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NETWORK OF QUEUES MODELING IN FLEXIBLE
MANUFACTURING SYSTEMS: A SURVEY (¥)

by Lie-Fern Hsu (}), Charles S. Tapero (?) and Cinho Liv (%)

Abstract. — Queueing theory in the past and still to-day, been used intensively for the design
and the analysis of Flexible Manufacturing Systems (FMS’s). The queueing approach, combines
on the one hand important theoretical developments in queueing theory and network of queues and
extensive applications to the performance analysis of information systems. The purpose of this paper
is to survey the application of queues to the modelling of FMS’s and to the management of such
manufacturing systems, based on the stochastic environment presumed by networks of queues.
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Résumé. ~ Les files d’ attentes ont été par le passé et sont jusqu’ a aujourd’ hui utilisées intensément
pour la conception et I'analyse d’ ateliers flexibles. Les approches utilisées combinent d’ une part un
nombre important d’ études faites a partir des processus stochastiques et les réseaux de files d’ attente
et des applications aux systémes informatiques. Le but de cet article est de résumer I application

des files d’ attentes a la modélisation des ateliers flexibles et aux problémes de gestion industrielle
qu'ils engendrent.

Mots clés : Files d’attentes; Réseaux; Ateliers flexibles.
1. INTRODUCTION

Queueing models have been extensively used for the analysis and the
design of flexible manufacturing systems (FMS), recognizing on the one
hand the simultaneity of job flows in a manufacturing job shop and on
the other the stochastic characteristic of job flows and process times. As
a result, impetus is now given to research and mostly applications of
queueing theory in manufacturing (following an earlier use of queueing
models in operations management, Morse, 1963; Prabhu, 1965; Schrage,
1968, 1970, 1974; Schrage and Miller, 166; Jackson, 1957, 1963; Gordon
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202 LIE-FERN HSU et al.

and Newell, 1967; Conway et al., 1967; Cooper, 1972; Newell, 1971, 1980;
Kleinrock, 1976; and the extensive bibliographical list in Crabill, Gross and
Magazine, 1977). Additional references for such applications abound and are
partially listed in many references at the end of this paper. Authors such
as Sobel, Buzacott, Shanthikumar, Solberg, Stecke, Dubois, Yao, Stidham,
Yechiali, Kekre, Hsu, Tapiero and others (see section 2) have made additional
contributions to the analysis and design of manufacturing systems. A survey
is given by Buzacott and Yao (1986) for example on the modeling of FMS
using queueing.

Along with simulation, networks of queues provide a modeling framework
which is practically helpful to the design and analysis of manufacturing sys-
tems. Particularly, preliminary models based on tractable queueing networks
can provide a departure point for the study of far more complex models
through simulation, providing thereby validation for these complex models.

Application of networls of queues (assuming some strong assumptions
regarding the manufacturing process) can provide steady state performance
measures regarding machines (or machine group) utilization, expected pro-
duction rates, mean queue lengths, bottlenecks detection, etc. For example, it
has been used to improve the grouping of operations in a job shop (combined
with group technology principles) and thus a rationality for the layout of FMS
facilities (Co, Wu and Reisman, 1988).

Even though FMSs are systems which are extremely well controlled and
therefore cannot be viewed as stochastic, the usefulness of network of
queues orignates in the fact that over widely varying demand/load ranges
and multiplicity of part types processed, the manufacturing system behaves
on the aggregate as if it were subject to a stochastic behavior which is not
always captured by traditional models.

Today it is agreed that disturbances such as breakdowns, fluctuating
demand patterns, quality control, maintenance, etc. should be managed and
reduced to render the production process a continuous flawless flow process,
integrated and coordinated into a viable whole. To study these effects and the
issues of designing, for example, capacity plans, basic sheduling rules, buffer
capacity, loading/unloading machinery, etc., and managing them, queueing
models may be extremely useful.

They may be needed to provide insights regarding the long run response
of a manufacturing system to a given set of operating conditions and a
preliminary appreciation of the managerial procedures used in the control
of operations.
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On the down side, these models which are difficult to analyze, particularly
when reasonable assumptions are made regarding the manufacturing process
(such as non-Poisson jobs arrivals, limited buffer capacities, application
of scheduling techniques seeking to improve system’s performance, batch
arrival, breakdowns and unreliabilities as well as the relative importance of
set-up time and costs in manufacturing systems which are apparently not as
important in computer systems). Further, job shops managed for the most
part in real time and which are subject to continual changes in work orders
and plans cannot be analyzed by queueing models without a critical view
of such results. For these resons, an overall appreciation of what queueing
theory and its approximations can do for manufacturing systems, is both
useful and needed for FMS analysts (although a wide variety of approaches
are developed which seem to relieve some of the difficulties encountered
when using queueing models. For example, refer to Ho and Cao, 1983;
and Cassandra, 1984 and Ho (1985) for an extensive literature survey on
Perturbation Analysis).

The purpose of this paper is to provide an outline of queueing-networks
modeling in manufacturing and provide a classification which can be used to
guide the FMS researcher and planner to what is known and not known
in queueing analysis for FMS management. We begin first by a simple
descriptive view of queue-like manufacturing cells which are then generalized
to a network of queues. Then we review a large number of published papers
based on queueing networks.

2. MODELING A FLEXIBLE MANUFACTURING SYSTEM

2.1. Modeling a manufacturing cell (station)

The fundamental elements of a queue-like manufacturing cell can be
described by the external input process (or the arrival pattern), the buffer
area, loading (i. e. the rule by which jobs leave the waiting line and enter
for service) as well as the service pattern which expresses how jobs are
processed or manufactured (in terms of time, service capacity and the number
of servers). The essential ingredients of a manufacturing cell are represented
in Figure 1 which is self explanatory.

To use queueing theory, however, it is necessary that we characterize
models by basic constituent elements about which specific assumptions are
made. The specificity of these assumptions may render the model tractable,
while limiting their generality. These elements are defined below.
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Figure 1. — A queune-like manufacturing cell.

2.1.1. Input Process or Arrival Pattern (I)

The arrival pattern or input to a queueing system is often measured by the
mean inter arrival time. In general, we use M to symbolize Poisson input,
and G to symbolize a general input. For example, the following notations
are used:

D, a deterministic inter arrival time;

E,, an inter-arrival time having the Erlang distribution function with
phase %;

H,, an inter-arrival time having the hyper-exponential distribution function
with parameter %, i. e., a mixture of k exponential functions, etc.

Although arrival processes are often assumed to be Poisson, or at least
described by renewal processes, job inter-arrival times are dependent (due
to application of scheduling rules in job shops). Further, arrivals may occur
in batches (lots) of varying sizes. This situation is termed bulk or batch
arrivals (e. g., see Chaudhry and Templeton, 1983; Chiamsiri and Leonard,
1981; Delbrouck, 1970). Under a bulk-arrival assumption, the number of
customers in a batch may be either deterministic or probabilistic. We use
superscripts Bp and Bp to represent deterministic and probabilistic bulk
arrivals respectively, i. e., MP> and MB? will represent a Poisson input with
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deterministic and probabilistic bulk arrivals respectively. If we write GB> and
GBr, then this represents a general input with deterministic and probabilistic
bulk arrivals respectively. Such notation, as will become evident, is important
to characterize precisely the mathematical nature of the queueing model. No
MBr, GBr GBr FMS models are discussed in this survey however.

There are situations where jobs are impatient. For example, if the waiting
time to service is too long, then a customer may balk (Naor, 1969; Yechiali,
1971; Kleinrock, 1967). Similarly, jobs in process for too extended periods
of time, may be retrieved. This situation is called reneging. There may also
be parallel waiting lines (with various priorities, waiting space and rules)
with waiting jobs jockeying for position (i.e., switching) from one line to
another. Queues with impatient customers are represented by subscripts B,
R, and J. In other words, Mg, Mg, and M; denote the Poisson input process
with balking, reneging, and jokeying respectively. Gp denotes the general
input process with balking, etc. Again, no queue-like FMS models belong to
the situations of “R” and “J”.

