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THE TRUST REGION AFFINE INTERIOR
POINT ALGORITHM FOR CONVEX AND

NONCONVEX QUADRATIC PROGRAMMING (*)

by J. F. BONNANS C1) and M. BOUHTOU (2)

Communicated by Pierre TOLLA

Abstract. — We study front a theoreîical and numerical point ofview an interior point algorithm
for quadratic QP using a trust région idea, formulated by Ye and Tse. We show that, under a
nondegeneracy hypothesis, the algorithm converges globally in the convex case. For a nonconvex
problem, under a mild additional hypothesis, the séquence of points converges to a stationary
point. We obtain also an asymptotic linear convergence rate for the cost that dépends only on the
dimension of the problem. Then we show that, provided some modifications are added to the basic
algorithm, the method has a good numerical behaviour.

Keywords: Interior points, affine algorithms, trust région, convergence, quadratic programming.

Résumé. - Nous étudions du point de vue théorique et numérique un algorithme de points
intérieurs pour la programmation quadratique convexe et non convexe. Dans cet algorithme formulé
par Ye et Tse, on utilise Vidée de région de confiance. Nous montrons, sous une hypothèse de non
dégénérescence, que l'algorithme converge globalement dans le cas convexe. Pour un problème
non convexe, sous une hypothèse supplémentaire faible, la suite de points converge vers un point
stationnaire. Nous obtenons aussi un taux de convergence du critère asymptotiquement linéaire.
Celui-ci ne dépend que de la dimension du problème. Avec quelques modifications de l'algorithme
original, nous montrons que la méthode a un bon comportement numérique.

Mots clés : Points intérieurs, algorithme affine, région de confiance, convergence, optimisation
quadratique.

1. INTRODUCTION

Since Karmarkar published his polynomial projective algorithm for linear
programming [13], the algorithm known as the affine scaling method attracted0

interest from several researchers. It consists in minimizing the cost over a
séquence of ellipsoids whose shape dépends on the distance from the current
interior feasible point to the faces of the feasible polyhedron.
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France.
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1 9 6 J. F. BONNANS, M. BOUHTOU

This method was initially developped for linear problems. It has already
been proposed in 1967 by Dikin [9] who proved its global convergence
under a primai nondegeneracy assumption and with scaled unit displacement
stepsize. Independently Barnes [3] and Vanderbei et al [26] rediscovered
Dikin's method and proved its convergence for large step size assuming
primai and dual nondegeneracy hypothesis. Tseng and Luo [21] proved
that the method converges if a step length is close to 2~L where L is the
bit size in the input. Tsuchiya [21] proved global convergence with one
eighth scaled stepsize, for degenerate problems. Tsuchiya and Muramatsu
[24] proved the same result with a two third step length. Tsuchiya and
Monteiro [25] proved that a variant of the long-step affine scaling algorithm
has a two-step superlinear convergence property and Saigal [19] obtained
a three-step quadratically convergent algorithm. The boundary behaviour
of the method was studied by Megiddo et al [26]. They showed that the
path of the continued version of the method visits the neighborhoods of
all vertices of the Klee-Minty cube if the starting point is chosen close to
the boundary. This suggest that the complexity might be not polynomial.
However, polynomial time complexity of the discrete algorithm is still an
open question. Monteiro, Adler and Resende [17] showed polynomial time
complexity of the primal-dual version when the starting point is close to the
central path, using very short steps. In spite of this, several expérimental
results [1] show the good practical behavior of the algorithm.

Ye and Tse [27] extended the algorithm to convex and quadratic programs,
using a trust-region idea, and assuming the primai nondegeneracy condition
proved global convergence. Tsuchiya [23] proved global convergence
under only the dual degeneracy hypothesis. Sun [20], using a step-size
close to 2~L (L is the bit size of the input), proved global convergence
without nondegeneracy assumptions, but his displacement step size makes
the algorithm impractical. Recently Ye [28] published some results on
the affine scaling algorithm for non-convex quadratic programming and
studied in particular the complexity of the computation of the solution of
the minimization of a quadratic over an ellipsoid. Gonzaga and Carlos [10]
proved global convergence of the first order version of the affine scaling
algorithm for linear constrained convex problems under nondegeneracy
assumption.

The main aim of this paper is to analyze the convergence of the trust
région affine scaling method applied to convex and nonconvex quadratic
programs, with a step possibly larger than 1.

Recherche opérationnelle/Opérations Research



THE TRUST REGION AFFINE INTERIOR POINT ALGORITHM... 197

The paper is organized as follows. First of all, we prove, for a nonconvex
problem, under a mild additional hypothesis, that the séquence of points
converges to a stationary point. In the convex case, we prove that all limit
points of the séquence are global solution. Convergence of the séquence of
the dual estimâtes is also established. We also obtain an asymptotic linear
convergence rate for the cost that dépends only on the dimension of the
problem. Next, relaxing the choice of step size, and using a linesearch, we
prove the same convergence results. Finâlly, encouraging numerical results
for convex problems are presented.

