
RAIRO. RECHERCHE OPÉRATIONNELLE

B. PELEGRÍN

L. CÁNOVAS
New heuristic algorithms for the rectangular
p-cover problem
RAIRO. Recherche opérationnelle, tome 29, no 1 (1995), p. 73-91
<http://www.numdam.org/item?id=RO_1995__29_1_73_0>

© AFCET, 1995, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1995__29_1_73_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Recherche opérationnelle/Opérations Research

(vol. 29, n° 1, 1995, p. 73 à 91)

NEW HEURISTIC ALGORITHMS
FOR THE RECTANGULAR p-COVER PROBLEM (*)

by B. PELEGRÎN (l) and L. CANOVAS (*)

Communicated by Brian BOFFEY

Abstract. - Many heuristic algorithms have been proposée in the literature for the solution of
p-center problems, most of which can be used in any metric space. However, Utile computational
expérience has been reported with these heuristics, most time s for problems in U2 with the Euclidean
distance. In this paper, we consider the unweighted p-center problem in Rm when distance is
measured by the Tchebycheffnorm, which we name the Rectangular p-Cover Problem. We propose
new heuristic algorithms for this problem, and present computational results. Firstly, a new class of
heuristics based on the génération of seed points is given, which is obtained using a new assignment
rule. Secondly, two new algorithms based on partitions are given, which can be seen as heuristics
of improvement type. Finally, it is shown by computational experiments that the new algorithms
improve some other related heuristics considered in this paper.

Keywords: Clustering, Tchebycheff norm, unweighted p-center.

Résumé. - Beaucoup d'algorithmes heuristiques ont été proposés en littérature pour la solution
du problème p-centre, la plupart d'eux peut être utilisée dans n'importe quel espace métrique.
Du fait, peu d'expériences de computation ont été élaborées avec ces heuristiques, la plupart du
temps en R2 avec la distance Euclidienne. Dans cet article, on considère les problèmes dans !Rm

du p-centre sans poids quand la distance mesurée par la norme de Tchebycheff, qui s'appelle
le Problème dep-Couvrement Rectangulaire. On suppose de nouveaux algorithmes heuristiques
pour ce problème, et on présente des résultats de computation. Premièrement, une nouvelle
classe d'heuristiques basées sur Vengendrement des points de semence donné, qui est obtenue
en utilisant une nouvelle règle d'allocation. Deuxièmement, deux nouveaux algorithmes basés dans
la répartition sont donnés, lesquels peuvent être vus comme une amélioration des heuristiques.
Finalement, on montre par expérience de computation que les nouveaux algorithmes améliorent
certaines heuristiques considérées dans cet article.

Mots clés : Amas, norme de Tchebycheff, /?-centre sans poids.

1. INTRODUCTION

Let M = {Pi,..., Pn} be a finite set of points in the Euclidean space Rm.
It is often required in Location and Cluster Analysis to partition the set M
into p subsets Mi,..., Mp, assuming M3 ^ 0, Mj n Mt = 0, UMj = M,
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74 B. PELEGRÎN, L. CANOVAS

so that a given function #(M},.. . , Mp) will be minimized. This problem
is known as the unweighted p-center problem when the function g is the
maximum among the radii of the subsets. The radius of a subset M3 is
defined as the optimal value F (Mj) of the following 1-center problem:

Minimize Maximum{d(Pl} X) : Pi G Mj} (1CM,-)

where d (., .) is a given metric in Rm. An optimal solution Cj of ( lCMj) is
called a center of Mj. The unweighted /?-center problem is then formulated
as:

Minimize Fa = Maximum {F (Mi),..., J F ( M « ) } (pC)
€P(M)

where P (M, p) dénotes the set of all partitions of M into p disjoint subsets.

In Location, to mention a few examples, one may refer to the location
of fire stations, ambulance bases, police stations and messenger delivery
services. Usually, the points Pi represent incidents, destinations, users,
clients etc.; the centers Cj represent facilities which satisfy demand of
points in MJ; and d(Pi, Cj) represent distance or travel time between Pi
and Cj. In Cluster Analysis, this type of problem may occur in almost
ail empirically based disciplines such as économies, engineering, biology,
archaeology, social sciences, etc. Then, the points Pi represent data, objects
or entities, which are characterized by the values of m variables; the subsets
Mj represent groups, each of them is as homogeneous as possible; each
center Cj is an idéal point which represents the points in group Mj\ and
d(Pj, Cj) is a measure of dissimilarity between points Pi and Cj.

We define the rectangular p-cover problem as to find p hyperrectangles,
with the sides parallel to the axes, containing the points in M so that to
minimize the maximum length of their sides. As an illustration in the plane,
consider the following régional planning problem: given a set of undivisible
areas (represented by points in R2) constituting a geographical or urban
région, cluster these areas into p rectangles with minimum length of their
sides, in such a way that a source of a certain social service (as fire stations,
ambulance bases, schools, police stations, etc.) will be located at the center
of each rectangle to service the areas in it contained. To formulate this
problem we will use the following notation:

R = {x = ( x i , . . . , xm) e R m : ak <xk<bkjk = 1 , . . . , m}

an hyperrectangle,
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NEW HEURISTIC ALGORÏTHMS 75

L — Max{fyu — ak : k = 1,..., m}

the maximum length of a side of R,

the A>th coordinate of the point P.