2.1.2. Service Process or Manufacturing Time Requirements (S)

Service patterns or manufacturing time and requirements are also defined
by the time required to process a job. Processing, however, is conditional on
the manufacturing system being not empty. Service can be deterministic or
probabilistic. We use M to represent exponential service times, L to represent
those services with rational Laplace transforms, and G to represent a general
service distribution. Just as is the case for input processes, G may also include
D, E., Hy, etc.

Services may be also described as single or batch service. For example,
batch services can represent jobs which are processed in lot sizes. Again, as
for input processes, we use the superscript B to represent batch service. Thus,
M?B means an exponential bulk service, G® means a general bulk service, etc.

A service rate may be state dependent, i. e., depending on the number of
jobs waiting to be processed. For example, if a queue length is increasing, an
operator may work faster or, conversely, he may get flustered and become
less efficient. Queues with “impatient” jobs may be viewed as state-dependent
arrivals, since the arrival pattern depends on the number of customers in
the system. Therefore, we may use subscript D to represent state-dependent
service. For example, Mp and Gp denote a state-dependent service with an
exponential, and general probability distribution respectively.

Recently, attention has been given to the study of a new class of queueing
models, where arriving jobs may require several “servers” at the same time
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(e.g., see Brill and Green, 1984; Green, 1980; Smith and Whitt, 1981;
Whitt, 1985; Courcoubetis and Varaiya, 1984). Servers may be shared by
several queues as is the case in cyclic service queues (e. g., Cooper, 1977;
Takagi, 1986; Kaufman, 1981; Klimov, 1974; Kuehn, 1979b) or may take
vacations (e. g., Doshi, 1986; Keilson and Servi, 1987, 1988; and many recent
papers published in Operations Research and Computer Systems Performance
Evaluation Review). These models are increasingly important for the study
of manufacturing systems. However, no vacation model is surveyed in this
paper.

2.1.3. Number of Service Channels (m)

The number of service channels refers to the number of parallel servers.
There may be a single server (S), multiple servers (M), random servers and
servers with vacations as pointed out earlier. For multiple servers (operators),
it is generally assumed that they operate independently of each other. Studies
relating to random servers (Brill and Green, 1984; Smith and Whitt, 1981),
vacations (Doshi, 1986; Keilson and Servi, 1987) of increasing usefulness in
manufacturing, are emerging now in great numbers.

2.1.4. Waiting of Buffer Capacity (K)

In some manufacturing systems as with Kanban and Just-in-Time systems,
there is a physical limitation to the amount of waiting space. Beyond certain
spaces, jobs may no longer join the queue unless a space becomes available
by the departure of a customer. These are referred to as queues with finite
waiting capacity, and can be interpreted as queues with forced balking
(unless arrivals are properly controlled and coordinated as conventionally
attempted through MRP 1II and JIT systems). In general, we use I, F to
indicate whether the waiting capacity is infinite or finite. Such models are
used to describe manufacturing systems of the blocking type (see Akyldiz,
1988; Altiok and Perros, 1984; Foster and Perros, 1980; Kaufman, 1981;
Konheim and Reiser, 1976, 1978; and more particularly Perros, 1984; and
Whitt, 1985; for example).

2.1.5. Queue Dicipline or Scheduling (Q)

The queue discipline refers to the order in which jobs in the system
are processed. The most common and simplest discipline is first-come-first-
served (FCFS). Other queue disciplines often encountered in manufacturing
include last-come-first-served (LCFS), random order (RO), priority (three
types of priority are used—strict priority (SP) by which jobs are served
according to a fixed scheme of assigned priority; alternating priority (AP)
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by which jobs are served according to their job class in a cyclic order: head
of line (HOL) by which each part type may be assigned different priorities at
different stations), processor sharing (PS), no queue (NQ) or infinite server
(D), SPT (shortest processing time first), LPT (largest processing time first),
EDD (earliest due date first), etc. Early and extensive study of such problems
in a manufacturing context have been made by Schrage (1968, 1970, 1974),
Gittins and Nash (1974), Harrison (1975), Jaiswal (1968), Lam (1976), Stecke
(1984, 1985), Stecke and Solberg (1981), Stidham (1978, 1985), Whinston
(1977 a, 1977 b, 1977 c¢), Conway et al. (1967) and others (see Courcoubetis
and Varaiya, 1984; Meilijson and Yechiali, 1977; Nash and Weber, 1982;
Pennotti and Schwartz, 1975; Rubin, 1975). There are other and more general
disciplines (GD). For example, for priority disciplines, there are two general
situations, preemptive and nonpreemptive. In the preemptive case, a job with
the highest priority is allowed to enter service immediately, even if a job
with lower priority is already in service when the higher priority job enters
the system. In other words, the lower priority job in service is preempted, his
service stopped, to be resumed again after the higher priority job is served.
For the preemptive case, there are two possible variations: a job preempted
can be either continued from the point of preemption or start anew. In the
nonpreemptive case, the highest priority job goes to the head of the queue but
cannot get into service until the job presently in service is completed, even
though this job has a lower priority. We use —P and NP, in connection with
the priority queue disciplines, representing the preemptive and nonpreemptive
cases respectively. The number of priority classes is necessarily greater than
or equal to two. These five elements (i.e., input process, service process,
number of service channels, waiting or buffer capacity and queue discipline)
are essential to describe a single queue (station or cell). We will use the
vector C=[/, §, m, K, Q] to describe it.

2.2. Modeling an integrated system

2.2.1. Number of Nodes or Manufacturing Cells/Group (N)

The number of nodes in a queueing network represents the number of
manufacturing cells in an FMS. Unlike parallel servers cases, who provide
the same service in all stations, each node (cell) may provide a different
service. A set of such services reflects basically the operations needed to
make parts, or assemble parts into finished products. For example, a “jeans”
manufacturing system may consist of three cells, namely: cutting, sewing
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and pressing. The number of nodes in the network can be either 1 (single)
or m (multiple).

2.2.2. Type of the Network: Open and Closed (T)

Networks with multiple nodes can be either closed (C) (i. e. the number of
jobs in the network is fixed wothout any external arrivals or any departure,
or more precisely, when a job exits the manufacturing system it is replaced
immediately), open (O) (i. e. with external arrivals and departures), or mixed
(M) (i. e. open for some classes of jobs and closed for other classes).

2.2.3. Sequence of Operations: Transfer Lines, Assembly, etc. (O)
For multiple-node queueing networks, we can have:

a) Sequential (denoted by S) also called tandem queues, i. e., each node
has of most one predecessor and one successor.

b) Sequential with feedback (denoted by Sy).

c) Assembly (denoted by As), in which case each node has any number of
predecessors, but at most one successor. Only open queueing networks can
have this type of structure, however.

d) Arborescent (denoted by Ar), in which case each node has a single
predecessor but any number of successors. Again, only open queueing
networks can have this type of structure.

e) Acyclic (denoted by Ac), i.e. each node can have any number of
predecessors and successors, but a customer cannot visit the same node more
than once.

/) Cyclic or general (denoted by G), i.e., feedback flows are permitted.

Both open and closed queueing networks can have this type of structure. In
all cases, a routing matrix is used to describe the sequence of operations.

2.2.4. Class of Jobs (C)

Jobs in a FMS network can be of the same class (C=1) or belong to
different classes (C=m>1). Jobs of different classes may follow different
sequences of operations (i.e. routes). These classes are used to distinguish
between “deterministic”’ and “Random” FMS’s. These four elements (i.e.,
number of nodes, type of the network, sequence of operations, and class of
job) will be described by the vector S=[N, T, O, C].

2.2.5. Description of the System Unreliability (U)

There are two types of unreliability: equipment failure and defectuous
production. Equipment failure include failure time (F), repair time (R),
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number of repair stations (), number of servers (men) at repair station
(S). For defectuous production, servers perform their function but their
performance is faulty. Policies used to deal with such problems include
inspection (I),), inspection rate (I,), reworking time (R,) and feedback for
re-processing (F).