2. THE BASIC ALGORITHM AND ITS THEORETICAL PROPERTIES

Given a quadratic cost

ƒ (x) := êx + - xfQx

with c E Rn and Q a n x n symmetrie matrix, we consider the problem

min ƒ (x); Ax = 6; x > 0, (P)

with A a p x n matrix. As we do not suppose Q to be positive, problem
(P) is in gênerai nonconvex. We dénote by A~lb the set {x G Rn; Ax — b}
and by F the set of feasible points, that is

F ~{xe Rn; Ax = b, x>0},
o

and by F the set of "strictly feasible" points, Le,

F:= {xeRn; Ax = b, x>0}.

o

In the sequel we assume that F is bounded and F is non empty. Define
Xk :— diag {xk}. We consider the following algorithm, proposed by Ye
and Tse [27]:

Algorithm 1

0) Choose x° eF, 6 G (0, 1); k <- 0.

1) Compute xk+1 solution of

min ƒ (ar); Ax = 6; (x - xk)f X~2 (x - xk) < 62. (SP)

if (xk+l - xkY X~2 {xk+l ~ xk) < S\ stop
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198 J. F. BONNANS, M. BOUHTOU

2) fc <- fc + 1. Go to 1).
The non-trivial part of the algorithm consists at each step in solving (SP).

The région

Ek := {x e Rn; (x - xkf X~2 (x - xk) < Ô2}

can be interpreted as the Euclidian bail with radius 6 after a scaling, which
consists in making the change of variable x i—> X^lx that maps xk to
e := ( 1 . . . 1)*. As 6 < 1 it follows that Ek n {x G Rn; Ax = b} is included

o

in JP, hence the algorithm générâtes a séquence of strictly feasible points.
Note that as (SP) has a quadratic constraint, it cannot be solved exactly;
this will be discussed in section 3. In order to state our main results we
need some définitions and hypotheses. Given x e F, let I (x) be the set
of active nonnegativity constraints:

I(x) := {i G {!,..., n}; x% = 0}.

With I C { 1 , . . . , n} we associate the optimization problem:

min ƒ (x)\ Ax = b] xj = 0. (Pj)

We state for future référence the optimality System of (Pi).

{V ƒ (x) + A*A - M = 0,

m = 0, v« *ƒ(*).

As (Pj) is a quadratic problem with only linear equality constraints, its
set of solutions is a (possibly empty) affine space.

Some of our results will use two hypotheses. The first one is

for all / C {1 , . . . , , n}, problem (Pj) has at most one solution in F. (Hl)

Note that (Hl) is satisfies if Q is positive (or négative) definite.
We will also use an hypothesis of qualification of constraints for the

limit-points of {xk} : x G .F is said to be qualified if the following primai
nondegeneracy hypothesis holds:

), -• 0, V i$ I (x), then A - 0. (H2)
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Note that (H2) is equivalent to {À = 0 whenever At\ — Yl l^i^i}- In

this case m ~ 0 for alH G / (x); i.e. (H2) is no more that the hypothesis
of linear indépendance of the gradients of active constraints. In the theorem
below, hypotheses (Hl) and (H2) are used for establishing the convergence
to a point satisfying the first order optimality system; in the case of a convex
cost, the convergence of the cost to its optimal value can be established by
assuming meremy (H2).

We now state the main resuit of this section:

THEOREM 2.1: Let {xk} be a séquence generated by Algorithm 1. Then:

(i) Ifat a given step k, it happens that (xk+1 - xkfX^2 (xk+l - xk) < 6,

then xk+l is a global solution of (P) and x1 = xk+l for all l > k.

(ii) Any limit point x of (xk) is solution of {P)i(x)-

(iii) If (Hl) holds, the séquence (x ) converges to some x. If in addition
(HT) holds then x satisfies the first-order optimality system of (P), i.e.

* J v&) T - ^ ^ M ~ ^, l (OW
Ax = b, x > 0, Ji > 0, xf]i = 0. ƒ K ' }

(iv) If f is convex and (HT) holds, then any accumulation point of the
séquence (xk) is an optimal solution of problem (P).

The proof uses the optimality system of (SP) stated below. It is a simple
extension of the known resuit for problems without equality constraints, see
[7], [18].

LEMMA 2.1: The point xk+1 solution of (SP) is characterized by the
existence of Xk+1 e FF, vk > 0 such that

V ƒ (xk+1) + A*A*+1 + ukX~2 (xk+1 - xk) = 0, (2.2)

Axk+1 - 6 , (2.3)

vk > 0, (xk+1 - xkyx~2 (x^1 - xk) < S2 )
>, (2.4)

Uk [(^+1 _ xk)fX-2 (xk+1 - xk) - 62] = 0 J

df (Q + ukX~2)d>0, VdeAf(A) ~ {xeRn; Ax = 0}. (2.5)
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200 J. F. BONNANS, M. BOUHTOU

Remark 2.1: That (2.2), (2.3) and (2.5) hold is equivalent to: the function

<pk (x) := ƒ (x) + ^ (x - ^ ) * X " 2 (x - *fc)

is convex on A~1b and attains its minimum on A~lb at xfc+1.