Given a subset Mj of M the smallest hyperrectangle containing Mj is
given by

R(M3) = {x = (ai,..., a:m) G Rm : a{ < xk < &>, k = 1,..., m}

where a£ = Minimum {xk (P) : P e Mj} and b3
k = Maximum {x^ (P) :

P G M?}- Let L(Mj) be the maximum lengtht of a side of R (Mj), i.e.,
L(Mj) — Maximum {&£ — a?k : k — 1,..., m}. Then the rectangular p-cover
problem can be formulated as:

MinimizeLo, = Maximum {L (M\),..., L(MP)}
eP(M)

The problem (RpC) can be seen as the problem (pC) when the metric is
given by the Tchebycheff norm, Le.,

d{P%) Ci) = Max{|x* (P,) - xk (Cj)\ : k - 1,..., m}

since then it is verified that

F{Mj) - l/2max{d(Pi, Ph) : Pu Ph e M3} - l/2L{M3)

[13], and therefore F^ = 1/2 L a . For m = 2, (RpC) can also be seen as
(pC) when the metric is given by the Rectangular norm, Le.,

d(Pi, Cj) = |*i (Pi) - Xl (Cj)\ + |*2 (Pi) - *2 (C,-)|

since in R2 the Tchebycheff norm is obtained from the Rectangular
norm taking the transformation y\ — x\ + x%, y2 = x\ — X2 (then
|#i| + \x2\ = max{|yi|, 12/21})- This means that rectangles whose sides
détermine angles of 45° with the axes (x-coordinates) become rectangles
with sides parallel to the axes (y-coordinates) [10].
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76 B. PELEGRÏN, L. CÂNOVAS

The problem (pC) has been proved to be NP-Hard, even for m — 2
and the Rectangular norm [11, 12], and so only heuristic algorithms can be
used to obtain good solutions of (RpC) for large problems [2, 6, 7, 14, 16].
Most of the heuristic algorithms proposed for (pC) can be used for any
metric [14], and consequently for the problem (RpC). Many of them require
the corresponding 1-center problem to be solved a lot of times, which is
generally time consuming for m > 2. Some algorithms to evaluate F (Mj)
for different metrics can be found in [4, 8, 10] for m — 2, and in [3, 5, 9, 13]
for any m. Computational expérience has also been reported for (pC), but it
is limited to points in R2 and not very large values of n and p, for instance
n e [20, 150], p E [2, n - 1] in [7], and n < 2 000, p < 10 in [2].

In this paper, we propose new heuristic algorithms for the solution of
(RpC) which are related to some heuristics for (pC). In section 2, we
consider a class of heuristics for the solution of (RpC), for which a new
assignment rule is given. With the new rule each algorithm is this class
becomes a new algorithm, creating a new class of algorithms. In particular,
modifications of two algorithms given in [6, 16] are considered. In section
3, we give two new algorithms based on partitions, the first is a modification
of the heuristic given in [13], and the second is a modification of the
well known Location-Allocation algorithm, which requires the évaluation of
F (Mj) many times, but this is not time consuming for F (Mj) — L (Mj),
Le.f for (RpC). In section 4, we show by computational experiments that
the new heuristics improve the mentioned existing heuristics when they are
used for the problem (RpC).

2. ALGORITHMS BASED ON SEED POINTS

Some of the existing heuristic algorithms for (pC) are based on the
génération of a set of p seed points. A class of these algorithms, when they
are applied to obtain a solution of (RpC), can be described as follows:

Class of seed point algorithms for (RpC)

Step 1: Generate a set of p seed points Ci,..., Cp in Rm.
Step 2: Obtain a partition a = {Mi,..., Mp} assigning each point Pi to

its closest seed point, Le.,

Mj = {PzeM:d (P%, Cj) < d(Pi, C t) , t = 1,..., p} , j - 1 , . . , p

If a point Pi belongs to more than one subset Mj it is assigned to the
set with least value j .

Recherche opérationnelle/Opérations Research



NEW HEURISTIC ALGORITHMS 77

Step 3: Détermine the hyperrectangles R(Mj), j — 1,..., p. Calculate

When an algorithm in this class is used for the solution of (pC), Step 3
must consequently be modified to evaluate Fa instead of La. The algorithms
in this class are different only in the way the seed points are generated (Step
1). The assignment rule given in Step 2, that we will dénote by AR can
be modified if a point Pi belongs to more than one set My, for instance
assigning it arbitrarily to one Mj containing Pi, but then the value La

doesn't change. Step 3 is for the évaluation of the objective function of
(RpC) at a given partition a.

