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PRODUCTION MANAGEMENT
IN A PETRI NET ENVIRONMENT (*)

by Jean-Marie PROTH (*"2) and Ioannis MINIS (2)

Abstract. - The objective of this paper is to show that Pétri nets facilitate a comprehensive
approach to production management and allows us to reduce the complexity of the problems
involved at the expense of some constraints imposed on the décision making System.

The first part of the paper focuses on cyclic manufacturing Systems. For this type of Systems, iî
is always possible to propose an event graph model which represents both the physical and the
décision making Systems. We use such a model to propose a near-optimal scheduling algorithm that
maximizes productivity while minimizing the work-in-process (WIP) in the deterministic case.

The approach usedfor non-cyclic manufacturing Systems is different in the sensé that only the
manufacturing processes fi.e. the physical part of the System) and the related constraints are
modelled using Pétri nets. We use such a Pétri net model to propose a short-term planning process
which results in a trade-off between the computation burden and the level of resource utilization.
The short-term planning model is then enhanced to obtain the scheduling model. The latter is used
to develop an efficient scheduling algorithm that is able to satisfy the requirements imposed by
short-term planning.

Keywords: Complexity, event graphs, Pétri nets, planning, scheduling.

Résumé. - Le but de cet article est de montrer que les réseaux de Pétri favorisent une approche
globale de la gestion de production et permettent de réduire la complexité des problèmes de gestion
au détriment d'un système décisionnel plus contraint.

La première partie de la communication se concentre sur les systèmes cycliques. Pour ce type de
ssysternes, il est toujours possible d'obtenir un modèle qui est un graphe d'événements; ce modèle
inclut le système physique et le système décisionnel. Nous utilisons ce type de modèles pour proposer
un algorithme heuristique d'ordonnancement qui maximise la productivité tout en conservant les
encours à un niveau aussi bas que possible.

L'approche utilisée pour les systèmes non cycliques est différente en ce sens que seule la partie
physique du système et les contraintes afférentes à la production sont modélisées à l'aide des réseaux
de Pétri. Nous utilisons ce type de modèles pour établir un algorithme de planification à court terme
qui est un compromis entre la complexité des calculs et l'utilisation des ressources. Le modèle relatif
à planification à court terme est ensuite complété pour obtenir un modèle d'ordonnancement. Ce
modèle est alors utilisé pour développer un algorithme d'ordonnancement efficace dont l'objectif
est de réaliser les objectifs de la planification à court terme.

Mots clés : Complexité, graphes d'événements, réseaux de Pétri, planification, ordonnancement.
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1, INTRODUCTION

During the 70s and the early 80s, Pétri nets were considered mainly as
modelling and simulation tools. This is the reason why research studies
were first oriented toward small-sized models based on high-level nets such
as the predicate/transitions nets [6], the colored Pétri nets [9], and the
Pétri nets with individual tokens [17]. More recently, researchers became
interested in the analytical properties of elementary nets, also called black-
and-white nets. Very important results were propsoed by Commoner et al.
[2], Murata [13], Chrétienne [1], Zhou [19], and many others. As far as we
know, the application of those results to cyclic manufacturing Systems, and
their enhancement in order to model, evaluate and manage manufacturing
Systems were initiated by Hillion et al. [8]. Several studies are currently in
progress and deal with both cyclic and non-cyclic manufacturing Systems.
The purpose of this paper is to present the most important results in this
field which can reduce the complexity of the management problems in cyclic
and non-cyclic manufacturing Systems.

The second section of the paper is devoted to the définitions, concepts
and properties to be used in the remainder of the paper. We introducé
the définition of elementary nets, the state équation, the définitions of p-
invariants and ^-invariants, and the qualitative properties which are désirable
in manufacturing. We also introducé the event graphs (also called marked
graphs), a special type of Pétri nets, which are used to model cyclic
manufacturing Systems. The second section concludes by presenting the
decomposable nets, which are the basic tools in the planning and scheduling
of non-cyclic manufacturing Systems.

In section three, we show that it is possible to model both the physical and
the décision making Systems (DMSs) of cyclic manufacturing Systems with an
event graph. Using the properties of event graphs and a given cyclic control,
we show how to maximize the productivity of a manufacturing system
(Le. to minimize the cycle time) while minimizing the work-in-process.
The properties of event graphs are also used to develop a near-optimal
scheduling algorithm.

Section four focuses on non-cyclic manufacturing Systems. We present a
short-term planning problem and we develop a solution approach which takes
advantage of the fact that the system can be modeled as a decomposable Petri
net. We then propose a scheduling model and develop a scheduling algorithm
which allows us to satisfy the requirements imposed by short-term planning.
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Section five présents the concluding remarks.

2. PETRI NETS (PNs): DEFINITIONS, CONCEPTS AND PROPERTIES

2.1. Elementary Pétri nets

a. Définitions

A Pétri net is a 5-tuple PN = (P, T, A, W, Mo) where:

P = {p\, p2,~-> Pq) is the set of places,
T — {ti, t2,..., tn} is the set of transitions,
A Ç (P x T) U (T x P) is a set of arcs,
W : A —» {1, 2,...} is a weight function,
Mo : P —» {1, 2,...} is the initial marking,
In Figure 1, we present a Pétri net with marking:

Mo = (2, 0, 1, 3, 0, 4)

When no weight is mentioned, an arc is supposed to be weighted by 1.

P4

Figure 1. - A Pétri net.

Places are represented by circles, transitions by bars, and each place
contains a number of tokens (represented by dots) equal to its marking.