The essential ingrediënt of the proof of Theorem 2.1 is

PROPOSITION 2.1: Let {xk} be a séquence generated by Algorithm 1, and
(z/fc, Xk) the associated multipliers, Then

^ ) - / ( ^ + 1 ) ) , ( i )

k

6 J2 WXi ( V ƒ (^/+1) + A*A/+1)|| < 2 (ƒ (a;0) » ƒ (xk+1)), (ii)

- . 0, (iii)

ƒ ƒ (x,x) is a limit point of (xk, xk+1) then I (x) ~ I (£). (iv)

Proof:

(i) Using Remark 2.1, it follows that

<Pk(xh+1)<<Pk(xk) = f(x*) (2.6)

and

f(xk+1) + vkÇ = <Pk(xk+1), (2.7)

hence 62uk < 2 (ƒ (xk) - f (xk+1)); point (i) follows.

(ii) From (2.2) we deduce

Xk [V ƒ {xk+l) + Af Afc+1] = -vkX^ (xk+1 - xk).

This and (2.4) imply ||Xfe(V ƒ (xk+1) + Al Afe+1)|| = vk8. Combining
with (i), we obtain (ii).

(iii) As (pk is quadratic it follows that

<pk (x
k) = vu (xk+1) + Vpk (xfc+1)f (xk - xk+1)

\ Y V2 <pk (x
k^) (xk - xk+l).
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Using (2.2) and (2.4), respectively, we get

(xk - xk+1) = -(Afc+1)< A (xk - xk+1) = 0,

vk (xk - x^Y Xfe-
2 (xk - xk+') = vk 62,

hence

k) = <pk (x
k) = <pk ( x ^ 1 ) + \ (xk xk+*Y Q (xkƒ (xk) = <pk (x
k) = <pk ( x ^ 1 ) + \ (xk - xk+*Y Q (x

This and (2.7) imply

ƒ (xk) - ƒ (xk+1) -vk6
2 = ^ (xk - xk+1Y Q (xk -

By (i), the monotonie deerease of ƒ and the fact that inf (P) > — oo, the
left hand side goes to 0 when k —• oo, the result follows.

(iv) As xk+1 e Ek, it follows that (1 - 6) x* < xk+1 < (1 + 6) xk,
i — 1 , . . . , n, henceforth for a converging subsequence, xk+l —> Oiffx^ —> 0;
the result follows. D

Remark 2.2: Assuming Q positive definite, Ye [27] and Tsuchiya [23] used
property iii) of Prop. 2.1 to prove the convergence of the séquence {xk}.
Here, we shall rather use the more gênerai hypothesis (Hl).

We need the foliowing result, due to Mangasarian [15].

LEMMA 2.2: If f is a convex function, then the gradient function V ƒ (•) is
constant on the optimal solutions set of (Pj ^ ) .

Proof of theorem 2.1:

(i) If it happens that (xk+l - xk)fXk (xk+l - xk) < 6, using Lemma 2.1
and Remark 2.1, we deduce that vk = 0 and that ip^ (x) = ƒ (x) attains its
minimum on A~1b at xk+1. It follows that xk+1 is a solution of (P).

(ii) Let x be a limit-point of {xk+1}. Dénote I :~ I (öf), / :—
{ 1 , . . . , n} — / . From Prop 2.1 (ii) we get for the given subsequence

(V ƒ (xk+1) + Af Xk+1)j -> 0. (2.8)

Define G :— {(A* À)j, À G R?}. Then G is a closed linear subspace;
from (2.8) it follows that dist ((V ƒ (rr*^1)/, G) -> 0, hence there exist

vol. 29, n° 2, 1995



2 0 2 J. F. BONNANS, M. BOUHTOU

some À such that (V ƒ (x) + Af A)j = 0. From this it follows that x satisfies
the first order optimally system of (P)j ,_, .

Now let d G M (A) be such that dj = 0 (the set of such d's is possibly
{0}). Then passing to the limit in (2.5), and reminding that i/*. converges to
zero by Prop 2.1 (i), it follows that vk é Xj^2 d -> 0, hence $Qd > 0; nowT

if x is feasible for (P) / , then d := x - x is in M (A) and di = 0 hence

ƒ (s) = ƒ (3f) + V ƒ (3f)* d + \ ê Qd = ƒ (3f) + ^ Q d > ƒ (3f)

which proves (ii).

(iii) From Prop 2.1 (iv), point (ii) and (Hl) we deduce that if (x, x) is
limite-point of (xk

y xk+1) then x = x. In particular ||xfc+1 —xk\\ —» 0 which
implies that the set of limit points of {xk} is connected. Using (ii) and (Hl)
again we deduce that the all séquence {xk} converges to some x.

hence with (H2) Afc -+ A such that (V ƒ (x) + Af A)2 = O for all i 0 ƒ (x),
hence (OSj (^) is satisfied. It remains to prove that /!/ > 0. From (2.2)
and the convergence of {Xk} we deduce that /Z = lim X^2 (xk - xk+l).

