossible to verify.

Another implication of this result concerns the determination of when
certain variance reduction techniques (VRT) will be successful. For instance,
the effectiveness of common random numbers, antithetic variates, or control
variates typically depends upon synchronization of events between pairs or
sets of simulation runs. Such a synchronization requires that a permutation
of a sequence of events have no impact on the resulting state. Our
results then imply that it is unlikely to algorithmically determine whether
satisfactory synchronization is achieved in such runs. As an easy instance,
common random numbers together with inversion have been shown to
minimize estimator variance provided that the monotonicity condition
holds (Glasserman and Yao, 1992b). One should recall, however, that the
verification of the commuting condition is a hard problem.

The practical implications of these results extend beyond the discrete
event simulation modeling and analysis tasks and cover the design of actual
discrete event dynamic systems (DEDS). For example, it is not possible
to verify a priori the “robustness” of a manufacturing system in the non-
interrupt sense. Increasing the rate of the arrival process (that is, the rate
at which work is released into the system) does not necessarily translate
into an increased system throughput, as higher workloads may unduly
strain the system inducing machine breakdowns. Another such example
is the investment into a quality improvement program. Current investment
into quality assurance may not subsequently yield higher quality levels,
as resources might be wasted or misallocated in the process. Solutions to
INTERRUPT can provide a basis to identify such scenarios.

Similar problems arise with WEAK and STRONG PERMUTATION in
actual DEDS. For example, alternate routing of jobs may not be possible due
to the precedence constraints among the processing steps required by those
jobs. This may be impossible even in a so-called flexible manufacturing
system. A second example concerns the allocation of financial resources to
investment opportunities where the profitability of the investment is contin-
gent on the number and the sequence of subsequent events (e.g., changes
in interest rates or introduction of new legislation). In general, solutions to
WEAK PERMUTATION, STRONG PERMUTATION, and INTERRUPT can
be used to gain insights into many types of DEDS. The complexity results for
these three problems make finding these solutions particularly challenging.

vol. 29, n°® 3, 1995

368 S. H. JACOBSON, E. YUCESAN

4. CONCLUSIONS

This paper has introduced three new structural search problems for discrete
event simulation models, and proven them to be NP-hard. The theoretical
and practical implications of these results have been discussed.

These results bridge two areas of computer science and operations research,
computational complexity and computer simulation, which enables several
seemingly different problems in simulation modeling and analysis to be
cast in a single unifying framework using the theory of computational
complexity. In particular, such problems are equivalent or equally difficult,
from the computational complexity point of view.

A consequence of the computational complexity results presented here
is that algorithms that solve the three search problems are likely to be
enumerative in nature. Such enumerative algorithms tend to execute in
exponential time in the size of the problem instance. This, in turn, supports
the development of polynomial-time heuristic procedures as well as the
identification of special cases that are polynomially solvable. Further research
is in progress to gain new insights from the three problems as well as
to identify other related problems that may have an impact on the way
discrete-event simulation models are constructed and analyzed.

REFERENCES

M. R. Garey and D. S. Jonunson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman and Company, San Francisco, California, 1979.

P. GuasserMaN, Gradient Estimation via Perturbation Analysis, Kluwer Academic
Publishers Group. Dordrecht, The Netherlands, 1991.

P. Guasservan and D. D. Yao, Algebraic Structure of Some Stochastic Discrete
Event Systems, with Applications, Discrete Event Dynamic Systems: Theory
and Applications, Vol. 1(1), 1991, pp. 7-35.

P. GLasserman and D. D. Yao, Monotonicity in Generalized Semi- Markov Processes,
Mathematics of Operations Research, Vol. 17(1), 1992a, pp. 1-21.

P. Grasserman and D. D. Yao, Some Guidelines and Guarantees for Common Random
Numbers, Management Science, Vol. 38(6), 1992b, pp. 884-908.

S. H. Jacosson and E. Yucesan, On the Complexity of Verifying Structural Properties
of Discrete Event Simulation Models, Working Paper. INSEAD. Fontainebleau,
France, 1994.

R. G. Sarcent, Event Graph Modeling for Simulation with an Application to Flexible
Manufacturing Systems, Management Science, Vol. 34(10), 1988, pp. 1231-1251.

L. Scurugen, Simulation Modeling with Event Graphs, Communications of the ACM,
Vol. 26(11), 1983, pp. 957-963.

L. Scurusen, SIGMA: A Graphical Simulation System, 2nd Edition. The Scientific Press.
San Fransisco, CA, 1992.

Recherche opérationnelle/Operations Research

INTRACTABILITY RESULTS IN DISCRETE-EVENT SIMULATION 369

L. Scurusen and E. Yucesan, Modeling Paradigms for Discrete Event Simulation,
Operations Research Letters, Vol. 13, 1993, pp. 265-275.

T. K. Som and R. G. Sarcent, A Formal Development of Event Graphsas an Aid
to Structured and Efficient Simulation Programs, ORSA Journal on Computing,
1(2), 1989, pp. 107-125.

E. Yucesan and S. H. Jacosson, Building Correct Simulation Models is Difficult,
Proceedings of the 1992 Winter Simulation Conference, 1992, 783-790.

vol. 29, n° 3, 1995