Given a marking M, a transition is said to be enabled if and only if:

M(p)>W(p,t), Vpe°t

where °t represents the set of input places of transition t.

vol. 29, n° 3, 1995
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Firing a transition consists in:

(i) removing W (p, t) tokens from each p E °t,

(ii) adding W (t, p) tokens in each pet0, where t° is the set of ouput
places of t.

For instance, the marking of the net in Figure 1 becomes

M = ( l , 3 , 1, 1, 1,5)

after firing t<i and £5.

An enabled transition may, or may not, be fired.

A time Petri net is a Petri net for which a duration, or firing time, (which
is deterministic or stochastic) is associated to each transition. In this paper,
only deterministic firing times are considered.

The duration associated with a transition represents the time between the
instant the tokens disappear from the input places and the instant the tokens
appear in the output places. Usually, we consider that tokens continue to
belong to the input places of a transition t until the firing of t ends.

The incidence matrix of a Petri net, say U = [uij], i = 1, 2,... , q\
j — 1, 2,..., n, is defined as follows:

{ W(tj,pi) if tj e °pi

- w (pi, tj) if tj e Pi

0 otherwise

where °p (resp. p°) is the set of input (resp. output) transitions of p.

Note that the incidence matrix reflects the structure of the Petri net provided
that the net does not contain self-loops (Le. loops composed by only one
place and one transition).

Let Mo be an initial marking and a a séquence of transitions fired starting
from Mo. We dénote by M the marking obtained after firing the last transition
of a. We define the firing count vector Va related to the séquence a as:

Va = (u i , 1?2,..., Vn)

where Vi(i = 1, 2,..., n) is the number of times transition U appears in er,
and n the total number of transitions.
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The state équation is as follows:

Mt = Mt
Q + UX (1)

where Af dénotes the transpose of A.

Note that if a séquence a of transitions vérifies (1), it is not guaranteed
that a is feasible (Le. that it is possible to fire the séquence of transitions a).

A vector Z is a p-invariant if:

(i) Z. U = 0,

(ii) Z is a g-vector whose components are non-negative integers,

(iii) at least one of the components of Z is strictly positive.

Let R(Mo) be the set of markings reachable from Mo. It can be easily
shown that, for any M G R(Mo) :

Z. Ml = Z . Mt (3)

The proof is made by left-multiplying both sides of (1) by Z, and by using
(2). Thus, Z. M* is an invariant, Le. a linear combination of the place
markings that remains constant under any séquence of transition firings.

A vector H is a t-invariant if:

(i)tf. #* = (), (4)

(ii) H is a n-vector whose components are non-negative integers,

(iii) at least one of the components of H is strictly positive.

Let a be a firing séquence and Va the related firing count vector. If Va

is a t-invariant, Mo the initial marking and M the marking obtained after
firing the séquence a of transitions, then:

b. Qualitative properties

The following properties are important when using Pétri nets to model

manufacturing Systems.

6i. Structural liveness.

DÉFINITION 1: A PN N = (P, T, A, W) is structurally live if their exists
an initial marking Mo such that, for any t e T and M G JR(Mo) (Le.
M reachable from Mo) there exists a firing séquence which leads from M
to a marking which enables t.
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In manufacturing Systems, structural liveness implies that it is always
possible to perform any opération for which the system was designed,
assuming that the initial state of the system is properly chosen. In other
words, any opération which can be performed by the system will remain
possible in the future, irrespective of the past séquence of décisions.

62. Reversibility and home state.

DÉFINITION 2: A PN N = (P, T, A, W) is réversible for a marking Mo
if, for any M G R(MQ)J there exists a firing séquence a M which leads
to Mo from M.

This property is also very important for manufacturing Systems. It
guarantees that it is always possible to return to the initial state, no
matter what the current state is. This is often necessary for maintenance,
tool adjustments or changes in production. The next définition generalizes
définition 2.

DÉFINITION 3: A marking Mk of a Pétri net iV = (P, £, A, PF)is a home
state for the marking MQ if it can be reached from any marking reachable
from Mo, Le. Mk G R(M) for any M G 12 (Mo).

The use of a home state is the same as the one of Mo in définition 2.

According to these définitions, any marking reachable from the initial
marking in a réversible PN is a home state, but a PN with a home state
may be not réversible.

63. Boundedness

DÉFINITION 4: (i) A marked PN N = (P, T, A, W, Mo) is said to be
fc-bounded if M (p) < k for any p G P and M G R(MQ).

(ii) A marked PN N = (P, T, A, W, Mo) is said to be bounded if it is
fc-bounded for some integer k > 0.

(iii) A PNN = (P, T, A, W) is structurally bounded if the marked
PN (JV, Mo) is bounded for any initial marking MQ.

Boundedness is not necessary in manufacturing, but may be désirable when
fully automated Systems are concerned. Nevertheless, it is always necessary
to be able to keep the PN model of a manufacturing system bounded; for
example, an unbounded model may resuit in WIP that increases to infinity.
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2.2. Event graphs (or marked graphs)

a. General properties

An event graph is a Pétri net such that each place has exactly one
input and one output transition. Furthermore, the weight associated to each
transition is 1. Such a Pétri net is représentée in Figure 2. Note that event
graphs may contain elementary circuits. For example, the event graph of
Figure 2 contains two elementary circuits: namely 71 = (pi, £1, P2, £2, Pi)
and 72 = (p2, *2, P4, £3, P3, *i, P2).

Figure 2. - An event graph.

It is easy to prove that:

(i) If we assign 1 to each place belonging to one of the elementary circuits
and 0 to the other places, then the vector whose éléments are these values is
a p-invariant-more precisely a minimal p-invariant. Another way to express
the foregoing is to say that the number of tokens is any elementary circuit is
invariant by any transition firing. We one this resuit to Commoner et al. [2].