We use the vector U=[F, R, N, S, I, I, R;, F5] to describe system
unreliabilities where

I,=CSP means that the model uses continuous sampling plans.

I,=R means that the model uses a random policy.

F =1 means that the defective products can be repaired.

F;=0 means that the defective products cannot be repaired.

2.2.6. Description of Material Handling Systems (M)

A material handling system (MHS) is an important part of an FMS. It can
be described by the vector M=[E, P, T], where

E=R, C, or A (we use R, C, A to represent a robot, a conveyor, or an
AGV-automated guided vehicle).

P=S§ or M (S stands for single type pallet and M for multiple types).

T represents the transportation time.

2.2.7. System Controls (C)

System controls include the routing policy (R) and methods for releasing
jobs from the entry queue to the FMS (Re). We use the vector K=[R, Re]
to represent it, where '

R=R, S, D, F,, F,, or PSQ

(with R=random routing, S=symmetric routing, D=Dynamic routing,
F,=fixed routing, F,=fixed load, and PSO=probability shortest queue rout-
ing).

R.=IM, FCFS, B, UB, SPT-WG, PT-WFBS, SPT-WPR

(IM=releasing job to idle machine, B=balance releasing, UB=unbalance
releasing, WG =release jobs if and only if the machine is idle, WPR =release
jobs to shop at prescribed review time, WFBS=release jobs to the shop as
soon as the jobs are accumulated to a fixed level at the dispatch area).

We will use this notation to describe the more important queue-like FMS
models in the third part of the paper.
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3. MANAGERIAL ISSUES

FMS survey papers can be classified into two different types:

1) Comprehensive surveys which focus on descriptions of hardware sys-
tems (machines). Often cited references include Hutchinson (1979), American
Machinist (1981), Gunn (1982), and Dupont-Gatelmand (1982).

2) Model surveys which focus on FMS models for the purposes of design,
economic justification, and operational problems.

In the latter type, there are four important papers:

(1) Suri (1985) classified the models into two sub areas: Generative (or
Prescriptive), and Evaluative (or Descriptive) Models.

(ii) Van Looveren et al. (1986) divided FMS planning problems into three
levels—strategic, tactical, and operational.

(ii1) Kalkunte et al. (1986) divided FMS models into 4 levels: strategic
analysis and economic justification, facilities design, intermediate range
planning, and dynamic operations planning.

(iv) Buzacott and Yao (1986 a, 1986 b) reviewed FMS models before 1986
and classified them by research problems types.

Our classification however, will be based on the managerial issues en-
countered in managing FMSs. The models we review are classified into eight
problem types:

1) Model types.

2) Optimal configuration.

3) Loading models.

4) Part routing models.

5) Part selection models.

6) Releasing and scheluding models.
7) Unreliable system models.

8) Inventory models.

3.1. Models types

We classify the models into two categories:

1) Exact models (based on analytical results).

2) Approximate models (based on approximation algorithms).
For exact models, we have two classes:

1) Infinte Buffer Models (/BM).
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2) Finite Buffer Models (FBM). Most formulas for these models perfor-
mance characteristics are derived by reversibility theory.

Equilibrium state probabilities can be calculated by a product form
formula or by closed a analytic formula. These models basically rely on the
assumption of Poisson arrival and departure, which may be overly restrictive
in many practical situations. Hence numerous approximations have been
developed to overcome these restrictions. Five approaches are used (Bitran
and Tirupati, 1988): 1) Decomposition Methods (DM), Approximate Mean
Value Analysis (AMVA), 3) Operational Analysis (OA), 4) Exponentialization
Approximations (EA), and 5) Diffusion Approximations (DA).

3.1.1. Infinite Buffer Model (IBM)

Jackson (1957 and 1963) pioneered the study of job shop by queueing
networks. Solberg (CAN-Q, 1977) modeled and analyzed an FMS based on a
closed queueing network (CQN) however which were developed by Gordon
and Newell (1967).

Three methods—Convolution Algorithm (CA) (Buzen, 1972), Mean Value
Analysis (MVA) (Reiser Lavenberg, 1980) and the Z-Transform Algorithm
Maione et al. (1986) have been used to compute performance measures
such as throughput, waiting length, etc. Solberg (1977) used the Convolution
Algorithm to compute performance measures using a software named CAN-
Q. Subsequently, Co and Wysk (1986) discussed the robustness of CAN-Q
to predict the performance of FMSs and found that it is an expedient tool to
evaluate the performance of FMS where no exact details are required.

Moore (1972) derived performance formulae by generating functions.
Maione et al. (1986) extended it to a new model with multiple part types,
and solved it by the Z-transform method. Their contribution consists in the
use of convolutions of Z-transforms to construct a decomposition algorithm.
This algorithm includes two steps: 1) decompose the FMS into one or more
completely balanced subsystems and a completely unbalanced subsystem, 2)
convolute the Z-transform functions of all subsystems. The algorithm leads
to a powerful tool for the analysis of complex FMS systems. However, the
coefficients of the Z-transform function are difficult to compute.

Recently, Solot and Bastos (1988), used the BCMP algorithm (Baskett,
Chandy, Muntz and Palacios, 1975), proposed an exact multiple part types
(several pallet types) model called MULTIO. This model can be easily
modified to find an optimal pallets mix through which a maximum throughput
can be obtained. Although all experiments in their paper appear to be more
accurate than CAN-Q in the multiple part types model, it may not be a good
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algorithm when the number of stations and (or) part types increases (because
it requires more computer time and memory).

3.1.2. Finite Buffer Model (FBM)

According to Hatvany (1983), the storage capacity at each station (local
buffer in FMS) is very small. In most analytical models, the buffer size is
assumed to be infinite, and thus it is not necessary to consider the routing
policy. Namely, using reversibility theory (Kelly, 1979), it is only necessary
to prove that if a system has a reversible process then it has a steady state
product form solution (Melamed, 1983). Yao (1983) and Yao and Buzacott
(1985 a and 1987) showed that “a system has a reversible process if the
routing rule belongs to the following three types: 1) Symmetric routing: all
stations are equally visited, 2) Jobs are routed through a central-server, 3)
Dynamic routing: the routing rate is dependent on the number of jobs at the
dispatching and receiving station.

For a zero local buffer model, Yao and Buzacott (1987) showed that we
still have a product form solution even with general service times. Dallery
(1986) used the “global reversible routing” to model an FMS with a limited
global capacity storage (i. e., the total number of jobs at a set of stations has
a fixed value), and derived a product form solution. He also showed that this
model is especially fitted for an FMS with cells of a finite storage capacity.

Dallery and Yao (1986) considered a set of flexible manufacturing cells
(FMC) linked together by an MHS and had a limited storage capacity at
each cell. A CON model is developed for the system where each cell is
modeled as a sub-network. They also proved that the equilibrium probability
distribution at the stations has a product form solution and that the FMS can
be analyzed cell by cell by aggregating cells into a single station, and then at
the system level, by the algorithms proposed by Yao and Buzacott (1985 a
and 1985 ¢). For general service time distributions, it can be solved also
by incorporating the algorithm proposed by Yao and Buzacott (1985 b) into
the model (although the authors do not mention this property). For general
service time distributions, there is no product form solution however.

There is also a Semi-Markov approach to evaluate the performance
measures of an FMS with finite local buffer. Alam ez al. (1985) modeled
such an FMS with multiple servers, K AGVs with constant transportation
times, and multiple job types. Moreover, service times (dependent on job
type as well as station) are assumed to possess a rational Laplace transform.
Using a Semi-Markov queueing network system, in which several states
were lumped together to reduce the scale of the original state space, they
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obtained an exact solution for performance measures. They also presented
an approximate procedure for large FMSs.

Van Dijk (1989) discussed nonreversible networks with blocking, and
found that two special types of FMS with this property have the product
form solution. However, Van Dijk proved that nonreversible networks can
have a product-form solution only when parts are routed for processing at
each station along a cyclic order.