If i e I (x) then xk -* 0, hence x^+1 < xk at least for a subsequence,
and it follows that Jïi > 0.

(iv) Dénote by fj,k the dual estimate term given by (2.2), Le. fik :=
V ƒ (x*^1) + AT Afc+1. We first prove that {//} converges: it is well
known (see [10]) that whenever (H2) holds that the matrix (AX2 AT), with
X := diag(x), is not singular over F. We note that r}k := Xkfik is such that

Xk V ƒ (xfc+1) + (AXO* Afc+1 - r?fc - 0, and AXk V
k - 0.

It follows that r]k is the orthogonal projection of Xk V ƒ (a;fc+1) onto
AA (A**), hence /xfc - X " 1 rf* = [I - AT (AX2 AT)~l AX2] V ƒ (x*+1).
As F is bounded, we deduce that the séquence {//} is bounded.

We prove that the set of limit-points of {fxk } is finite. Let x be a limit-point
of {xk}. If ar* is an other limit-point such that I (x) C I (x*)9 then using
Theorem 2.1 (ii), the fact that ƒ (x) — ƒ (x*) and Lemma 2.2, we deduce that
V ƒ (x) = V ƒ (x*). Again (H2) implies that for any subsequence (x*') such
that xk + 1 —>• x*, we have that lim /xfc = lim //fc'. This and the finiteness of

k k'

the set of faces of F imply that the set of the limit points of {^k} is finite.
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Now from proposition 2.1 (iv) and proceeding as above with kf — k + 1, it
is easy to see that lim V ƒ (xk'+1) = V ƒ (af), hence {/xfc+1 — / / } vanishes.
It follows that the set of accumulation points of {fJ>k} is connected and finite.
This implies that {fj,k} converges to some /J.

Now we are ready to prove that, if x is an accumulation point of the
séquence xk, and À is the limit of the associated subsequence of Afc+1, then
(OSjÇx)) is satisfied with multipliers À and JI. As in the proof of (iii) it
remains to prove that Jij > 0. Assume by contradiction that there exists
i E I such that /Ẑ  < 0. Then xi = 0 and the convergence of {fik} implies
that vk (xk - xk+1)/(xk)2 < 0 for all k large enough. Hence xi = 0 and
xk < xk+ for all k large enough. This is a contradiction and so Jij > 0. •

Remark 2.3: In statement of (iii) of Theorem 1, instead of (Hl) we can
obviously assume only that for any limit point x of the séquence {xk}r

Pl(x) has at most one solution in F.

Note that C Gonzaga and Carlos [10], under primai nondegeneracy
assumption also proved the optimality conditions for the fîrst order version
of the affine scaling method applied to linearly constrained convex programs.
They did not prove the convergence of the séquence of the dual estimâtes.
However, one can easily proceed as in our proof of (iv) of Theorem 1, in
order to also prove the convergence of the dual estimâtes generated by the
first order affine scaling method.

We now analyze the rate of convergence of the algorithm. We note
that even in the case of linear cost, the known results deal only with the
asymptotic rate of convergence of the cost. We generalize these results
in point (i) of Thm 2.2. We also give a resuit related to the speed of
convergence of {xk}. We dénote

IMI* == A

A solution (x, À, /x) of the optimality System (2.1) is said to be strict
complementarity if

Xi>0 or ft > 0 , V t e { l , - - - , n } . (2.9)
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THEOREM 2.2: Let {xk} be generated by Algorithm 1. Then:
(i) For all x* G F such that f (x*) < f (xk+1) then

f (x^) - ƒ ( * • ) < ( i - * \ (ƒ {x
k) - f (*•)). (2.10)

\ \\x — x \\ky

In particular, if xk converges to x then for some e^ —> 0:

— f (T) < M - \ ( f (rk\ — f (r}} (0 \ \ \

j K^j zi \ J- A / r / _ ^ . _ } u \x ) j (X)), V,^.AI;

ƒ (x*+1) - ƒ (af) < f 1 - -?—) (f (xk) - f (x)). (2.12)

(ii) In addition, if (Hl), (H2) and the strict complementarity hypothesis
(2.9) hold there

(i) As <fk attains its minimum on A~lb at xk+1, we have

<Pk (xk+1) < fk (x*) = ƒ (**) + ^ Har* - xk\\l

Weobtainthatv?fc(a;fc+1) < (l-0)cpk(x
k)+O<pk(x*), for all 0 G [0,1]. As

a conséquence y?fc(a;fc+1)-^fc(a;*) < (l-0)[/(a;fc)-(^fc(a;*)], and therefore

ƒ ( r r^ 1 ) - ƒ (*•) < (1 - 0) [f (xk) - ƒ (x*)] + %[0 \\x* - xk\\2
k - 62}.