We define any set of hyperrectangles i?i,..M Rp by two matrices
imin ^rnax £ Mmxp (R) as follows:

in (*;, j) = Minimum {xk (P) : P G Rj}

ax (A;, j) = Maximum {xk (P) : P E Rj}

Let L — (Li,..., Lp), where Lj is the maximum length of a side of R
j = 1,..., p. In particular, if Rj = i? (Mj) then L^ = L (Mj), j — 1,...,
An O (n) procedure to evaluate La for a given a — {Mi,..., Mp] is:

Procedure RECTANGLE

1. Set Lnûn (fc, j ) = oo, A; = 1,..., m, j = 1,..., p

imax (fc, j ) = -OO, k — 1, ..., m, j = 1, ..., p

2. For j = 1 To p Do

While Mj ^ 0Do

Begin

Take P; G Mj

Set Mj = Mj - {P,}

For k = 1 To m Do

Begin

If xk (Pi) < £min (A, j ) then Lnûn (A, j ) = xfc (Pi) Else

If rr/c (P,) > Lm a x (A, j ) then Lm a x (fc, j ) = ^ (P;)

End

End

vol. 29, n° 1, 1995



78 B. PELEGRÏN, L. CANOVAS

3. Set La = 0.
For j = 1 To p Do

For k = 1 To m Do
L a = Max{L a , Lm a x (fc, j ) - Lmin (fc, j )}

With RECTANGLE, the hyperrectangles E (Mj), j = 1,..., p, and L a are
determined for a given a = {Mi,..., Mp} (Step 3), i.e., the quality of the
partition generated by the assignment rule AR is evaluated.

We propose a new assignment rule, that we call NAR to détermine an output
partition a from the set of p seed points. The value La is calculated at the
same time that NAR is used to generate a. The new rule starts with the set
of p elemental hyperrectangles given by the p seed points Ci,..., Cp, which
are growing up while there is a non assigned point. In each itération a non
assigned point is assigned to its nearest hyperrectangle, until all the points
have been assigned. The distance between a point Pi and an hyperrectangle
Rj is here defined as 0 if Pi G Rj and as the distance between Pi and the
farthest point in Rj otherwise, Le,:

u Rj) = M a x { 4 , fc = 1,..., m}
where

{imax (fc, j) ~ Xk (Pi) if Xk (Pi) < Lmin (fc, j)

Xk (Pi) - Lmin (fc, j ) if Xfc (Pi) > Lm a x (fc, j )

0 otherwise

Then NAR is given by the following procedure:

Procedure NAR

1. Set Lm i n = L m a x = (Ci,..., Cp), and Mj = {Cj}, j = 1,..., p.
Make unlabelled all the points in M.

2. For every point Pi G M Do
Begin

Set j = 1
While (j < p) And (Pj unlabelled) Do

Begin
Let d(j) = d (PU Rj)
If d (j) = 0 Then Af, = Mj U {PJ and label Pi Else j = j + 1

End
Recherche opérationnelle/Opérations Research



NEW HEURISTIC ALGORITHMS 79

If Pi is unlabelled Then

Begin

Set d(e) = Min {d(j), 3 = 1 , - , P} a n d M e = Me U { P J
For k = 1 To m Do

Begin
If xk (Pj) < Lmin (fe, e) Then Lmin (A, e) = a* (P,-) Else
If xk (Pi) > Lm a x (fc, e) Then Lm a x (fc, e) = a:fc (Pi)

End
End

End
3. Set La = 0

For j = 1 To pDo
For & = 1 To m Do

L a = Max {La , Lm a x (*;, j ) - L^n (k, j)}

As A/?, NAi? has O (pn) complexity. In opposition to AR, NAR détermines
the objective value of the output partition at the same time the points are
assigned to the sets Mj, and so Step 3 is not necessary to evaluate the
quality of the generated partition. Thus a new class of algorithms arises with
the new rule that can be described as follows:

New class of seed point algorithms for (RpC)

Step 1: Generate a set of p seed points Ci,..., Cp in Rm.
Step 2: Exécute NAR.
Evidently, every algorithm in the first class becomes one algorithm in

the new class, using NAR once the set of seed points has been generated.
Observe that NAR dépends on the séquence in which the Pi are handled.
To compare NAR with AR we consider the séquence given by increasing
index-values of points randomly generated. We will show by computational
experiments that for a given set of seed points the quality of the partitions
(La values) generated by NAR is better than the quality obtained when
AR is used. For this, two algorithms Ai and A<i in the fîrst class, and the
corresponding algorithms NA\ and NA2 in the new class are considered.
To describe these algorithms only Step 1 is necessary, which is described
respectively by the foliowing two procedures:

Procedure SPI
1. Choose any point Pj- in M. Set Ci = P&, j = 1 and calculate
d(P%) = d(Pu Ci) for each Pt e M.

vol. 29, n° 1, 1995



80 B. PELEGRÎN, L. CANOVAS

2. While j < pDo
Begin

= Pt such that d(Pt) = Max{d(Pi), i = 1,..., n}
= Min{d(Pi), d(Pu C i + i )} for each P, E M

End
Ai is an O (pn) algorithm given by Dyer and Frieze [6] which générâtes

a partition a satisfying L a < 2 L * , being L* the optimal value of (RpC).

Procedure SP2

1. Obtain the smallest hyperrectangle R (M) containing the points in M and
calculate the maximum length L(M) of the sides of R(M).
2. Use a dichotomie search to find the least value L in (0, L (M)] for which
the following subroutine yields an output set S with \S\ < p,

RANGE
Set S = 0 and make unlabelled all the points in M.
While there is an unlabelled point in M and |5 | < p Do

Begin
Choose an unlabelled point Pt.
Set S = S U {P t}
Label Pt and every unlabelled point Pj.
such that d(Pi, Pt) < L.

End
3. If | 5 | = p when the search is finished, a set of p seed points has been
generated. If \S\ < p then add any p - \S\ points in M - S to 5.