(ii) The n-vector whose components are equal to 1 is a t-invariant. It means
that the marking returns to the initial marking after firing each transition
exactly once.

The following resuit is due to Commoner et al [2].

RESULT 1 : A strongly connected event graph is guaranteed to be deadlock-
free if and only if every elementary circuit contains at least one token.

b. Deterministic event graphs

In this section, we consider timed event graphs where the times associated
to the transitions are deterministic. For any elementary circuit 7, we define
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the cycle time as:

(5)

where:

/x (7) is the sum of the firing times of the transitions belonging to 7.

M (7) is the number of tokens circulating in 7.

If Mo is the initial marking, we know that M (7) = Mo (7), V M £
R(MQ). Thus 0 ( 7 ) is an invariant. Let C* be the maximal cycle time
among all elementary circuits, Le.:

C* = max C (7) (6)

where F is the set of elementary circuits of a strongly connectée! event graph.
Any 7 G F such that C (7) = C* is called a critical circuit.

In order to guarantee that only a single firing of a certain transition may
occur at time t, we introducé a self-loop to each transition with initially one
token in each self-loop place.

From now on, we consider only the firing policy called "Earliest Operating
Mode" (EOM). It is the policy where transitions fire as soon as they are
enabled. This corresponds to the common policy applied to fully automated
Systems as we will see in section III. Chrétienne [1] showed that, under
an EOM, the opération of the system becomes periodic after a finite time.
Periodicity means that there exist two integers no and K such that:

St (n + K) = St (n) + KC\ V n > n 0 , VteT

where St{k) is the starting time of the fc-th firing of transition t, and K is
the period. The following result holds.

RESULT 2: Provided that the event graph is strongly connected and that the
EOM policy applies, the cycle time of the model is C* in a steady state. In
other words, the firing rate of all transitions in steady state is À = l /C* .

This result provides the productivity of a manufacturing system which
is modeled by a strongly connected event graph, assuming that the WIP
is known.

Several algorithms have been proposed to reach a given cycle time while
minimizing a linear combination of the markings, the coefficients of which
are the components of a p-invariant. They can be found in Laftit et al. [11].
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In particular, an adjustment heuristic algorithm which can be used in practice
for models of any size, is proposed in this paper.

c. Qualitative properties of even graphs

It is easy to verify that a strongly connected event graph is:

* Structurally live for any marking Mo such that each elementary circuit
contains at least one token.

* Réversible for any marking Mo such that each elementary circuit contains
at least one token. Furthermore, under the same condition, any M G R (Mo)
is a home state.

* Structurally bounded, assuming that the initial marking Mo is finite.

2.3. Decomposable nets

a. Définitions

Let X = [xi,..., xn] be a t-invariant of a Pétri net N = (P, T, A, W).

DÉFINITION 5: The set of transitions U E T such that x% > 0 is called the
support of the t-invariant X and is denoted by ||X||.

In a non-cyclic manufacturing System, parts enter and exit the System; thus,
its PN model contains source transitons (also called input transitions), which
are used to model the entrance of parts into the System, and sink transitions
(or output transitions), which are used to model the exit from the system.

DÉFINITION 6: Let X be a i-invariant of the PN model N = (P, T, A, W)
of a manufacturing system. Let Nx C N be a PN such that:

Nx = (Px, PII, Ax, WX)

where Px = {p/p G P and 3*i, t2 G ||X|| s.t. p G °h and p e ty in N},
Ax = AH {(Px x \\X\\) U (||X|| x P x ) } and Wx is the restriction of
W to Ax-

Nx is referred to as X-related subnet of N.

If, in addition:

(i) the cardinality of p° is 1 for every p E Px,

(ii) there exists at least one t\ G ||X|| and one fe G 1|X|| such that
% = 0 and 4 = 0-

(iii) Nx is acyclic,
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then Nx is referred to as X-CFIO of N, where CFIO stands for Conflict
Free net with Input and Output transitions.

b. Decomposability of a net

Decomposability is the key concept in the planning and scheduling

approaches for non-cyclic manufacturing Systems were are proposing in

this paper.

DÉFINITION 7: Let Af be a PN model of a manufacturing system with
input and output transitions. Let {Xi, . . . , X r } be a set of ^-invariants of
N such that:

r
N = ( J NXz, where Nx. is the X;-CFIO of N (we will say that the set

i=i
of X,-CFIOs NXl covers N).

Then N is said to be decomposable.

c. Qualitative properties of a decomposable net

RESULT 3: A decomposable net N is structurally live for any initial
marking Mo.

Proof: a. Let M E R(MQ) and a a firing séquence which leads to
M starting from Mo. Since N is à decomposable PN, there exists a set
{Xi,. . . , Xr} of ^-invariants of N such that the corresponding set of X-
CFIOs NXz covers N. Thus, it is possible to assign each element of a to one
Nx., designing firable séquences which maintain the order of the éléments
in <J. Let us call ax% {% — 1, 2,..., r) the séquence related to Nx%. Note that
some of these séquences may be empty.

/?. Let us now consider t E T and let NXK be a X-CFIO containing t. Due
to the définition of X-CFIOs, there exists aXk such that firing aXk o aXk

from MQ (restriction of Mo to NXk ) leads to MQ again, and this séquence
contains each transition at least once (o represents the concaténation). As
a conséquence, al = âXk o aXk o aXk is a firing séquence which applies
to M and contains t.

This proof holds for any Mo.

Q.E.D.

RESULT 4: A decomposable PN is réversible for any initial marking Mo.

Proof: a. This first part of the proof is identical to the first part of the
proof of result 3.
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/?. Due to the définition of X-CFIOs, there exists àx% such that ax, o àxi

leads to MQ from MQ for % - 1, 2,..., r. Thus if a - o àx then aoâ
i=l,2...r *

leads to Mo from Mo.
Q.E.D.