Another approach is suggested by Dubois (1983) who analyzed first the
asymptotic behavior of the throughput and then used IBM’s algorithm to
evaluate the throughput in case of finite local buffers.

3.1.3. Approximate Decomposition Method (ADM)

The underlying idea of ADM is to decompose the network into single
stations or subsets of stations and analyze each separately. To use this method,
two conditions must be satisfied:

1) The nodes are treated as being independent.

2) Reasonably accurate results for means and variances can be obtained.

This method was first developed by Reiser and Kobayashi (1974). There
are many papers applying this method to derive the formulae for system
performance of queueing networks. In general, this method involves three
steps:

1) analyze the interaction between stations;

2) decompose the network into subsystems (a station or a set of stations)
and analyze them;

3) “recompose” the results obtained in step 2 to obtain performance
formulae.

Here, we only review papers relating to FMSs only. Shanthikumar and
Buzacott (1981) proposed an algorithm for an OQN with single product
and single-sever stations whose service times are general, local buffers are
unlimited, and arrival times are Poisson. They decomposed the network into
a set of GI/G/1 or GI/M/1 queues and then approximated the arrival process
at each station by a renewal process characterized by a mean and a squared
coefficient of variation (SCV). This algorithm can be extended to OQN with
GI/GIC (c>1) by using the formulae proposed by Whitt (1983 a, 1983 b).
The algorithm can be extended also to models with multiple part types by
aggregating the multiple parts into a single part (in general, we use the weight
average algorithm). Shanthikumar and Buzacott, focusing on single part types
have compared their approximations using simulation results.
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Marchal (1985) proposed two approximations for the mean delay formulae
in a queue. Then, using ADM, the mean delay and departure coefficient of
variation of each station (cell) can be calculated and the mean time it takes
a job to pass through an FMS is obtained.

Bitran and Tirupati (1988) modified the above algorithm and proposed
three approximations to capture the interference effect of multiple part types
by using the Poisson and Erlang approximations for the aggregate product.
They tested these approximations in a semiconductor manufacturing factory
with deterministic routing.

Unlike previous algorithms which assume infinite buffer capacity, a
decomposition algorithm for finite local buffer was developed by Yao and
Buzacott (1985 a). They assumptions are: 1) an OQN model of FMS with a
centralized MHS; 2) limited local buffers; 3) multiple servers at each station;
and 4) general service times. The main points of the algorithm are:

1) Find a relationship between the blocking probability of all stations and
inter-arrival time distributions at each station.

2) Decompose the system into a set of GI/G/C/S queues and evaluate the
performance for each station by the algorithm proposed by Yao and Buzacott
(1985 b).

Although they did not consider the case of multiple part types, it is possible
to approximate the multiple part types case by aggregating all part types into
one part type.

For multiple part types and multiple servers, Shanthikumar and Buzacott
(1984) suggest that we only -evaluate the mean and variance of a job’s
“flow time” for an OQN with general service times and shortest process
time scheduling rule. The algorithm decomposes the FMS into M/G/1 queues
(Shanthikumar, 1982) and calculates the mean and variance of flow time for
each station. The mean and variance of flow time of the FMS are obtained by
a convolution algorithm. This model assumes that local buffer has an infinite
capacity however.

Finally, Kamath, et al. (1988) evaluate the system performance in a closed-
loop flexible assembly system by an approximate formulae proposed by
Shanthikumar and Buzacott (1980 and 1981), Whitt (1983 a, 1984 and 1985),
Shanthikumar and Gocmen (1983 a), Kamath, et al. (1988), Kapadia and
Hsi (1978).

3.1.4. Approximate Mean Value Analysis (AMVA)

This is a heuristic approach based on MVA. Schweitzer (1979) first
introduced it and considered a case with a single server and a single job
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type. Neuse and Chandy (1981) extended it to the multiple servers model.
Krzesinske and Greyling (1984) independently developed an improved al-
gorithm for the same problem. Recently, a more powerful algorithm has
been developed by Akyldiz and Bolch (1988). Approximate calculations of
performance measures for this algorithm have less than four percent error on
the average in all the examples investigated. This algorithm is also easy to
implement and requires a small amount of computer run-time. The papers
discussed above have focused their attention on computer systems only.

Cavaille and Dubois (1982) have also applied the AMVA approach to
modeling an FMS. Other than exponential service time, they also consider
deterministic service times. Their algorithm is not adequate for service time
with a SCV greater than one however. An unreliable machine model was
also discussed in their paper.

Based on Mean Value Analysis (MVA), Suri and Hildebrant (1984) built a
computer program called MVAQ. By using MVAQ the part production rates,
machine utilization, and average work-in-process inventories of an FMS with
single part or multiple part types can be easily obtained.

There are at least two computer packages available which use a heuristic
approach: MVA-MVHEUR (Schweitzer, 1979) and PMVA (Shalev-Oven, et
al. 1985). The MVHEUR is based on an algorithm proposed by Schweitzer
(1979). The PMVA is an extension of MVHEUR and considers an FMS
with multiple servers, FCFS, infinite server or HOL (head of line, which
means each part type may be assigned different priorities at different stations)
and several transportation mechanisms operating with partitioned service
responsibilities by which the transportation time may be dependent on actual
distance.

Menga et al. (1984) first used the AMVA to analyze an “intelligent
dispatching problem”. Conterno et al. (1986) studied a routing policy by
which incoming parts are sent to the work center with the “least unfinished
work”. They derived the “routing coefficients” and “adaptive dispatching
speed-up coefficients” first, and then evaluated the system throughput by
AMVA.

3.1.5. Operational Analysis Approximation (OAA)

OAA was first proposed by Buzen (1976) and extended by Denning and
Buzen (1978). Four assumptions of QAA (Denning and Buzen, 1978) are
one step behavior, flow balance, routing homogeneity, and homogeneous
service time (HST). Their approach consists in measuring quantities directly
through a data set observed on-line or through simulation and used to predict
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the performance of the network based on the theory of closed exponential
network models.

Dallery and David (1983 and 1986) use this approach to develop an
iterative algorithm for generating a data set with which we can characterize
the processing time, called apparent processing time, and then derive the
performance of the FMS with multiple part types and multiple servers.

Fanti (1988) assessed the OAA’s robustness in evaluating the system
performance of FMSs and derived an algorithm to obtain the infimum and
maximum throughput and utilization.

3.1.6. Exponentialization Approximation (EA)

This approach was first used to model a computer system (Shum and
Buzen, 1977; Marie, 1979). Yao and Buzacott (1986 a) adopted it to analyze
a CON FMS model. It may be extended to networks with limited local
buffer space and multiple server stations however. The approach consists
in transforming the general network into an exponential network. Based on
selected problems, Yao and Buzacott (1986 a) conclude that this algorithm
is more accurate than the approximate MVA algorithm developed by Cavaille
and Dubois (1982).

3.1.7. Diffusion Approximations (DA)

Diffusion approximations are based on the assumptions that the number of
events in a given time interval is approximately normally distributed and that
queues are almost always non empty. Application of the central limit theorem
is then used to capture the variations in queue lengths and to approximate the
discrete-value queueing process N(f) by a continuous-path Markov process
X(?) (i. e. diffusion process). A diffusion equation is then used to describe a
continuous process X(¢) with a reflecting boundary at x=0. For these reasons,
DA is useful in heavy traffic conditions. By modeling the process behavior at
the reflection boundary, Gelenbe (1975, 1979) developed an approximation
which is less dependent on heavy traffic assumptions. Reiser and Kobayashi
(1974) showed that in most cases the accuracy of the diffusion approximation
is quite adequate and is much higher than results which assume the service
times to be exponentially distributed. Many papers (Cox and Miller, 1965;
Gaver, 1968; Newell, 1980; Gaver and Shedler, 1973 a, 1973 b; Kobayashi,
1974; Reiser and Kobayashi, 1974; Gelenbe, 1975; Gelenbe and Pujolle,
1976; Halachmi and Franta, 1977; Newell, 1980; Pujolle and Ai, 1986) have
used DA to evaluate the system performance of queueing networks.
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3.1.8. Summary and Comments

Essential contributions and models’ assumptions, methodologies, as well
as results derived are shown in Table 1.