A2 is a modification of an O(n2 logn) algorithm given by Plesnik [16]
for points in a network and adapted later for any metric space in [14]. In
[14, 16] the search is in the set D = {d(Pu Pk) : Pu Pk e M, i < fc},
which clearly contains L*, but this is time consuming as it is shown in [15],
for instance for n = 1 000, p — 6 the run time on an Olivetti M-300 (with
an 80386SX processor and 16 Mhz) was 1534 sec.

In A2, RANGE is executed each time with the middle point L in an
interval (L, L], initially L = 0, and L — L(M) : If \S\ < p then a new
interval is generated taking L — L, and if \S\ > p then a new interval is
obtained taking L = L. The search ends when |L - L\ < e, for a given
e > 0. The complexity of A2 is O (pnlog(L {M) je)) which is much less
than O (n2 logn) for large problems. For A2, the following properties are
verified:

Recherche opérationnelle/Opérations Research
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PROPERTY 1: If L* < L then RANGE générâtes a set S with \S\ < p.

Proof: If L* < L then there exists a partition a — {Mi,..., Mp} with
La < L. Let Ci dénote the fîrst point in S generated by RANGE, then
C\ e Mj for some index j . If Pi e Mj, as L (Mj) < La < L, it follows
that d(Pi, Ci) < L. Then ail points in Mj are labelled before a second
point C2 in S will be generated by RANGE. As d(C2, Ci) > L it follows
that C2 & Mj. Then C2 G Mh for some index h (h ^ j ) , and similarly it
can be shown that all the points in Mh are labelled before a third point C3
in S will be generated by RANGE, and so on. Consequently, when all the
points in M are labelled RANGE outputs a set S with \S\ < p. D

PROPERTY 2: The value L obtained at the end of the search in (0, L(M)]
is an strict lower bound of L*.

Proof: Let (L, L] be the interval obtained at the end of the search, then
L is the maximum value found in (0, L(M)] for which RANGE outputs
5 with |5 | > p. If L* < L then RANGE would output S with \S\ < p
(Property 1), as |5 | > p it follows that L < L*. D

PROPERTY 3: A2 générâtes a partition a with La < 2 (L* + e).

Proof: Let (L, L] the interval obtained at the end of the search. Then
L is the least value found in (0, L(M)} for which RANGE outputs a set
S with \S\ < p, from which the p seed points Ci,..., Cp are generated.
Let a = {Mi,..., Mp} be the partition obtained from these seed points: If
Pu Ph e Mj then d(Pl}Ph) < d(Pu C3) + d(Ph, C3) <L + L
Consequently

L(Mj) = Max{d(P,, Ph) : Pu Ph G Mj} < 2L

for all Mj with two or more points. If Mj is a single point L(Mj) = 0.
Therefore

La = Max{L(Mi),..., L(MP)} < 2 l .

Since L < L* and L - L < e then La < 2L < 2 (L* + e). D
In [14, 16] the search is finished when the set D reduces to one value LQ

which is a lower bound of L* and it is verified that La < 2 L*.

3. ALGORITHMS BASED ON PARTITIONS

Most of other proposed heuristic algorithms for (pC) start with a
partition ŒQ and generate a séquence of partitions ai , . . . , a$ such that
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Fao > Fai > .., > Fas} until no improvement of Fa for the last generated
partition a is obtained. When they are applied to (RpC), the starting partition
û;o can be obtained using any of the algorithms seen in section 2. All of
these algorithms can be seen as being of improvement type and the most
common are those of location-allocation and exchange types [1, 2, 7, 14]. A
different type of algorithm based on partitions is an O (n2 log n) algorithm
given by Pelegrin [13, 14] for weighted p-center problems, which générâtes
the same value in the set D as the Plesnik algorithm, but a different output
partition, when it is used for (pC). A modification of this algorithm for
(RpC) is as follows:

Algorithm A$

Step 1: Start with a given interval (L, L] containing L*.

Step 2: Use dichotomie search to find the least value in (L, L] for which
the foliowing subroutine yields an output partition a with \a\ < p

PARTITION
Make unlabelled all points in M and a = {0}.
While there is an unlabelled point in M Do

Begin

Choose an unlabelled point Pt in M.

Set Mt = {Pt} U {Pl : Pi is unlabelled and d(Pi, Pt) < L}

Label all points in Mt

Set a = a U {Mt}.

End

Observe that algorithm A% is similar to algorithm A2 changing (0, L (M)]
to (L, L] and RANGE to PARTITION. RANGE générâtes a set of seed points
while PARTITION générâtes a partition each time they are executed. In
[13, 14] the search is in the set D, which is time consuming as it is shown
in [15].

For the problem (RpC), we propose a new algorithm, that we call NA3,
which is the same as A3, but changing the subroutine PARTITION to the
folio wing one:

NEW PARTITION

Make unlabelled ail points in M, a = {0}, La — 0.

While there is an unlabelled point in M Do

Begin

Choose an unlabelled point Pt in M.

Recherche opérationnelle/Opérations Research
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Set Mt = {Pt} and L(Mt) = 0.

For every unlabelled point Pi Do

Begin

Evaluate L(M t U {JFJ})

If L(Mt U{Pi}) < L then

label Pi and set Mt = Mt U {P;}

End

Set a - a U { M t } , LQ = Max{La , L(Mt)}

End

PROPERTY 4: If NEW PARTITION générâtes a with \a\ < p, /or a gzven
L, then La < L.