We note that, as ƒ (x*) < f (x^1), x* must be outside the ellipsoid E^
Choosing 9 := 62/\\x* - xk\\2

k < 1, we deduce (2.10). Relations (2.11)
and (2.12) easily follow.

(ii) Set / :— I (af). By Thm 2.1 (iii), {xk} converges to some x. From
Prop 2.1 (ii) and (2.9) we get

oo
fc+1 * k+Ii\ < oo, V i 0 I. (2.14)
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Now from Prop 2.1 (ii) and (2.9) again:
oo

4 < °° for a11 * e /. (2.15)
k-O

Define ?7fc+1 G Rn by

f ( x k + 1 ) + A* \ k + 1 ) i if i £ I ,
0 if i$I.

It appears that (xk+1, Àfe+1) are primal-dual solution of the optimality
system of

' 1

min ƒ (x) - rf x; Ax = b; xi = xk-+1,
X

or equivalently (xk+1 —x, Xk+1 — X) is solution of the linear system in (x, A) :

(2.16)

We claim that this system is invertible. Indeed consider a solution of the
homogeneous system satisfies 0 = xf {Qx + Af X) x = xtQx. Now x + px
is feasible for (P)j and

2

ƒ (x + px) - ƒ (x) + pV ƒ (x)* x + ^xfQx = f (x)-

by (Hl) x must be null, hence A = 0 (H2) which proves the invertibility
of this linear system. Now by invertibility of (2.16) and (2.14), (2.15) there
exists K > 0 such that

oo oo

£ (II** - 3f|| + ||Afc - Â||) < K 2 (ll^ll + ll^ll) < oo,

as was to be proved. D

Remark 2.4: Ye [28] also proved a similar resuit on the convergence rate
for the cost. Our proof is quite different and seems simpler than the one of Ye.

3. THE EXTENDED ALGORITHM

So far we have analyzed Algorithm 1, assuming that the solution of (SP)
could be computed exactly: this is not the case, however, as problem (SP)

vol. 29, n° 2, 1995



2 0 6 J. F. BONNANS, M. BOUHTOU

is nonlinear. However, guessing a value for the multiplier v associated to
the nonlinear constraint, we may solve exactly, whenever it has a solution,
the problem of minimizing the associated Lagrangian:

min $ (x) := ƒ (x) + V- (x - xk)f Xf (x - xk) s.t. Ax = 6. (Q)„

We dénote a solution of {Q)v (whenever it exists) by xk.
As X^2 is positive definite, there exists a threshold value F& > 0 (we do

not consider négative values of v) such that i/jk (x) is convex on Af(A), if and
only if v > vk, Also by (2.5) this vk satisfies v^ <vk, By classical argument
[7], [18] one can prove that the function v —> (ar* - xk)f X^2 (xk - xk)
is strictly decreasing on ]ï7 .̂, oo[ when xk is not a stationary point. Hence
i/j- can be computed efficiently within a given précision at least by a simple
dichotomie procedure: see section 4.

In order to take into account the fact that (SP) cannot be solved exactly,
but that the solution of the trust région subproblem can be computed for a
number of values of the trust région close to <5, we allow the possibility for
6 to vary at each itération. Also we add the possibility of a linesearch in
the direction computed by the subproblem. This linesearch does not give
any new theoretical property, but it proved very effective in our numerical
tests. The algorithm is as follows:

Algorithm 2

0) Choose x° eF9 S € (0, 1); Jfe <- 0.

1) Compute x^+1 solution for some 6% > ë of

min/ (x) ; Ax = b\ (x ~ xkf K^2 (x - xk) < S\, (SP2)

the parameter 6^ being such that xk+1 > 0 (hence it may happen that <5& > 1).

2) Linesearch: dénote dk := i f c + 1 — xk.

Fix 7fc > 1 such that xk + 7&dfc > 0.

Compute pk = arg min {ƒ (xk + pdk), p € [1, ik]}

3) k *rr k + 1, go to 1). D
In the analysis we will see that it is useful to have some bounds on 7*..

Specifically, we assume that there exists 9 G (0, 1) such that

0< l + pkd
k/xk <Ö"\ (3.17)
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Remark 3.1: Indeed (3.17) gives a bound on p^. Excluding the trivial case
k 2 k k

i

that |df|/a;f > 6/,/n for at least some i.

Now by (3.17)

- i < Pk df/xÇ < e-1 - 1

hence

Pk\dki\/xk < m a x ^ " 1 - 1, 1) < 9~\

It follows that pk < y/n/69.

That is, if (3.17) holds we may assume that 7^ < —
Ou

Remark 3.2: We can check that Sk is always bounded from above. Indeed,
let x b e a limit-point of {xk}. Assuming that {xk} is not finite, then we
find that for the associated subsequence of {xk}

Hence limsup Sk < \fn.
k-±oo

THEOREM 3.1: Let {xk} be generated by Algorithm 2. If (3.17) holds, then:
(i) If at a given step k, it happens that {xk+l - xk)f X^2 {xk+l - xk) < <5&,

then xk+1 is a global solution of (P).