Overall, we can conclude that queueing models may be a good way to
evaluate the FMS’s performance when they are at the design phase. For
example, Chen et al. (1988) used a simple queueing network, to predicted
certain key system performance measures in a semiconductor manufacturing
factory and found that the predicted values are within 10% of those actually
observed in the factory. Shortcomings of this model include the following:

1) Queueing models evaluate the system performance under a given
configuration of the FMS, thus alternative configurations are difficult to
reprogram and calculate.

2) Queueing models assume a steady state operation.

3) They describe the system in an aggregate way which omits the detailed
operations such as transportation time, set up time, etc. which are very
important in manufacturing.

Compared to stimulation models, queueing network models require rela-
tively little input data and do not use much computer time. Therefore, they
can be viewed as suitable when we need to evaluate preliminary FMS designs.

3.2. Optimum configuration model

The design of an FMS configuration involves determination of the number
of machines, pallets, buffers, process rate of tools or machines, etc., under
the requirement of production rates, budget limitations, etc. These problems
are generally formulated as mathematical programming problems coupled
with a queueing network which is used to compute a system’s predicted
performance. They can be classified into the following categories: Server
(machine) models, buffer models, coupling model of server and buffer,
coupling model of server, pallets, and work load, tool management models
and layout models.

3.2.1. Server (Machine) Model

Vinod and Solberg (1985) first coupled the CQN with mathematical
programming to find the optimal number of servers at each station. Dallery
and Frein (1986) modified it and develop a more powerful procedure to find
the optimal solutions. All of these papers modeled the FMS by a closed,
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TABLE 1
Summary of Major Models of System Performance
Auth . Metho- . " » T
uthor Assumption dology Main result
C=[M, M, m, I, FCFS] Throu
- ghput.
SOI(bc%\I(-g; N S'[;"['_C’ G;]iﬂ IBM Marginal distribution.
=R, - Mean number of part
Shanthikumar C4G,G. o, L REFSI
and Buzacott _M=’[— S ADM Same as Solberg (1977)
(1981) K=[R, -]
C=[Ek, D, or M, m, I, FCFS]
: : S=[m, O, G, M}
Cavaille and Dubois M=[-M-] AMVA | Same as Solberg (1977)
(1982) U=[G,G,S, S, - — - -
K: y =
C=[M, M, m, F, FCFS)
Dubois (1983) S;g:i_?’sc_’_sl FBM Same as Solberg (1977)
K=[R, -
C=[G, G, m, I, FCFS]
Dallery and David S=[m, C, G, M]
(1983) M=[R, M, -] OAA Same as Solberg (1977)
K=[R, -]
Shanthikumar C=[G, G, m, 1, FCFS]
§=[m, C, G, §]
and Gocmen M=[-, S, -] ADM Same as Solberg (1977)
(1983) K=[R, -]
C=[Mb, M, m, F, FCFS) ]
Yao (1983) S=[m, C or ,0'G, S
Yao and Buzacott M=[-, S, -] FMB Same as Solberg (1977)
(1985 a, 1987) K=[R or S or D, -]
. C=[M, G, m, I, SPT)
Shanthikumar S=(m, 0, G, M] Flow time
and Buzacott M=[-, S, ] ADM for each iob type
(1984) “[R - Job typ
C=[M,M, m, I, FCFS]
Suri Hildebrant S=[m, C, G, 5] BM M E“n“gé‘l‘.’“"t. N
(1984) M=[C or Ca, S] MVA actine o zanon.
K=[R, -] Average W-I-P sizes.
C=[M, M, m,1,-]
S=[m, C, G, M]
Conterno et al.
M=[-, §, -
(1986) L[*,S_ ] AMVA Same as Solberg (1977)
*: least unfinished work
C=[Mb, M, m, F, FCFB]
Alam et al. S=[m, 0, G, M]
(1985) M=£—, s, D] FMB Same as Solberg (1977)
B C=IM, M, m, 1, FCFS
Shalev-Oven et al. or I or HOL]
S=[m, C, G,
(1985) (PMVA) M[;”[R MC,; MA{J AMVA Same as Solberg (1977)
K=[R, -] |
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TaBLE 1 (continued)

219

. Metho- . ]
Author Assumption dology Main result
0=[G, G, m, I, FCFS) ‘ o
Marchal (1985) S=[m, 0, G, S] ADM Mean flow time
K=[R, -]
C=[M,M, m, F, FCFS]
Yao S=[m, 0, G, S}
and Buzacott (1985) M=[K, S, G] ADM Same as Solberg (1977)
R=[R, FCFS]
. C=[M,M, m, F, FCFS]
Co et al. (1986) S .G, S M1 BM Robustness of CAN-Q
K=[R, -]
C=[Mb, M, m, F, FCFS]
Dallery S=[M, 0, G, §] The performance
and Yao (1986) M=[§< _O[IRK ]S D] FBM of FMC and each cell.
Yao C=[M, G, or M, m, F, FCFS]
§=[m, C, G, §]
and Buzacott M=[C or A, S, -] EA Same as Solberg (1977)
(1986 a) K=[-, D, or Fr or Fe]
C=[M, M, m, F, FCFS]
Dallery (1986) S=[m, —, G, S} FBM Same as Solberg (1977)
K=[R, -]
C=[G,G,m,1,-]
Fanti ez al. (1988) S=[m, 0, G, M] 0AA Same as Solberg (1977)
K=[R, -]
ColL M. o, LTS Same as Solberg (1977)
Kamath et al. (1988) M=,[— ’s _’] ADM for a closed-loop
=[F , = flexible assembly systems.
'l:hroughgut. .
C=[M, M, m, I, FCFS] Margiral distribution.
S=[m, C, G, M] Server utilization.
Solot Bastos (1988) » r M ECM Mean waiting number
M=[-, M, -] of each part type.
K=[R, -] Mean spent time
of each part type pallet.
C=[-,M or G, m, F, FCFS}
Van Dijk (1989) S=[m, -, §, S) FBM Steady state distribution.

=[R, —

* — indicates that feature is not considered.

single-job type queueing network with M stations and N customers. There
are two differences between these two algorithms however:

1) The V-S (Vinod and Solberg) algorithm starts with an arbitrary upper
bound while Dallery and Frein use a lower bound determined by asymptotic

analysis.
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2) The V-§ algorithm uses a so-called “bisection search” which is similar
to the bisection line search method, while Dallery and Frein use a “gradient
analysis”, similar to the gradient method in nonlinear programming.

It appears however that the algorithm proposed by Dallery and Frein (1986)
is more efficient than the V-$ algorithm.

An alternative approach was suggested by Shanthikumar and Yao (1988).
Using a CON FMS, they derived an algorithm to allocate C servers among M
work centers when the CON throughout is maximized. Finally, they proved
an arrangement increasing property expressed in terms of server’s assignment
objective function (e.g., the more servers in the system, the higher the
throughput will be) and derived an upper bound formula for the throughput.
Thus, they solve the optimal servers assignment mathematical programming
problem. They also proposed a greedy heuristic algorithm by which they
obtain an optimal solution for a system with two working centers (although
it cannot guarantee that the optimal solution in general cases is obtained).
This approach is similar to Fox’s marginal allocation scheme however (Fox
1966). The server allocation model with a maximum profit objective has been
solved by Shanthikumar and Yao, 1987.

Stecke and Solberg (1986) also discussed the problem above but solved
for the optimal servers allocation in a system with three-machines and two
groups (stations). For cases with more than three machines, they used CAN-Q
to calculate the throughput for all allocations in a two-stations system and
showed that unbalanced configurations of allocated servers are superior to
balanced ones when groups of pooled machines sizes are unequal.