Proof: For each subset Mt in a it is verified that L (Mt) < L. Therefore
La = Max{L(M t) : M f G a } < L . D

PARTITION and NEW PARTITION are executed each time with the middle
point L in an interval (L, L] : If |a| < p then a new interval is generated
taking L = L, and if |a| > p then the new interval is obtained taking L — L.
The search ends when \L - L\ < e for a given e > 0. Both algorithms A3
and A/"A3 are O (pnlog((L - i ) /^) ) being (L, L] the starting interval. As
starting interval (L, L] can be used (0, L (M)j, or the one taking L as the
lower bound of L* obtained by Step 1 of A2 and N A2 {Procedure SP2),
and L as L ^ for any partition ao- If no partition a with |a| < p is founded,
then no improvement is obtained. Otherwise, the initial partition ao, for
which Lao = L, is improved by NEW PARTITION since from property 4
the output partition satisfies La < L < Lao. If |a| < p, any p — \a\ points
Pin .», Pip-W\ are eliminated from o; to make a — aU{Pi1}U...U{Pip_ |cï)},
then |a| = p. PARTITION always générâtes a verifying \a\ < p if L* < L,
see [13, 14]. On the contrary, NEW PARTITION can generate a with \a\ > p
if L* < L, for instance with the points Pi to PQ in R of coordinates 2, 3,
4, 5, 1, 0 respectively and p = 2, the partition generated for L = L* = 2
satisfies |a| = 3.

Finally, we consider the well known Location-Allocation algorithm, which
can be described for the problem (RpC) as follows:

Algorithm A4

Step 1: Exécute RECTANGLE with the starting partition ao =
{M?,..., M]?} to obtain the hyperrectangle R(M$),..., R{M$) and Lao.
Calculate the center Cfj of R(Mf), j = 1,..., p. Set 5 = 1.
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84 B. PELEGRÎN, L. CANOVAS

{Step 2: Use AR with the points C{ V. . , C*"1 to obtain a new
partition as = {Aff,..., M*}. Calculate i2(Aff),..., JÏ(Af*) and L a s . If
£<*s > Lots_1, output o:5_i and STOP. Otherwise, calculate the centers Cs-
of R(Mj), j = 1,..., p, set s = s + 1 and repeat step 2.

This algorithm can also be modified using NAR instead of AR in Step 2. In
such case, a new algorithm is obtained, that we call NA4. The main advantage
of using NAR is that this subroutine also détermines R(M(),..., R(M*)
and L t ts for a5. When AR is used, it is required to use RECTANGLE in
addition to AR, in each itération. Observe that A4 and NA4 reduce to Step
2 if an starting set of centers C^,..., C° is given.

TABLE 0.

Test Problems.

m

2
3
5
10

n

500£, * = 1,

5001, t= 1,

500t, t= 1,

5001, t = 1,

..., 10

..., 10

.... 10

..., 10

2i,
2i,
2*.

2*,

* = 1,..

t = 1,.

, 10

,10
,10
, 10

Number

of problems

100
100
100
100

4. COMPUTATIONAL EXPERIMENTS

All the algorithms considered in sections 2 and 3 were implemented on an
PC compatible with a microprocessor Intel 80486-DX, a math coprocessor
80487 and 50 Mhz. The language used was Turbo Pascal V 6.0. A sample
of test problems was obtained by random génération of points in Rm with
integer coordinates in [0, 100] and values of m, n and p given in Table 0.
Each algorithm was run for each test problem, realizing four experiments
(Tables for these experiments are shown in the appendix).

In experiment 1, we compared algorithms Ai and NA\. For each problem,
run times in seconds were obtained for the génération of seed points (SPi),
génération of the output partitions using AR and NAR, and évaluation
by RECTANGLE of the objective fonction La for a generated by AR
(RECT). Table 1 summarizes the results for each of the p and m values,
each row shows average results of 10 test problems, corresponding to
n — 5001, t = 1,..., 10. The first four columns show average run times of
SPI, AR, RECTANGLE and NAR, the following two columns show average
objective values of the output partitions generated by Ai and NAi and the
last three columns show the number of times each algorithm generated the
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NEW HEURISTIC ALGORÏTHMS 85

best partition. Observe that the average run times for algorithm Ai are given
by the sum of columns S Pi, AR and RECT and the average run times for
algorithm NA\ are given by the sum of columns SP\ and NAR.

In experiment 2, we compared algorithms A% and NA2 in a similar way
to that in experiment 1. Table 2 summarizes the results, showing also the
average of the lower bound L obtained by the procedure SP2 (column Av.
L.B.).

In experiment 3, we compared A3 and NA3 Run times in seconds were
obtained for these algorithms and for the évaluation by RECTANGLE of
the objective function at each output partition generated by A3. Table 3
summarizes the results for each of the p and m values, each row shows
average results of 10 test problems, corresponding to n — 5001, t = 1,..., 10.
The first three columns show average run times of As, RECTANGLE and
NA3 the following two columns show average objective values of output
partitions generated by A3 and JVA3, and the last three columns show the
number of times each algorithm generated the best partition.

Finally, in experiment 4, we compared A4 and NA4. Table 4 summarizes
the results, showing average run times of these algorithms, average objective
values, and the number of times each algorithm generated the best partition
for each of the 10 test problems corresponding to each row.