(ii) Any limit point x of {xk} is a solution of (P)T ^ .

(iii) If (Hl) holds, the séquence xk converges to some x. If in addition
(H2) holds then x satisfies (2.1), the first-order optimality System of {P).

(iv) If ƒ is convex and (H2) holds then any accumulation point of the
séquence {xk} is an optimal solution of problem (P).

For the proof of the Theorem 3.1 we need a statement corresponding to
Proposition 2.1.

PROPOSITION 3.1: Let xk be a séquence generated by Algorithm 2, and
(vki ^k) tne associated multipliers. We assume that (3.17) holds. Then

^ °
ii) ê 6i\\Xi (V ƒ (£*+!) + A* \l+l)\\ < 2 (ƒ (x°) - ƒ

t=o
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iii) (xk - xk+1f Q (xk - xk+l) -> 0,
iv) If (x, x) is limit-point of (xk

1 xfc+1), then I (x) C I (x).

Proof:
i) Arguing as in the proof of Prop 2.1, we find that ö\ vu <

2 (ƒ (xk) - ƒ (£fc+1)). As ƒ (xk+1) > ƒ (xk+1), we deduce that
ö | vk < 2 (ƒ (s*) - ƒ (xk+1)); point (i) follows.

ii) This can be proved as for Prop 2.L
iii) Arguing as in the proof of Prop 2.1 we find that (xk - a^4"1)* Q (xk ~~

xk+1) —> 0. Now by Remark 3.1, p& is bounded and

= (Pk)
2\(xk - x^1)* Q (xk - xk+l)\ -> 0.

iv) As xk+1 e Ek, we have xk+1 < (1 + Pkh) a*. Using Remarks 3,1

and 3.2, we get xk+1 < f H p̂ — ) a:̂  for A; large enough, from which
V °V J

the conclusion follows. D
Proof of Theorem 3.1:
i) The same argument as in the proof of Thm 2.1 gives the result,
ii) Let x be a lirnit-point of xk. If x is not solution of Pj(x)> Ie* %* be

feasible for Pi(x) an (l f (x*) < ƒ (^)- Arguing as in Thm 2.2 we get

ƒ (**+i) - ƒ (xr) < ( i - Z 1
 2 ) (ƒ (̂ fc) - ƒ (x*)).

\ \\x — x ||fc/

As Sk > 6 and ƒ (xfc+1) < ƒ (£ft+1) we get

For the considered subsequence, as I (x*) D I (x), we get

\\xk-x*\\l -> czrdl(x*)+

hence ƒ (xk) —> ƒ (#*), in contradiction with our hypothesis.
iii) We have by point (ii) and (Hl) that if (af, x) is limit point of (xk,

then x is unique solution of Pj r%\ and x is unique solution of Pj ^ . As
J (x) D I (x) if follows (by définition of Pj) that x is feasible for Pj ^\ ,
and f (x) = f (x) = lim f (xk). This implies £ = x, and in particular

fc k of j^ f c} is connected. By
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(ii) and (Hl) each of these limit-points is isolated. We deduce that {xk}
converges towards some x. Now \\xk+1 — xk\\ < ||a;fc+1 — xk\\ hence xk

has also limit x. We obtain as in the proof of Thm 2.1, that (OSj^) is
satisfied and, thanks to (H2), JI = Hm vk X^2 (xk - £fc+1). For i G I (x),
xk -> 0 and xk+1 - xk = pk (xk+1 - xk) with pk > 0 hence xk > xk+1 for
at least a subsequence, hence /Z > 0, and then (2.1) holds.

iv) Let / / := V ƒ (xfc+1) + AT Xk+l be the dual estimate. Using again
the convexity of ƒ and the nondegeneracy assumption, arguing as in the
proof of iv) of theorem 2.1, we prove that {jik} is bounded and the set of
its limit points is finite.

Using of Theorem 3.1 (ii) and from proposition 3.1 (iv), again as in the
proof of Theorem 2.1 (iv), we deduce that H//*"1"1 — fik\\ vanishes, hence
{/̂ fc} converges. Thus, it is easy to show the optimality conditions which
imply that iv) holds.

Remark 3.3: Theorem 2.2 has an immédiate extension to Algorithm 2.

4. A PRACTICAL ALGORITHM AND NUMERICAL RESULTS

Solving problem (SP2) is the hardest stage of algorithm 2. The linesearch
is of course easy since the fonction is quadratic.

Problem (SP2) can be efficiently solved by the classical algorithms used
to compute the displacement step in trust région methods (see More [18]).
These algorithms generally use Newton's method to compute the multiplier
vk which in our case satisfies \\xUk — xk\\k — 6ki where xUk is such that:

In our numerical tests, we have used instead an algorithm based on a
simple dichotomie procedure. Indeed, on the one hand, we know (see the
proof of Prop 2.1 (i)) that vk G ]|7fc, 26~2 (ƒ (xk) - ƒ (xk+1))] where V
and 6 are as in section 3.