3.2.2. Buffer Model

In practice, buffer capacity (size) at each station in an FMS is limited,
affecting thereby the throughput. Buzacott and Shanthikumar (1980) first
discussed the relationships between the local buffers space and throughput.
They consider a case with two balanced machines and a single-class job shop
and proved that the objective function is concave with respect to the buffer
size (Yao and Shanthikumar, 1986).

So (1989) proposed a model to determine the buffer capacities required
to achieve a specified performance in an FMS with multiple products. So’s
approach is based on a measure of performance often used in pull production
systems; the average proportion of demands backlogged. A GI/G/C queue
together with a decomposition method are introduced to approximate the
mean and variance of the total process times (including the waiting time).
Assuming a fixed blacklog. So (1989) estimated the aggregate buffer size
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required for a total system demand, and then decomposed these buffers to
each station.

3.2.3. Coupling Model of Server and Buffer

The combined server and capacity allocation problem was dealt with by
Shanthikumar and Yao (1987b). Their approach is similar to that of Yao
and Shantikumar (1986) and garantees an optimal solution in a single-station
system only.

3.2.4. Coupling Model of Server, Pallets and Work load

Throughout the papers discussed above, work load allocation and the
number of pallets were given. In practice, we can allocate the total work load
among the machines and find the optimal number of pallets that maximize
some measures of system performance. Using a simple FMS with only one
machine type, Lee et al. (1989) formulated a mathematical programming
model to determine the optimal number of machines (servers), pallets, and
optimum work load allocation subject to requirements on the system’s
throughput and work load bound at each station. They derived a fathoming
rule to eliminate dominated alternatives (in which a CQN is used to calculate
the throughput). The initial feasible solution is obtained by the approach
used by Dallery and Frein (1986). Although this model can yield optimal
allocations of work load at each station, it assumes that each machine can
perform one function only. '

3.2.5. Tool Management Model

Using the fact that changing the tools processing rate will change the
relative queue lengths in a system, Schweitzer and Seidmann (1989) proposed
a processing rate optimization model for an FMS with multiple job visits to
work centers. They formulated a mathematical programming model which
is solved by MVA and an algorithm for problems with convex resource-
allocations (Bitran and Hax, 1981).

For spare tools allocation problems, Vinod and Sabbagh (1986) presented
a closed queueing network optimization model. Their man objective is to
study the tradeoffs between tool spares and the cost of repairs subject to
a tool constraint availability. This research does not directly deal with the
performance problem of FMS.

3.2.6. Layout Model

A throughput-maximizing algorithm for facility planning and layout of
FMS was proposed by Co, et al. (1989). They extended the package
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of CRAFT (computerized relative allocation of facility) by embedding an
approximate MVA, called FMS-Q into the CRAFT. Therefore, the system
throughput can be obtained by FMS-Q for specific facility configurations. It
can be used to generate and evaluate alternative FMS configurations at any
stage within a planning horizon.

3.2.7. Summary and Comments

The major contributors and their assumptions, methodologies, as well as
results of the optimal configuration models are shown in Table 2.

TABLE 2

Summary of Major Models of Optimum Configuration

Author Assumption Methodology Main result
_ 1. MPM
Vinod ¢ [gj[M’ Z” é I;C]‘FS] 2. IBM Optimal number
and Solberg —um, 2, B 3. Arbitrary choice of server at
(1985) M=[-, S, -] for initial solution each station.
K=[R, -] 4. Bisection search
1. MPM
C=[M, M, m, I, FCFS] 2. IBM Optimal number
Dallery and Frein S=[m, C, G, §] 3. Calculate of server at
(1986) M=[-, S, -] the low bound
S=[R, -] of initial solution; each station.
’ 4. Gradient analysis
C=[M, M, m, F, FCFS]
ShYa".and S=im, C. G, 8] 1. MPM Optimal number
anthikumar M=[-, S, -] 2.1BM of local buffer.
(1986) K=[R, -] 3. Marginal allocation
_ 1. MPM
Shanthikumar | “=T¥" [M e F;,?F ] 3. 1BM Optimal number
and Yao ;Wm[ S ’] 3. Marginal allocation of server at
== 9, = with upper bound each station.
(1987 b, 1988) K=[R, -] formula 6f throughput
C=[M, M, m, I, FCFS]
% o, S={m, C, G, M] 1. AMVA Ontimal 1
an eisman M=[-, S, -] 2. Layout Theory ptimal layout
(1989) K=[R, -]
C=[M, M, m, I<FCFS] 1 MPM 1. Optimal allocation of
Lee et al. S=[m, C, G, §] 2 workload at each station. |
(1989) M=[-, §, -] . {BM 2. Optimal number of
=[R, - 3. Fathoming method servers and pallets.
: C=[M, M, m, F, FCFS or 1. IBM (MVA)
%:‘;W.‘:‘z"" S=[m, G, G, M) 2. MPM Optimal process
and Seidmann M=[-, S, -] 3. Convex resource tool rate.
(1989) K=[R, -] allocation algorithm
C=[G, G, m, F, FSFS] 1. MPM
S S=[m, C, S, S] 2. ADM Optimal number
o (1989) M=[-, S, -] 3. Backlogged rate of local buffer.
K=[R, - [ measurement
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These models, (expected tools speed models) did not consider the tool
configuraton problem, which is a critical weakness. Industry data indicates
that tooling accounts for 25-30% of the fixed and variable cost of production
in an automated machining environment (Ayres, 1988). In other words, tool
management directly affects production costs.

- 3.3. Loading models

An FMS may consist of many manufacturing cells (stations) which process
independently certain type of jobs and have their own production and buffer
capacities. An important management issue to consider is thus the suitable
allocation of the aggregate production rate (which comes from an upstream
production stage and is assumed constant) to stations (machines). This differs
from short term scheduling or releasing rules because it basically focuses on a
design problem. Load objectives may be numerous, including (Stecke, 1986):

1) Balance the processing times on assigned machines.

2) Minimize the parts movement between machines.

3) Balance the work load per machine for a system of groups of pooled
machines with equal size.

4) Unbalance the work load per machine for a system of groups of pooled
machines with unequal sizes.

5) Fill the tool magazines as densely as possible.

6) Maximize the number of operation assignments. There are two types of
load models—rule model and optimal model.

3.3.1. Rule Model

Yao (185, 1987) used “Majorization Order Theory” to compare the loading
policies with regard to throughput, number of jobs in the system, and queue
length when there are single servers at each station. Stecke and Morin
(1985) and Shanthikumar and Stecke (1986) also discussed the foregoing
problem by another approach and obtained similar results. Yao and Kim
(1987) extended some of these results to cases where each station has the
same number of multiple parallel servers. Finally, Stecke and Solberg (1985)
discuss unbalancing problems, and mathematical models used to find optimal
work loads and machine group sizes in an FMS.

3.3.2. Optimum Models

Yao and Shanthikumar (1986, 1987) considered the case in which each
station in an FMS is regarded as an Erlang loss system of the type M/G/n;/n;
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and proposed a mathematical programming model to find the optimal load
(input) rate at each station and to obtain the maximum throughput. They
used a convex objective function with respect to the load and proposed an
iterative algorithm, based on the Frank-Wolfe algorithm (1956) to obtain an
optimal solution.

3.3.3. Summary and Comments

The major contributions and their assumptions, methodologies, as well as
results are shown in Table 3.

TABLE 3
Summary of Major Models of Loading

Author Assumption Methodology Main result
C=[G, G, m, I, FCFS]

Yao (1985, S=[m, 0 or C, G, S} M .
1987, 1986 b) M=[-, S, -] . Majorization Rule of loading
K=[R, -} order theory

C=[G, G, m, I, FCFS]
Yao and Kim S=[m, 0 or C, G, S] Same as Yao Same as Yao
(1987) M=[-, S, -] (1985, 1987) (1985, 1987)
K=[R, -]
C=[M, G, m, F, FCFB]
ShYa" and S={m, 0 ot C. G, §] 1. MPM Optimal load
anthikumar M=[-, S, -] 2. Queueing theory (input) rate.
(1986, 1987) K=[R. ]

In practice, loading problems are far more complex however. Specifically,
tools assignment to machines may involve humans and not only automatic
retooling systems. None of the models reviewed suggested how to deal with
these problems when man-machine systems are taken into consideration.