Average run times for NA\ and NA2 in each dimension were not more
than 2.95 sec. higher than for A\ and A2 respectively. However the quality
of the output partitions was quite notically better for NA\ and NA2 than
for Ai and A2 respectively. NA\ was superior to Ai in 338 out of the
400 test problems, and NA2 was superior to A2 in 330 out of the 400 test
problems. These results show that the assignment rule N AR seems to be
superior to AR for the seed point algorithms when they are used for the
solution of (RpC).

Average run times for NA$ were higher than for A3, but the quality of the
output partitions was superior for NA$, this was the best in 291 out of the
400 test problems. Average run times for NA4 were less than for A4, and
the quality of the partitions generated by NA4 was superior in 233 out of the
400 test problems. Observe also that the average run time of RECTANGLE
(column RECT) was less than 0.2 sec. in each dimension.

Table 5 shows the number of times each algorithm generated the best
partition for each of the 10 test problems corresponding to each of the
m and p values. Observe that algorithms Ai, A2 and A3 never generated
the best partition for p > 4 and m = 2, 3, 5, except A2 which twice
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generated the best partition (for m = 2, p = 12 and m = 3, p = 8).
Algorithms Ai, A2, A3 and A4 never generated the best partition for p > 8
and m = 10. The new algorithms generated the best partitions most of
times, NA3 in 211 times, /VA4 in 150 times, NA\ in 188 times and NA% in
118 times out of the 400 test problems. We conclude that the proposed new
algorithms for (RpC) improve the related existing algorithms for (pC) when
they are used for (RpC).
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APPENDIX

TABLE 1.

Comparison of'Al and NAl.

PROBLEMS

P

2

4

6

8

10

12

14

16

18

20

m

2

3

5
10

2

3

5

10

2

3

5

10

2

3

5
10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5
10

2

3

5
10

2

3

5
10

AVERAGE RUN TIME (Sec.)

SP1

0.08

0.13

0.18

0.36

0.21

0.29

0.43
0.74

0.33

0.45

0.64

1.14

0.47

0.60

0.86
1.55

0.58

0.76

1.09

1.91

0.70

0.92

1.31

2.31

0.82

1.06

1.53
2.68

0.94

1.21

1.75

3.08

1.08

1.39

1.98

3.47

1.18

1.54

2.19

3.84

AR

0.11

0.12

0.18

0.35

0.19

0.26

0.38

0.71

0.28

0.36

0.57
1.07

0.37

0.50

0.78

1.43

0.48

0.64

0.95

1.78

0.57

0.77

1.16

2.13

0.66

0.89

1.34

2.49

0.75

1.02

1.55
2.85

0.84

1.15

1.73

3.19

0.94

1.27

1.94

3.57

RECT

0.02

0.05

0.08

0.15

0.03

0.04

0.06

0.16

0.03

0.06

0.09

0.16

0.04

0.05

0.07

0.15

0.03

0.04

0.09
0.16

0.03

0.03

0.06

0.15

0.03

0.06

0.09

0.16

0.03

0.06

0.07
0.16

0.03

0.04

0.08
0.17

0.04

0.04

0.07

0.16

NAR

0.11

0.16

0.25

0.50

0.23

0.20

0.31

0.63

0.30

0.33

0.41

0.80

0.40

0.54

0.54

1.00

0.50

0.64

0.66
1.30

0.56

0.71

0.80

1.59

0.66

0.80

1.00

1.87

0.76

0.94

1.20
2.23

0.88

1.04

1.43
2.58

0.98

1.21

1.68

2.94

AV. OBJ

A1

99.0

99.0

99.0
99.0

76.3

99.0

99.0
99.0

67.4

99.0

99.0

99.0

60.1

80.8

99.0
99.0

48.7

79.7

98.7
99.0

46.9

76.1

99.0
99.0

42.2

72.5

98.8

99.0

39.8

70.2

98.7
99.0

36.9

66.7

99.0
99.0

35.0

64.9

98.9

99.0

.VAL

NA1

97.8

98.7

98.9
99.0

61.3

96.7

98.5

99.0

54.4

93.4

96.7

98.5

48.9

69.4

65.3
98.1

40.6

60.3

94.4
97.2

39.2

60.8

93.6

96.6

35.4

58.0

91.8

95.9

34.7

56.6

90.0

95.5

31.9

54.1

89.2

94.7

29.4

54.7

87.7

94.3

N.of timesg.b.p

A1

0

0

0
0

0

0

0
0

0

0

0
0

0

1

0
0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0
0

NA1

7

3

1

0

10

9

5
0

10

10

10

4

10

9

10
6

10

10

10
10

10

10

10

10

10

9

10
10

10

10

10

10

9

10

10
10

9

10

10

10

Eq.

3

7

9
10

0

1

5

10

0

0

0

6

0

0

0
4

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0

0

1

0

0
0

0

0

0
0
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TABLE 2.

Comparison of A2 and NA2.

PROBLEMS

P

2

4

6

8

10

12

14

16

18

20

m

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

AVERAGE RUN TIME (Sec.)