A decomposable net is not structurally bounded; for instance, the number
of tokens in such a System increases indefinitely if we keep firing only the
input transitions. Nevertheless, the following resuit holds.

RESULT 5: A decomposable net N = (P, T, A, W) can be kept bounded
by appropriate firings of its input transitions, no matter how many times the
output transitions are fired, provided that the number of the output firings
is finite.

Proof: Let k\,..., ks be the minimal numbers of times the output transitions
to,i, •••, to,s, must be fired. Let Xi , . . . , Xr be a set of ^-invariants such
that the corresponding X-CFIOs Nx% cover N. Let nl- be the component
of the t-invariant X{ which corresponds to toj. At least one of the n*,
i = 1, 2,..., r, is strictly positive for any j G {1, . . . , s}, and at least one of
the rij;, j = 1, 2,..., s, is strictly positive for any i G {1, . . . , r } . Thus the
integer linear programming problem

Min

r

^jT Vi.n) > kj, j = 1, 2,..., 5

»i € { 0 , 1,...,}, i = l , 2 , .,., r

has a finite solution. The integer yi is the number of times the set | |Xj| | of
transitions must be fired according to X% in order to fire the output transitions
for the required number of times. Thus, the marking M (p) of p G t% is
bounded from above by:

r

Mo (p) + y™̂  Vi xl
v, where xl

v is the ^-th component of X%

This relation holds for any p G P.

Q.E.D.
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3. CYCLIC MANUFACTURING SYSTEMS

3.1. Problem formulation

In this section, we emphasize the usefulness of event graphs to model cyclic
manufacturing Systems, also called off-line or ratio-driven manufacturing
Systems. Such a System manufactures a given set of part types at given
ratios. The objective of the control problem of such a system is to maximize
its productivity while minimizing the WIP.

In a cyclic system, there exists an optimal control which is periodic. From
the management point of view, a periodic control can be expressed as a
séquence of part types associated to each machine, cell or transportation
system. Such a séquence is referred to as the input séquence of the resource.
It is emphasized that the same part type can appear several times in the same
input séquence in order to satisfy the production ratios.

Let us consider, for instance, a set of three machines denoted by M\, M2

and M3, which manufacture three types of parts, say P\, P2 and P3. Assume
that the manufacturing routings of these part types are as follows (the number
in parenthesis pro vides the manufacturing time of each opération):

Pi : M i ( 2 ) , M 2 ( l ) , M 3 ( 4 )

P2 : M3 (2), Mi (3)

P3 : M2 (4), Mi (1)

Assume also that the production ratios are 0.25, 0.25 and 0.5 for Pi, P2
and P3, respectively. In this case, a set of input séquences associated to
Mi, M2 and M3 could be:

= (Pi,P2,P3,P3), (7

We do not claim that this periodic control is optimal, but that there
exists an optimal control with respect to the objective defined above
(a* (Mi), a* (M2), er* (M3)) where a* (Mi) is obtained by applying a
cyclic permutation to a (Mi), i = 1, 2, 3.

The next subsection is devoted to the modelling of cyclic manufacturing
Systems. In subsection 3.3, we show that it is possible to maximize the
productivity of the system for any cyclic control. Finally, subsection 3.4
proposes a heuristic algorithm to reach a near-optimal cyclic control.
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3.2. Modelling of cyclic manufacturing Systems

The event graph model of a cyclic manufacturing System is developed
as follows:

(i) Model the manufacturing process of each part type. In such a model,
a transition represents an opération and a place a buffer. Each transition
firing corresponds to the exécution of an opération and the firing time of the
transition is the time required to perform this opération. Each manufacturing
process is reproduced as many times as necessary to yield the given
production ratios. For instance, in the example introduced in the previous
subsection, the manufacturing processes of Pi and P2 are represented once,
and the manufacturing process of P3 is represented twice.

(ii) Model the cyclic opération mode of the System by assuming that a
new part is launched in the System as soon as a part of the same type is
completed. This is modelled by adding an output place to the last transition
of each manufacturing process model, and by Connecting this place to the
first transition of the same model. Thus, we obtain elementary circuits called
process circuits.

(iii) The final step is to model the sequencing of the part types for each
machine. This is done by Connecting in a unique circuit all the transitions
corresponding to opérations performed by the same machine. The order of
transitions in these new elementary circuits (called command circuits) is
determined by the sequencing of the jobs on the corresponding machines.

Tokens circulating in the process circuits represent parts, whereas tokens in
the command circuits represent machine status information. Note that there
is exactly one token in each command circuit, since a machine is assumed
to manufacture at most one part at a time, and since an elementary circuit
without a token blocks after a finite number of transition firings.

a. Model of a cyclic job-shop

The above steps were employed to model the job-shop introduced in
subsection 3.1 with the control (cr(Mi), cr(M2), <r(Ms)). The resulting
model is shown in Figure 3.

b. Model of a cyclic assembly System

As a second example, let us consider two product types, the bills of
materials and manufacturing processes of which are represented in Figure 4.
Each box in the figure corresponds to a make item (part). In addition, each
box represents an opération and contains the machine which perforais this
opération. The parameters in parentheses dénote opération times.
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Figure 3. - A job-shop model.

i (er.2)

M2OL2) i i l

a. Part type Pi b. Part type P2

Figure 4. - Two assembly manufacturing processes.
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We assume that the production ratios are 0.5 and 0.5. Following the
gênerai approach presented in subsection 1 of this section, we obtain the
model shown in Figure 5.

In this model, we only show the command circuit related to machine Mi
for simplicity.