On the other hand, v i—> \\xv — xk\\k is strictly decreasing on ]z7&, +oo[.
Hence, an estimate of ƒ (xfc+1) and Vk allows to compute an estimate of the
multiplier vk using a bisection procedure on ]Vk, 26~2 (ƒ (xk) - f (xk+1))].
Unfortunately, to estimate the multiplier vk is a hard problem especially
when Q is indefinite. We proceeded in the following way:
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Algorithm of compilation of z/&
2 r i

1- înf := 0, i/sup := -j2 ƒ (a;*) - 7 J where j k is an under estimate
of ƒ ( x ^ 1 )

2. v := - O inf + i/sup).

3. • if^ := Z r QZ + vZT X^2 Z, where Z is a basis of the null space
of the matrix A

• Solve the reduced system Huw = — ZT V ƒ (xk) by an itérative method
which controls the positivity of Hv.

• If Hv is indefinite, vmi := i/, go to 2.

• Else x„ —̂ rrfe + Zw.

- if | | ^ - xk\\k > S

* if xp > 0 stop

* else i/jnf —̂ z/, go to 2.

- if ||xi/ — xk\\k < S then

* if ^sup — înf < £ where e is a given précision then stop

* else i/SUp := ^, go to 2.

In the context case, zero is a trivial estimation for V% and stage 3 of the
above procedures becames simple to implement. We tested the behaviour of
algorithm 2 to solve several convex quadratic problems randomly generated.
We used a SUN sparc 4/65 computer. The algorithm is written in the
language BASILE [4]. Ail test problems are of the form:

min ƒ (a?); Ax = 6; Bx < d; l < x < u. (Pf)

Introducing slack variables, z \— d- Bx, w :— u - x, w := a: — I and
replacing x by u — w, one can transform (P') to standard form problem:

min - wT Qw — V ƒ (u)T w;
Aw = Au — b; Bw — z = Bu ~ d

w + ui = u — /; w > 0 , w;>0 ,2 ;>

and apply algorithm (2) to solve it, This has the disadvantage to increase the
size of the problem, especially when the number of inequality constraints is
large with respect to the number of variables. Indeed, dénote Z^ := diag(2fc),

Recherche opérationnelle/Opérations Research



THE TRUST REGION AFFINE INTERIOR POINT ALGORITHM... 211

Wk := diag (wk), W_k := diag (u>fc), one will have to solve the following
sub-problem (SP3)

min - wT Qw — V ƒ (u)T w

Aw — Au — b

Bw — z =

w + JH~ u —

(ü; - (w — w_ ) W^ (w — w_ )

(SP3)

For this, one need to solve as in (4.18) a linear system whose matrix is

0
0
A
B
I

Equivalently, one can easily show that the ellipsoid centered at xk in x
space, given by sub-problem (SP3) after eliminating all slack variables, is

0

0
0
0
I

0
0

Vk Zk
2

0
-I
0

AT

0
0
0
0
0

BT

0
-I
0
0
0

I
I
0
0
0
0

x (x - xk) + {x- xk)T BT Zk
2 B(x- xk) < 6]

Therefore, (SP3) is equivalent to the following subproblem:

min ƒ (x); Ax = 6, x E E\.

Algorithm 2 may be generalized as follows:

Set:

7"). » (\\ o ry ƒ TY11 Tl I T* / • 1/ " T" • i \
•*-^k * *•*•!• "•& 1 X 1 1 1 X 1 \J"i f>i , U/l Jbj J j }

+ (x-xkfBTkZ^B(x-xk)<62}.
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It is easily checked that E2 strictly contains E\ and is included, whenever

Sk < 1, in F.

Hence in our tests, we have taken M& = D^2 + BT Z^2 B. It is easy
to show that M& is positive definite. Now, the linear system to have to
solve is similar to (4.18):

Note that when the upper bound's components are infinité, one can easily
show that (SP4) is equivalent to sub-problem (SP3).

We briefly prove the convergence of the basic algorithm where the affine
scaling is done using matrix £>&. In order to simplify the présentation, we
focus on the particular problem

m i n ƒ (x); Ax = 6, l<x<u. (P")

At each itération of the basic algorithm we compute xk+l solution of

min ƒ (x); Ax = 6, (ar - xkf D~2 (x - xk) < 62,

As in section 2, we check that the algorithm is convergent:

THEOREM 4.1 : i) Any accumulation point x of the séquence (x^) is an
optimal global solution of the reduced problem:

min ƒ (x); Ax — b\ xj = uj; xj — Ij

where

/ := {i G {2 , . . . , n}; x% = Ui}

J : = { i G { l , . . . , n}i Xi =li}

ii) If for any two subset I and J of { 1 , . . . , n) such that I n J — 0,
we have that problem

min ƒ (x); Ax = 6; xj = uj; xj = Ij

has at most one solution, then {xk} converges.
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iii) If (xk) converges to x and satisfies (H2), then x satisfies the first-order
optimality system of (Pff) i.e.,

[V ƒ (x) + AT J]i = 0 if li < Xi < m

[V' f{x)^ATX]ï>0 if xi = U

[V ƒ (x) + AT \}i < 0 if xl = ul

K Ax = è, l <x < u

iv) If f is convex then any non degenerate limit point of {x } is an optimal
solution of CP").