SP2

0.49

0.64

0.99

2.02

0.78

0.80

1.17

2.42

0.95

0.94

1.33

2.70

1.01

1.66

1.56

3.16

1.24

1.85

1.54

3.44

1.53

2.10

1.86

3.88

1.88

2.23

1.86

4.15

2.03

2.33

2.12

4.52

2.23

2.54

2.27

4.99

2.30

2.73

2.39

5.46

AR

0.08

0.13

0.20

0.37

0.19

0.26

0.39

0.73

0.28

0.39

0.59

1.09

0.38

0.51

0.77

1.45

0.47

0.64

0.97

1.82

0.56

0.77

1.16

2,17

0.66

0.90

1.36

2.54

0.75

1.02

1.56

2.89

0.84

1.15

1.77

3.25

0.96

1.29

1.95

3.62

RECT

0.04

0.04

0.09

0.15

0.03

0.05

0.08

0.16

0.04

0.04

0.09

0.15

0.03

0.06

0.08

0.15

0.04

0.06

0.08

0.15

0.04

0.05

0.09

0.16

0.04

0.04

0.09

0.16

0.03

0.06

0.08

0.16

0.04

0.05

0.07

0.17

0.04

0.06

0.07

0.18

NAR

0.11

0.15

0.25

0.49

0.22

0.20

0.29

0.60

0.29

0.33

0.40

0.80

0.37

0.50

0.50

1.04

0.47

0.62

0.63

1.27

0.58

0.77

0.82

1.59

0.66

0.83

0.94

1.89

0.76

0.95

1.13

2.21

0.86

1.05

1.37

2.56

0.97

1.19

1.59

2.92

AV. OBJ. VAL.

A2

98.90

99.00

99.00

99.00

71.60

99.00

99.00

99.00

60.50

98.80

99.00

99.00

55.70

85.20

99.00

99.00

49.00

75.70

99.00

99.00

44.00

70.40

99.00

99.00

41.10

68.80

98.60

99.00

36.60

66.50

98.70

99.00

35.40

63.50

98.60

99.00

32.90

60.60

98.60

99.00

NA2

98.10

98.70

98.90

99.00

61.20

96.80

98.50

98.90

54.00

93.60

96.80

98.40

51.20

81.20

95.60

97.80

44.80

65.70

94.00

97.20

39.10

60.30

93.50

96.70

35.40

59.80

91.60

96.50

34.00

57.60

90.80

95.60

32.50

55.30

89.30

94.90

29.60

52.70

87.20

94.90

AV.

L.B.

71.62

79.28

87.24

93.35

43.70

68.06

81.21

88.87

33.41

59.48

75.80

84.38

30.16

47.10

72.16

82.68

26.92

41.30

66.59

79.66

23.67

38.36

66.28

78.89

22.20

36.82

64.74

76.03

19.34

35.27

61.26

75.26

18.34

33.34

60.41

75.18

17.40

32.48

57.62

73.48

N. of times g.b.p

A2

0

0

0

0

0

0

0

0

1

0

0

0

0

4

0

0

1

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

NA2

6

3

1

0

10

10

4

1

8

10

10

4

9

6

10

8

9

9

10

9

9

9

10

10

10

9

10

10

10

9

10

10

8

10

10

10

9

10

10

10

Eq.

4

7

9

10

0

0

6

9

1

0

0

6

1

0

0

2

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0
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TABLE 3.

Comparison of'A3 and NA3.

89

PROBLEMS

P

2

4

6

8

10

12

14

16

18

20

m

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

AVERAGE RUN TIME (Sec.)

A3

0.54

0.69

1.05

2.08

0.85

0.89

1.24

2.52

1.09

1.02

1.41

2.79

1.16

1.81

1.64

3.33

1.39

2.04

1.61

3.63

1.83

2.32

2.01

4.02

2.09

2.47

2.09

4.24

2.30

2.58

2.46

5.03

2.52

2.76

2.66

5.10

2.63

3.14

2.79

5.87

RECT

0.01

0.03

0.04

0.41

0.02

0.02

0.03

0.41

0.01

0.03

0.04

0.42

0.02

0.03

0.03

0.41

0.02

0.01

0.04

0.42

0.01

0.02

0.03

0.40

0.03

0.02

0.04

0.39

0.01

0.02

0.04

0.42

0.02

0.02

0.04

0.42

0.02

0.03

0.05

0.41

NA3

0.84

1.20

1.97

4.53

0.95

1.45

2.58

6.06

1.58

1.67

3.05

7.52

2.53

1.84

3.51

8.82

2.70

2.12

3.94

10.1

2.81

2.49

4.37

11.4

3.17

3.60

4.78

12.6

3.52

4.34

5.20

13.9

3.62

6.72

5.57

15.0

4.33

7.03

5.97

16.4

AV. OBJ. VAL.