Figure 5. - The assembly system model.

Places Pi (i = 1, 2,..., 10) represent buffers. Planes Qi (i = 1, 2, ..., 10)
are used to control the number of components of each type in the system.
For instance, Q\ contains initially ni tokens, which guarantees that at most
ni pièces of the component of p\ that is manufactured by M\ can be found
simultaneously in the system.

As shown in Figure 5, some transitions which do not represent opérations
have been introduced in the model. These transitions are £3, £7, tio and t u .
The time associated to these transitions is 0. They have been introduced to
allow for WIP control.
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The following result holds for cyclic manufacturing Systems:

RESULT 6: Assuming that:

(i) a new part is launched in the manufacturing system as soon as a part
of the same type is complétée.

(ii) the control applied to the system is cyclic and can be expressed in
terms of input séquences which satisfy the production ratios.

(iii) one manufacturing process is associated to each part type.

We claim that the corresponding Petri net model encapsulâtes both the
physical and the decison making Systems. Furthermore, this model is an
event graph.

Remark: 1. If more than one manufacturing process alternatives are
available to manufacture some part types, then it is possible to split up
each part type into as many sub-part types as the number of manufacturing
processes available, and to distribute the production ratio of the part type
among the sub-part types in order to optimize a criterion of interest, such
as work load balancing among the resources. This leads to a problem that
satisfies condition (iii) of result 6.

2. If the model is not strongly connected, it is composed of strongly
connected components, due to the fact that the system is cyclic. From a
practical point of view, it means that the related manufacturing system is
composed of independent subsystems, Le. of subsysterns which manufacture
different sets of products. If we want to preserve some production ratios in
the whole production, we introducé transitions with zero firing times, and we
connect these transitions by means of a command circuit. This transforms
the model into a strongly connected event graph.

3.3. Evaluation of a cyclic manufacturing system

Since a Petri net model of a cyclic manufacturing system is, or can always
be transformed into, a strongly connected event gaph and the firing times
are deterministic, the results presented in section 2.2 apply. In such a model,
three types of elementary circuits exist, namely:

(i) the process circuits, which can contain as many tokens as désirable.

(ii) the command circuits, which contain one token each, the initial position
of which is defined by the input séquence of the related resource.
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(iii) the hybrid circuits, which are composée! of portions of command and
process circuits; for instance, in Figure 3, the circuit

7 = <*1, #2, *5, <?4, <4, #8, <3, Q l , *l)

is a hybrid circuit.

Since a comand circuit contains exactly one token and since it is possible
to put as many tokens as désirable in the places which belong to process
circuits, it is possible to find infinité initial markings such that the critical
circuit is a command circuit, and more precisely the command circuit 7*
such that:

= MaxC( 7 ) (7)

where Te is the set of command circuits and C (7) is the cycle time of 7.

In other words, it is always possible to fully utilize the bottleneck machine
if the initial WIP is large enough, and thus to reach the maximal productivity
of the System. However, the objective is to reach the maximal productivity
while minimizing the WIP. This problem can be written as follows for a
given cyclic control:

Minimize Y^ x% (8)

s.t.

Xi G {0, 1,...}, Vi such that Pi G Pc.

where xi = Mo (Pi), Pc is the set of places belonging to the command
circuits, Pc is the set of places which do not belong to the command
circuits, T-ç is the set of elementary circuits which are not command circuits,
and Co = C(7*) is defined by relationship (7).

Note that Xi — MQ (Pi) is known for Pi G Pc\ this is derived from the
input séquences of the resources. The difficulty in solving problem (8) is to
compute ail elementary circuits of the model, the number of which increases
often exponentially with the size of the model. For this reason, a heuristic
algorithm, called adjustment algorithm, was proposed in [11]. In practice,
this heuristic algorithm is not limited by the size of the model.
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So far, we have shown that it is possible to reach the maximal productivity
of the system while minimizing the WIP when the periodic control is
known. However the problem of finding the periodic control which results
in maximal productivity with a WIP which is the minimum among all WIP
values corresponding to all periodic controls remains open. This problem is
considered in the next sub-section.

3.4. Optimization of the cyclic control

The problem consists of defining the command circuits which reflect the
production ratios and such that the number of tokens required to minimize
the cycle time is minimal. From the complexity point of view, this problem
is equivalent to the problem which consists of finding the initial location of
a given number of tokens which minimizes the cycle time. This problem is
NP-hard (se e [5]). Two algorithms have been shown to pro vide near-optimal
solutions within reasonable times.

a. The simulated annealing algorithm

This algorithm has been presented in numerous papers, and in particular
in [10] and [12]. The part of the algorithm which is spécifie to the problem
at hand is the génération of alternatives by perturbation of a given schedule,
Le. a given set of input séquences. We generate a new schedule in the
neighborhood of a previous one by permutating two éléments in each input
séquence of the resources.

The results obtained by applying simulated annealing to this problem have
been found to be better, on the average, than those obtained from Tabou
and generic search approaches.

b. Construction approach

The basic idea of this algorithm is to (i) détermine, for each process
circuit, the minimal number of tokens (> 1) required such that a command
circuit becomes the critical circuit; (ii) assign to each process circuit as many
periods of duration Co [see Eq. (8)] as the number found in (i); and (iii)
fit the firing periods of the transitions within these CQ periods, taking into
account the scheduling constraints, Le. the f act that two firing periods of
transitions corresponding to the same machine do not overlap, and the fact
that the partial order imposed by the manufacturing processes is verified.

A sufficient optimality condition is to find a schedule with the appropriate
number of Co periods initially assigned to the manufacturing process circuits.
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ALGORITHM

1. Initialization

1.1. For each process circuit i(i = 1,. . . , n )

1.1.1. Set ki = 0

ki is a counter equal to the number of firing periods already placed
in the Go-period related to manufacturing process i.