3.4. Part routing models

Part routing schemes are ued to devise process plans for each part. In an
FMS, each part can be produced using alternative routes to take advantage of
system flexibility and machines versatility. Below, we consider routing rules
which maintain the product form solutions when local buffers are limited.
Subsequently, we discuss optimal part routing models.
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3.4.1. Routing Models with Limited Local Buffers

Yao and Buzacott (1985 a, 1986 b and 1987) studied an FMS model with
limited local buffers and proposed three types of models according to the
system operational strategies:

1) Fixed routing models where the proportion of parts delivered to a station
from the central buffer is (on average) constant.

2) Fixed loading models where routing is derived from a given operation
mix required by a production task.

3) Dynamic routing models where the routing rate from a central buffer
to work stations depends on the number of jobs waiting at the central buffer
and in work stations. Although there can be numerous rules, the routing rule
used consists in routing to the shortest queue with highest probability. Hence
it is called the probabilistic shortest queue routing (PSQ).

The paper’s conclusions are:

1) Dynamic routing scheme has an obvious advantage in increasing
throughput but it requires more information and more complex control
processses.

2) The PSQ routing is not significantly different from deterministic shortest
queue routing (DSQ; i. e., routing jobs to the shortest queue with probability
one) when the local buffers are small compared with the total job population.

3) A good (robust) routing scheme for a real system is the DSQ, implying
that the material handing system will always send parts to the shortest queue.

3.4.2. Optimum Models

Kimenia and Gershwin (1983, 1985) used a CON model to study part
routing problems in FMS. Their objective function is to minimize the con-
gestion and delay within the system subject to a production rate requirement
determined at a high level of the decision hierarchy. They solved it by a
“Three Levels LP Model” in which a classical CQN is embedded to obtain
the optimal routing policy.

Avonts and Wassenhove (1988) proposed a coupling model in which the LP
was combined with the CON to solve the part mix and routing mix problems
simultaneously. Menga et al. (1984) decomposed the decision/control process
of the FMS in two hierarchical levels. At the lower level, they developed an
algorithm for finding the optimal routing coefficients by using MVA formulas.
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3.4.3. Summary and Comments
The major contributions and assumptions, methodologies, as well as results
for routing models reviewed are shown in Table 4.

TABLE 4
Summary of Major Models of Part Routing and Selection

Author Assumption Methodology Main result
C=[M,M, m, é FCFS]
Buzacott and S=[m, C, G, §] i
Shanthikumar M=[~, S, ] BM Optimal
(1980) M=[-, S, -] production capacity.
K=[R, -]
. . C=[M, M, m, I, FCFS)]
g‘g‘e"ﬁa. S={m, C, G, §] 1. IBM Optimal
anc Lershwin M=[-, S, -] 2. MPM routing policy. -
(1983, 1985) K=[R, -]
C=[M, M, m, I, FCFS]
Menga et al. S=[m, C, G, §] 1. IBM Optimal routing
(1984) M=[-, §, -] 2. MPM coefficients.
K=[R, -]
Yao and C=[M, M, m, F, FCFS] 1. IBM System
Buzacott S=[m, C or 0, G, S] 2 T performance and
(1985 a, =[-, S, -] - Resersiblity it’s corresponding
1986 b, 1987) K=[R or Fe or Fr, -] theory. routing rule.
Avonts and C=M, M, m, I, FCFS] Optimal routing
S=[m, C, G, §] 1. ECM X
‘Wassenhove M=[-, S, -] 2. MPM mix and part
(1988) K=[R, -] i selection.

The routing scheme is highly related to a machine’s flexibility. If machines
in an FMS are totally versatile then the number of alternative routes
is maximal. Hence it may be possible to find more efficient schedules.
However, in practice, this is not the case since machines cannot be always
substitutes to one another. Therefore, flexibility in part process plans as
well as highly adaptive routing algorithms are very important factors for
throughput maximization. As a result, we have to combine the scheduling
and routing problems. Moreover, the routing problem should also be solved
jointly with part type selection and part mix problems since these three
combined problems constitute the batching problem.

3.5. Part selection models

Parts selection is a fundamental decision (Kalkunte et al., 1986) reached
to accomplish long range profitability and flexibility goals. Unlike parts mix
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problems which seek to define the number of units of each part type which
will be processed in the FMS, it consists in selecting the part types.

Two papers discuss this problem using a network of queues. A first
general model describes the relationships between part type selection and
work load balance while a second uses a mathematical programming model
through which the optimal part selection and routing mix problems are solved
simultaneously.

3.5.1. General Model

Buzacott and Shanthikumar (1980) studied the problem with a classical
OQN and found that work loads can be balanced by selecting a variety of
parts or using flexible machines (thereby, maximum production capacity can
be obtained). However, the number of parts or (and) part types is (are) in
reality restricted. Hence optimal production capacity is not be obtained when
we balance the system work load. As a result, assuming some restrictions
on parts or (and) on the number of part types, part selection is not an easy
problem to deal with.

3.5.2. Optimum Model

A complete decision model for part selection was proposed by Avonts
and Wassenhove (1988). Assuming that a new FMS is introduced and some
products have to be shifted from a standard production system to an FMS,
Avonts and Wassenhove formulate a model to select which part types should
be shifted and in what quantities should it be produced on the FMS to obtain
maximum savings. Two LP formulations are used to deal with the short and
medium terms routing mix problems. The constraints considered are:

1) Limited capacity of the FMS machine tools.
2) Demand requirements are given.
3) Demand requirements can also be met by the standard system.

4) Work load is balanced within the allowed deviation percentage relative
to the average work load.

They then developed a solution procedure which consists in the combina-
tion of an LP model and a queueing network model. The iterative algorithm
of the solution procedure is briefly described as follows:

1) Initial step: Solve the LP with machines capacity utilization at 100%.
2) Iterative steps:

a) compute the part mix and routing mix for all parts;

b) use CAN-Q to determine the utilization of all machines;
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¢) solve an LP under the solution of step (b) until a satisfactory
solution is found, i. e., until part mix and routing mix stabilize.

3.5.3. Summary and Comments

Part selection problems have to be solved simultancously with some
other problems {see section 3.4.3.). No paper available in the literature
has combined these related problems and therefore are of limited value. A
summary of the assumptions, methodologies, as well as results of these two
papers are also shown in Table 4.

3.6. Releasing or scheduling model

Releasing or scheduling models deal with dynamic and operation planning
problems. The problems dealt with are:

1) At what time should a job (part) be released.
2) What job (part) types should be released.
The models are categorized as follows:

1) General rule models, providing general scheduling rules adapted to
specific situations (e. g., balance rule and idle machine rule).

2) Single-level optimal models, which determine optimal schedules by a
single-level decision making process.

3) Two-level optimal models which determine optimal schedules by a
two-level hierarchical decision making process.

3.6.1. General Rule Model

The balanced queue and idle machine releasing rule are first discussed by
Buzacott (1976). Under the balanced queue rule, a part is released from the
machine with the shortest queue. Buzacott (1976) showed that the job shop
capacity depends on jobs selection and release to a machine’s queue. It is
shown that the optimum release rule maintains a balanced queue when the
number of jobs in the shop is kept to a constant level (but the optimum rule
will be an idle machine rule when the number of jobs in the shop can vary).

Buzacott and Shanthikumar (1980) also compared the FCFS with the idle
machine rule in cases in which a maximum number of jobs are allowed (in
a two or three machines balanced system) and showed that the production
capacity is improved by using the idle machine rule).

However, the models above only deal with small size systems (of two or
three machines). The general case remains open. Thus, we cannot conclude
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which rule is generally better. Stecke and Morin (1985) used a single server
CON model to analyze the optimality of balance for an adequately buffered
FMS in which each operation is assigned to only one machine, and showed
that the balancing releasing rule maximizes the expected production.