A3

98.70

99.00

99.00

99.00

84.90

99.00

99.00

99.00

66.90

98.70

99.00

99.00

60.60

92.60

99.00

99.00

54.60

83.80

99.00

99.00

48.00

77.30

99.00

99.00

45.20

74.40

98.90

99.00

39.60

71.40

98.80

99.00

38.20

67.20

99.00

99.00

35.80

65.00

99.00

99.00

NA3

98,20

98.90

98.90

99.00

94.70

97.10

97.80

98.70

69.20

94.00

96.90

98.00

48.90

90.60

95.00

97.10

47.50

85.20

93.30

96.10

45-60

79.40

91.90

95.20

41.80

68.80

90.00

94.60 '

37.60

62.30

88.70

94.20

35.40

51.60

87.50

93.40

31.20

49.30

86.00

92.50

N. oftimesg.b.p.

A3

1

0

0

0

9

0

0

0

5

0

0

0

0

2

0

0

0

4

0

0

1

6

0

0

0

3

0

0

2

1

0

0

1

0

0

0

1

0

0

0

NA3

7

1

1

0

1

10

10

3

4

10

10

8

10

8

10

10

9

3

10

10

7

4

10

10

9

7

0

10

8

9

10

10

3

10

10

10

9

10

10

10

Eq-

2

9

9

10

0

0

0

7

1

0

0

2

0

0

0

0

1

3

0

0

2

0

0

0

1

0

10

0

0

0

0

0

6

0

0

0

0

0

0

0
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TABLE 4.

Comparison of A4 and NA4.

PROBLEMS

P

2

4

6

8

10

12

14

16

18

20

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

2

3

5

10

AV. RUN TIME (Sec)

A4

0.32

0.43

0.67

1.27

2.85

0.78

1.17

2.23

2.45

1.38

1.81

3.17

2.86

2.26

2.39

4.19

5.88

9.56

4.36

5.10

7.01

10.72

5,03

6.12

7.44

8.78

5.85

6.95

7.53

10.51

7.62

7.98

6.14

9.63

7.92

10.14

8.93

10.46

10.60

11.12

NA4

0.21

0.27

0.44

0.85

0.53

0.39

0.59

1.06

0.78

0.63

0.87

1.44

0.88

1.29

1.05

1.90

1.08

1.93

1.14

2.59

1.69

2.02

1.60

2.79

1.63

2.30

2.10

3.77

1.81

2.20

2.40

3.81

2.67

2.93

3.29

5.72

3.06

3.19

3.87

5.89

AV. OBJ. VAL.

A4

98.50

99.00

99.00

99.00

65.90

98.90

99.00

99.00

54.60

97.50

98.60

99.00

49.10

95.10

98.10

98.80

42.30

61.10

96.40

98.90

38.80

53.20

95.60

98,90

37.20

52.20

95.50

99.00

34.50

50.50

94.40

98.80

33.30

50.60

94.10

98.40

32.30

50.20

92.60

98.50

NA4

98.10

98.80

98.90

99.00

61.20

96.00

98.20

98.80

51.30

92.90

96.90

98.40

50.40

73.70

95.40

97.40

45.70

63.60

93.80

96.50

40.20

61.50

92.60

96.20

37.80

56.10

90.40

95.80

35.70

56.45

88.90

95.40

32.40

54.00

88.60

94.50

30.30

51.60

87.20

94.50

N. oftimesg.b.p.

A4

1

0

0

0

6

0

0

0

5

0

0

0

6

0

1

0

6

7

0

0

7

9

1

0

6

7

1

0

5

10

0

0

2

8

0

0

2

5

0

0

NA4

6

2

1

0

4

10

7

2

2

10

10

4

3

10

8

9

3

3

9

10

2

1

9

10

2

2

8

10

4

0

9

10

5

2

10

10

6

0

10

10

Eq.

3

8

9

10

0

0

3

8

3

0

0

6

1

0

1

1

1

0

1

0

1

0

0

0

2

1

1

0

1

0

1

0

3

0

0

0

' 2
5

0

0
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TABLE 5.

Global results.

91

Number of Times each algorithm generated the best partition

m

2

3

5

10

P

2

4

6

8

10

12

14

16

18
20

2

4

6

8

10

12

14

16

18

20

2

4

6

8

10

12

14

16

18
20

2

4

6

8

10

12

14

16

18
20

TOTAL

A1

2

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0
0

9

0

0

0

0

0

0

0

0

0

10

6

2

0

0

0

0

0

0
0

35

A2

2

0

0

0

0

1

0

0

0

0

6

0

0

1

0

0

0

0

0
0

9

0

0

0

0

0

0

0

0
0

10

6

2

0

0

0

0

0

0
0

37

A3

2

0

0

0

0

0

0

0

0
0

6

0

0

0

0

0

0

0

0

0

9

0

0

0

0

0

0

0

0
0

10

6

2

0

0

0

0

0

0
0

35

A4

3

6

7

3

4

6

4

2

1

2

6

0

0

0

5

9

7
8

3
3

9

0

0

0

0

1

1

0

0
0

10

6

2

0

0

0

0

0

0
0

108

NA1

9

4

1

5

6

2

5

5

4
6

9

6

3 .
6

4

0

1

0

1

1

10

3

5

3

2

1

2

3

2

2

10

6

3

1

1

4

1

2

2

1

141

NA2

8

1

1

2

1

1

2

4

3
5

9

4

3

1

1

1

0

2

0

2

10

3

5

3

5

1

2

2

1

4

10

7

5

1

1

1

0

2

1
0

118

NA3

7

0

2

7

0

0

0

2

1

0

7

4

3

0

0

0

1

1

7
8

10

10

4

7

6

7

6

6

7

4

10

9

8

7

10

10

10

10

10

10

211

NA4

8

1

3

3

0

2

0

3

3
4

8

8

5

2

1

0

3

0

2
2

10

6

5

5

5

3

4

5

4
3

10

8

5

5

6

2

1

1

3
1

150
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