1.1.2. Set Ni(0) = 1

Ni(ki) is the number of C^-periods available for the next firing
period.

1.1.3. Set (pi(0) = 0

<Pi (h) is the ending time of the first firing ofthe fcj-th transition ofi.

1.1.4. Compute di (0) = 0

di (ki) is the de grée offreedom corresponding to i given the schedule
of the ki first firing periods.

+ [NÎ(k)-Ni(k)]Co)

where: Ti is the set of transitions ofi,

Ti (k) is the set of the first k transitions ofi,

JV* (k) = Max[Ni (k), ai]9 where ai = \fi(i)/Col

fj,(i) is the sum ofthe firing times of the transitions of i,

/i (i) is the firing time of t.

1.2. Set m = 1

m is the counter for itérations.

1.3. Set Em = {1, 2,..., n}

Em is the set of process circuits for which some firing periods have nat

been placed.

2. Scheduling

2.1. Compute j such that dj (kj) = Min di (ki)

j is the elementary circuit to be considered next.

2.2. If dj (kj) < 0
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Add gj (kj) Cb-periods for the process circuit j : Nj (kj) = Nj (kj) +
9j (kj) where gj (kj) is the smallest integer such that

2.3. Choose the transition to be fired

If kj > 0, tj is the next transition in the order derived from the
manufacturing process. Otherwise, we choose the transition which yields
the minimal value of dj (1).

2.4. Place the firing period of tj at the earliest time, taking into account
the manufacturing constraints.

2.5. Set Tj (kj + 1) = Tj (kj) U {tj}.

2.6. Compute cpj (kj + 1) and dj (kj + 1).

2.7. Set kj = fcj + 1 and ra = ra + 1.

2.8. Update Em.

2.9. If Em ^ 0 go to 2.1, otherwise stop.

To illustrate this algorithm, let us consider tthe model represented in
Figure 3. The bottleneck machine is M^ and Co = 9. To ensure that the
critical circuit of the model is the command circuit corresponding to machine
M2, we need a minimum of:

* one token in the process circuit corresponding to Pi ,

* one token in the process circuit corresponding to P2,

* one token in each of the process circuits corresponding to F3.

Applying the previous algorithm leads to the schedule represented in
Figure 6.

T I

i l

I H

Figure 6. - An optimal schedule.
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Since no Co-period was added to the initial ones, the schedule provided by
the algorithm is optimal. This indicates that the optimal input séquences are:

Furthermore, the initial marking is:

Mo (Q2) = Mo (Q5) = Mo (Q6) = Mo (Q9) = 1

Mo (Qi) = Mo (Q3) = Mo (Q4) = Mo (Q7) = Mo (Q8)

Finally, the command circuit and the initial locations of its tokens are
fixed by the optimal input séquences.

4. NON-CYCLIC MANUFACTURING SYSTEMS

4.1. Problem formulation

We are interested in a job-shop comprising n machines Mi , M2,..., Mn

that manufacture q types of parts denoted by P i , P2,..., Pg. The demand
for each part type is known at the end of each of R consécutive elementary
periods. For instance, an elementary period could be a day and R = 5;
in this case, we are interested in managing the System over a working
week on a day-to-day basis. In the remainder of the paper, the union of
the R elementary periods is referred to as the sub-period. Let us dénote by
dj, i — 1, 2,..., q, j — 1, 2,..., R, the demand for part type Pi at the end
of the j- th elementary period.

s® is the inventory level of part type i at the beginning of the first
elementary period. We also define M (pi) as the manufacturing process
(routing) of part type Pi. M (pi) pro vides:

(i) the séquence of opérations to be performed on a part of type Pi ;

(ii) the type of each opération, which can be either "assembly" or "regular";
disassembly opérations are not considered;

(iii) the list of machines on which each opération can be performed;

(iv) the time required to perforai each opération on each alternative

machine.
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The first problem to be solved is the short-term planning (STP) problem.
Knowing the capacity of the system (i.e. the time available within each
elementary period), we seek to détermine the number of parts of each type
to be manufactured during each elementary period in order to optimize
a given criterion. Commonly used criteria include the number of delayed
products, the maximal delay, the weighted sum of delays, or the sum of the
inventory and backlogging costs. In the remainder of this paper, we seek
to minimize the sum of the inventory and backlogging costs to illustrate
the proposed approach.

Note that the time assigned to manufacturing tasks within each elementary
period is bounded above by the duration of the period. The différence between
the duration of an elementary period and the time assigned to tasks performed
on a given machine within this period is the maximal idle time of the machine
during the period. It represents the flexibility of the system: the smaller the
time assigned to tasks within an elementary period, the more likely it is that
a feasible schedule exists. However, the productivity of the system is lower.

Starting from the number of parts of each type to be manufactured during
the first elementary period (provided by the solution of the STP problem), the
scheduling process (S) consists of assigning opérations to their alternative
machines and computing the beginning time of each opération in order to
satisfy the usual manufacturing constraints, namely:

(i) opérations should be performed according to the partial order specified
by the manufacturing processes (routings): two opérations belonging to the
same manufacturing process should be performed according to the required
order;

(ii) a given machine performs at most one opération at a time.

We do not try to optimize some criterion, but simply to find a feasible
schedule, Le. a schedule which meets the requirements of the STP for the
first elementary period. If such a feasible schedule does not exist, the only
solution is to reduce the time assigned to tasks within the elementary periods,
and to re-compute the STP: since such a change reduces the amount of parts
to be manufactured during each elementary period, it is more likely that a
feasible schedule exists.