Proof: i) Noting that the multiplier i/k goes to zero such that
V ƒ (xk+1) + AT Xk+1 = vk D'1 (xk - x*+1), and from the définition
of.Dk, we deduce that (V ƒ ( ^ + 1 ) + AT Xh+1)i -> 0 where ig I U J. As
in proof of (ii) of theorem 2.1, it is easy to deduce ï).

ii) As |#f+1 - xk\ < 6 min (a^ - /i, xk)\/i = 1 , . . . , ra, we deduce with
(i) that ||xfc+1 — xfc|| —• 0; consequently the set of limit points of {xk} is
connected. By hypothesis this set is finite. It follows that {xk}) converges.

iii) The fact that x is not degenerate implies that {À^+1} converges to
some Â. If h <Xi< ut, we have that (V ƒ (xk+1) + AT Xk+1)i -» 0.
If x% = U, assume by contradiction that (V ƒ (x) + AT X)i < 0, hence
vk {Dl1 (xk - xfc+1))z < 0 for all A; large enough. Thus h < xk < xk+1

for all k large enough, which contradicts the fact that x{ — h. As for the
previous case, it is easy to show that if Xi — ui then [V ƒ (x) + AT X]i < 0.

iv) The proof is an immédiate extension of the proof of (iv) of
Theorem 2.1. D

The main aim of our numerical tests is to study the practical behaviour of
Algorithm 2. We are not interested in the way to compute the initial point
XQ . We also use the optimal value of the tested problem in the stopping test.

Specifically we compute the optimal value 7* by an active set method
(Casas and Pola [8]) and we stop algorithm 2 at itération k when

| / (xk) - 7*| - lu"5 (ƒ (xo) - 7*)/(/ (*o) - 7* + 1),

We have set 6 := 0.99 and stopping parameter for z/& equal to e := 10~16.
The linesearch was exact and done in the direction dk from xk+1 to 99%
of the way to the boundary of the feasible région.
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All our tests were generated such that the point e = ( 1 , . . . , 1)* was the
initial interior point to start the algorithm. Therefore, the right hand sides
b and d in (P') were built such that: Ae = b and (Be)j +j = dj. Also:
m — i + 1 and k = -(n + 2~i) and Q = HT H where H is a random
(n, n) dense matrix.

At each test we have used two random acces modes to generate entries
of A, B, H and C: a uniform random acces in [0, 1] and a normal random
acces with mean equal to zero and variance equal to one.

We reporte here the worst results of this statistics. To compute i/snp in the
algorithm we need an under estimate 7^ of /(refc+1). In our tests, we first

itérations
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60

— j —

80 100 120
—I 1 j—

140 160 180 200

without linesearch mimber of variables
basile

Figure 1. - Inequality constraints number fixed at 100.
Number of equality constraints equal to 1. Bound constraints for all variables.
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10 _

0
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1 i • 1 ' t " 1 ' 1 ' 1 • 1 " 1 • 1
50 100 150 200 250 300 350 400 450 500

with extra linesearch number of variables
basile

Figure 2. - Same as in figure 1 but with 200 inequality constraints.
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Figure 3. - The number of variables is 100.
One equality constraint. Bound constraints for all variables.

computed the optimal solution of the problem without inequality constraints
and stopped if it is feasible. Otherwise, we took its function value as 7&.

Since, it is natural that the number of itérations of the algorithm decreases
when the number of equality constraint increases, our tests reported here
use only equality constraint. However, we always use inequality and bound
constraints. The figures below summarize the principal numerical results
obtained:

Result 1: Figure 1 shows that without linesearch, algorithm 2 always
converges in a reasonable number of itérations related to the sizes of the
tested problems. In Figure 2, we see that the use of the exact linesearch
allows to divide the number of itérations roughly by two.

Result 2: In Figure 3, the same function is minimized under a variable
number of inequality constraints. We observe that, by contrast to the classical
active set methods, the speed of the algorithm is not very sensitive to the
variation of the number of inequality constraints.

Result 3: In Figure 4 we show the importance of using uk~1 as an
upper estimate for the multiplier vk. Indeed, the dotted line in the figure 4,

represents the case when we take 2 -^ value as the initial (upper)

estimate on v^ and for the continuous line we compute vk in [0, i ^ " 1 ] . With
this last version, we see that, before the convergence, each itération usually
needs to solve two linear Systems and five when close to the convergence.
This is very promising and we believe that with the best choice of the upper
bound of vk and using some preconditioner for the matrix Q + v
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number of linear Systems

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

no control on the multipliers itérations
with control on the multipliers basile

Figure 4. - The number of variables is 100. One equality constraint
Bound constraints for all variables. 100 inequality constraints.

when close to the convergence, one can reduce the number of the linear
Systems to be solved.
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