In Figure 7, we summarize the procedure to obtain a feasible schedule.
The STP problem can usually be solved using classical optimization software
tools the choice of which dépends upon the type of criterion to be optimized.
However, the S problem is NP-hard and, therefore, only heuristic algorithms
are practical.
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r = T

Computation of the solution of
the STP (on the R elementary
periods)

\

Redneex

i

Computation of a feasible
schedule (on the first
elementary period)

\

110 / A feasible schedule hns \
\ been obtained? /

End

Figure 7. - General flow-chart for production management.

In the next section, we introducé basic concepts used to re-visit the
previous approach in the light of PNs.

4.2. Short-term planning

a. Modelling examples

Figure 8 shows the manufacturing processes (routings) for three part types
Pi , P2 and P3. Alternative machines for each opération are separated by
commas in the correspondis boxes. In Figure 9, the numbers in squares

M t , M3

i

M,

M,

M,

M^

i

M,

i

M,,

i

M,

M4

i

M,

a. Pan-type P b. Pan-type P̂ c. Part-type P^

Figure 8. - Sample manufacturing processes.
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are the manufacturing times of the opérations {le. the firing times of the
corresponding transitions). The duration of all input transitions of each of
these models is zero. These transitions represent the launching of components
to production. Each of the remaining transitions represents an opération on
a machine. The machines corresponding to these transitions are included
in parentheses. At most one firing is in progress at each transition at a
time, which implies that a self-loop, with one token in the corresponding
place, is associated to each transition. These self-loops are not represented
in Figure 9 for simplicity.

The PN model N presented in Figure 9 is obviously a decomposable net.

0

Part P,

PartP,

Part P.'3

Figure 9. - The decomposable PN model of the system
from the short-term planning point of view.
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It is possible to find several sets of ^-invariants for which the corresponding
CFIOs cover N. We can, for instance, choose the minimal ^-invariants of
the PN, which are obtained by combining the minimal t-invariants of each
of the manufacturing process models. Since the models corresponding to
Pi , P2 and P 3 have respectively 4, 4 and 8 minimal ^-invariants, we would
obtain 4 x 4 x 8 = 128 minimal ^-invariants for the complete model. We can
also choose some linear combinations of the minimal t-invariants provided
that the derived CFIOs cover N.

b. Planning process

Let {Xi, . . . , X r } be a set of t-invariants such that:

r

N=\jNXi
i=\

Let Ofc be the set of output transitions of the manufacturing process model
of part type P&, k = 1,..., q. The demands for parts of type P& are known
at the end of each of R consécutive elementary periods. We dénote, as in
section 4.1, by dJ

k the number of parts of type P& required at the end of the
j-th elementary period; d?k is also the total number of times the transitions
of Ojç must be fired to satisfy the demand by the end of the j-th elementary
period. T is the duration of an elementary period and r is the time assigned
to an elementary period (see Section 4.1).

If yj is the number of times the transitions of \\Xi\\ fire according to
the components of X{ during the j - th elementary period, the following
relations hold.

(9)
teok

where x\ dénotes the component of Xi corresponding to t in X%.

This state équation holds for k = 1,..., q and j = 0,..., R - 1. s^ is the
initial inventory of parts of type P&.

Furthermore, if Z (t) is the firing time of t :

r

2 » | ' a ; Î Z ( t ) < r , j = l , . . . , i î , t e T (10)
t=i

are the capacity constraints.
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If the criterion to be minimized is the sum of the backlogging costs and
inventory costs, it can be expressed as:

k=lj=l

where b^ (resp. ik) is the backlogging cost (resp. the inventory cost) of one
unit of part type Pk during one elementary period. Note that the problem
which consists of minimizing (11) under constraints (9) and (10) can be
re-written as a linear programming problem.

c. Remarks
The key to this approach is the choice of the set of ^-invariants

{Xi,..., Xr}. Depending on this choice, Nxt may be the model of one of
the manufacturing processes or the model of a set of manufacturing processes
corresponding to different part types. In the first case, the short-term planning
procedure provides a better resuit, but requires extensive computation. In the
second case, the number of yj variables may be very small, and thus the
computation required may be very limited; however, the result will be
certainly inferior to that of the previous case. In gênerai, selecting a smaller
number of ^-invariants (assuming that the CFIOs derived from them cover
the PN model) offers the potential for reducing the computation burden at
the expense of productivity. In is noted that the short-term planning process
introduced in this section guarantees that the qualitative properties presented
in the previous section hold.

4.3. Scheduling

a. Problem setting and définitions

The goal of the scheduling process is to assign opérations to resources (in
the case that several resources are available) and to define the starting time
of each opération for the first elementary period in order to meet the firing
requirements of short-term planning.

The model used in the scheduling process is obtained by adding resource
sharing places to the model used for short-term planning. Such a place:

(i) initially contains one token,

(ii) forms a self-loop with each transition corresponding to the same
machine.

These places guarantee non-reentrance; Le. the f act that machines can
perform at most one opération at any given time. For instance, we should
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have five resource sharing places in the model given in Figure 9. The place
correspondu^ to machine M\ would be linked in both ways to *2, *io> *15
and tig.

Thus, there are two types of décisions that have to be made, namely:

(i) The décisions related to the sélection of a resource, when several
resources are available to perform the same task. We define such a décision
as an RU décision, where RU stands for Resource Use. An RU décision
must be made in the model of Figure 10, in which the next opération on the
part represented by the token can be performed by M\ or M% or M3.

Figure 10. - Modelling of a RU type of décision,

In Figure 9, this situation can be observed in pi , P2? P6? P7> P12? P13
and P14.

(ii) The décisions related to the sequencing of part types on resources,
called PS décisions, where PS stands for Product Sequencing. Figure 11
represents such a situation: we can fire either £1, which represents the
manufacturing of a part of type R\ on M\, or £2, which represents the
manufacturing of a part of type R2 on M\.

Q£

Figure 11. - Modelling of a PS type of décision.

Hereafter, places related to the RU (resp. PS) type of décisions will be
called RU (resp. PS) places.
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We assume that transitions are fired as soon as they are enabled.
Consequently, a schedule is defined as soon as a séquence of transitions
is assigned to each RU and each PS place. The transitions belonging to such
a séquence are the output transitions of the place, and they appear in the
séquence as many times as specified by the short-term planning solution for
the first elementary period. Let us for instance consider the RU place p in
Figure 10. If, according to the short-term planning solution, £1, £2 and £3
have to be find twice, once and three times, respectively, a valid séquence
could be dp = (£1, £3, £3, £2, £1, £3}.

As we can see, the PN modelling of the scheduling problem represents the
RU and PS décisions, thus illustrating the décisions to be made explicitly.
Nevertheless, it should be noted that these décisions are not independent
and that improper séquences may lead to blocking. Such a case is shown
in Figure 12 which contains two PS places, q\ and q2'. if £1, £2, 3̂ a n d £4
are fired once, then aqi = (£4, £1} and aq2 = (£2, £3) leads to a blocking
situation.

Figure 12. - A situation where blocking may occur.

Having established the appropriate System model, the objective of the
scheduling problem can be expressed as follows: détermine the séquences to
be assigned to each RU and PS places that resuit in a makespan which is
less than the duration of an elementary period, knowing that:

(i) the transitions belonging to a séquence are the output transitions of
the related RU or PS place,

(ii) a transition appears in a séquence as many times as specified by the
short-term planning solution for the first elementary period.
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b. Scheduling algoriîhm

It is well-known that the scheduling problem of the gênerai job-shop is
NP-hard. As a conséquence, only heuristic algorithms can be considered for
solving large-sized problems. We have developed two heuristics: a simulated
annealing approach and an approach based on the improvement of a critical
circuit. For the sake of brevity, only the second algorithm is presented in
this section.

The algorithm starts with a feasible set of séquences, Le. with a set of
valid séquences which do not lead to blocking. An easy way to build such
a feasible set of séquences consists of assigning any valid séquence to each
PS place, simulate the system according to these séquences by firing the
transitions as soon as they are enabled, and assign to the RU places the
séquences resulting from the simulation.

Let T be the duration of the elementary period, nt the number of times t
should be fired during the first elementary period, St(k) the instant when
the fc-th firing of t starts and Ft (k) = St(k) + Z (t). This notation refers
to the initial feasible set of séquences, assuming that the starting time of the
first transition firing is 0 and that a transition fires as soon as it is enabled.
A critical path is a séquence of pairs:

such that:

(i)Stii(kai) = 0;

(ii) Ft (ka ) = Max {Ft (Jfe)} (this value is the makespan);
(t,k)

(iii) Ft%. (ka.) = Sttj+1 (fcai+1), for j = 1,..., r - 1.

A necessary condition to reduce the makespan is to reduce Ftir (fc«r), and
thus to bring forward the finishing time of one of the transition firings that
belongs to the critical path. To do this, we will have to delay some transition
firings which do not belong to the critical path. Note that it is not allowed to
violate the machine precedence constraints (Le. the constraints related to the
manufacturing process, taking into account the initial marking). Furthermore,
in order to reduce the computational burden, we introducé the float time,
which is the maximal time a transition can be delayed without increasing the
makespan. The calculation of the float time takes into account the schedule
and machine precedence dependencies of the opérations. The objective is to
move earlier a transition firing which belongs to the critical path only if this
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delays another transition firing for less than its float time. The two transition
firings which are involved in the scheduling perturbation are not taken into
account in the computation of the float times. The following algorithm is
derived from the above remarks.

ALGORITHM

1. Compute a feasible set of séquences and the initiation times of the
transiton firings.

2. Compute the critical path and the makespan.

3. Select (tUi ku) and (tc, kc) such that:

* tu ï <c,
* (tuj ku) belongs to the critical path,
* the kc-th transition tc just preceding the ku-th transition tu in one of the

séquences belonging to the feasible set of séquences,

* swapping the ku-th transition tu and the kc-th transition tc in the
séquence does not violate the machine precedence constraints.

* the float time associated to (tC} kc) is greater than or equal to the delay
resulting from the swapping,

If several pairs (tu, ku) and (tc, kc) are candidates for swapping, select
the one for which the delay is the closest to the float time.

4. If a pair has been selected, go to 2, else stop.

5. CONCLUDING REMARKS

Manufacturing Systems can take advantage of the properties of Pétri nets
to cope with the complexity of scheduling problems.

In cyclic manufacturing Systems, the properties of event graphs may
be used to propose fast and powerful algorithms which maximize the
productivity while minimizing WIP, when a cyclic control is known. A
heuristic algorithm which proceeds by construction is also available to
provide a near-optimal control {Le. schedule). This algorithm is closely
related to the Petri net model.

Non-cyclic manufacturing Systems are modelled using decomposable nets
at the short-term planning level. The computation of a short-term plan is
based on a set of t-invariants, the choice of which provides for adjustment
of the computational burden. This allows us to reduce the complexity of the
problem at the expense of constraints which are natural from manufacturing
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point of view. A system model applicable to scheduling is obtained by
completing the planning model It was used in this work to develop a new
scheduling heuristic.

A major problem which remains open in Pétri net related work for
management of Systems is the intégration of cyclic or/and non-cyclic
manufacturing Systems.
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