Buzacott and Gupta (1986) studied different scheduling policies for an FMS
with two job types, single server OQN, and non-negligible set up times. The
assumptions are as follows:

1) Each job visits a machine no more than once.

2) The processing times are generally distributed.

3) Set up times follow a general distribution.

4) The machine has an infinite local buffer.

5) Jobs are served according to one of the following three queue disciplines:
(i) FCFS-Jobs are served in order of their arrivals.

(ii) Strict priority (SP)-All jobs are ordered according to a fixed scheme of

assigning priorities such that jobs belonging to the higher priority class are
always served first under a preemptive priority.

(iii) Alternating priority (AP)-Jobs are served according to their job class
in a cyclic order. This means that if a machine is currently processing jobs
of class i, it will start to serve the next class (say j) only when there are no
jobs of class i waiting to be served.

With the above assumptions they derived appoximate formulae for the flow
time distribution, compared the scheduling disciplines, and showed that:

1) the Ap rule yields smaller mean flow times than the FCFS and SP
rules do:

2) for under-utilized systems, scheduling rules do not affect flow time
substantially; and

3) set up times have a significant effect on system performance.

3.6.2. Single Level Optimum Models

Hildebrant (1980) developed a scheduling approach in an FMS in which
machines’ failure is explicity considered. The model is formulated as a
nonlinear programming problem (NLP) in which a queueing network is
used for the measurement of performances. Since machines’ failure affect
a system’s configuration, the time horizon for the problem is partitioned into
a series of disjoints segments. We can then schedule parts by individual time
intervals and predict future machine failure using an appropriate probability
model. Thus, certain parts may be deferred until some later time when
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conditions are perceived as more favorable. This formulation however,
predetermines all parts mix and parts routing in terms of failure types. The
problem’s objective is to minimize the completion time under the following
restrictions:

1) a production target (demand);

2) a maximum number of fixtures can reside within the system during any
failure condition; and

3) a maximum number of fictures available for parts.

In this model the completion time is a function of machine failure types,
production target (requirement of demend) and part routing. It is solved by
a variation on the successive linearization method, which was developed by
Suri (1978), together with a MVA, evaluating throughput at each iteration.

For an FMS with limited buffers at work stations and a centralized material
handling station, Seidmann and Tennenbaum (1986) proposed two objective
functions for releasing policies. One minimizes the weighted starvation
penalty and the other maximizes the weighted throughput. The releasing
control problem consists then in determining which work station should be
fed whenever it becomes available. Unfortunately, product form solutions do
not hold here since the model has a state dependent arrival process. However,
a tractable analytical formulation for various distribution functions of MHS
can be solved by the Schweitzer’s Value Iteration Scheme (Schweitzer, 1971).
Nevertheless, this model only focuses on “one” MHS, i.e., an FMS with a
robot or a cart in its MHS which is not always the case in reality.

3.6.3. Two-Level Optimum Models

Shanthikumar (1984) used a single server OQN to model a single machine
dynamic job shop. There are two decision levels:

1) The first decides the time at which the batch of jobs in the dispatch
area are to be released to the shop.

2) The second decides the scheduling discipline to be used within each
batch.

Shanthikumar (1984) investigated four different release policies for first
level problems:

1) FCFS: release without any delay at the dispatch area (this can be then
modeled as an M/G/1/ FCFS queue).

2) SPT-WG: release jobs if and only if the machine is idle, i. e. , scheduling
within generations under the shortest process time rule (Nair and Neuts, 1969
and 1971).
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3) SPT-WPR: release jobs to shop at prescribed review time, i. e., sched-
uling within period review under the shortest process time rule.

4) SPT-FBS: release jobs to the shop as soon as a fixed level of jobs are
accumulated at the dispatch area, i. e., scheduling within fixed batch size.

Moreover, all jobs within a batch are scheduled according to a SPT service
rule. Then, if mean waiting times are used, then SPT-WG is better than SPT-
WFBS, SPT-WPR and FCFS. Furthermore, SPT-WPR and SPT-WFBS have
a higher mean waiting time than FCFS. However, since the SPT-WG policy
requires a continuous update on the shop state, we cannot conclude it is
the best. The costs associated to these rules should be compared as well.
Shanthikumar (1984), thus derived a combined cost function expressed in
terms of the dispatch, monitoring and job waiting cost of each rule.

Menga et al. (1984) also proposed a two-level hierarchical approach to
solve the scheduling problem in an FMS. At the higher level, a lot r is
characterized by a ready time, a due date and a given size. Assuming a given
planning horizon, lots are scheduled to maximize a production performance
index and to satisfy release and due date constraints. Time-phased order for
materials and releasing (scheduling) for lots are determined at each period.
The release rule at the lowest level consists in selecting optimal routing
coefficients which are derived by “balancing the utilization idle machine
rule”. By using the MVA, an iterative algorithm was developed to compute
the routing coefficients.

3.6.4. Summary and Comments

Major contributions and their assumptions, methodologies, as well as
results for releasing and scheduling models are shown in Table 5.

In general rule models, only the single server case is discussed (these rules
need not be true for multiple servers problems where their number in each
station need not be equal. The second level problem in Shanthikumar’s (1984)
is not expicitly formulated. He basically adopted SPT service discipline
at the second level since his analysis centers around the mean waiting
time of jobs under different releasing policies. In Menga et al. (1984), the
authors introduced the lot size which is assumed constant and determined by
customers order size.

3.7. Unreliable system Models

There are two types of unreliabilities in a manufacturing system—equipment
failure and product defect. Three kinds of models—general breakdown
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TABLE 5
Summary of Major Models of Scheduling, Releasing

. Metho- .
Author Assumption dology Main result
Better policy is balanced
Buseon | 58068 i s of o
(1976) K=[R, IM or FCFS} is fixed, otherwise
it is idle machine rule.
Buzacott Idle machine rule
C=[M,M, 1,1, -] .
an Same as Buzacott is better than FCFS
Shanthikumar §=[3, 0, G, §] (1976) under a constant part
(1980) K=[R, IM or FCFS] number in the system.
C=[M, M, m, I, FCFS]
Hildebrant |2 GG M1 ey gavay Optimal parts
(1980) M:iCZz, ;’y;, ’_]’ ’ 2. MPM scheduling.
K=IR, -}
C=[M, M, m, I, FCFS] 1. Scheduling
Menga et al. S=[m, C, G, M] 1. IBM (MVA) for each lot.
(1984) M=[-, M, -] 2. MPM 2. Optimal routing.
K=[R, IM) Coefficients.
Shanthikumar M=[-, S, ] 2. Traditional of the batch. of jobs.
(1984) K=[R, FCFS or optimization model 2. Scheduling rule
SPT-WFBS, SPT-WPR} within each job.
Stecke C=[M, M, m, I<FCFS] Ba]anced_qqeue
and Morin Som, €. 5. 51 BM N
(1985) K=[R, B or UB] production.
C=[G, G, m, 1, FC{S c
Buzacott or SP-P or AP-P omparsions
and Gupta S=[1, 0, G, M] ADM for flow of FCFS, SP,
(1986) M=[-, S, -] time distribution | apd AP scheduling rule.
K=[R, -] '
. With a state
Seidmann dependent arrival 1. MPM
and C=[M, M<m, F, FCFS] 2. IBM Releasing or
Tennenbaum S=[m, C, G, S] 3. Semi-Markovian loading rule for MHS.
M=[R and Ca, S, M} decision process.
(1986) ~[PSQ, —

models, optimal breakdown models, and quality control models, have been
studied.

3.7.1. General breakdown Models

Buzacott and Shanthikumar (1980) demonstrated the effect of breakdown
on production capacity, but they didn’t present any optimal rule for managing
the FMS in such circumstances.
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A general model for FMS with machines breakdown was first proposed
by Vinod and Solberg (1984). In their model, each work station was
considered as a delay station which was visited by the preemptive failing
customers. Assuming ample supply of repairmen, they analyzed it by a CON
and proposed two approximate methods—MCA (multiple class approximate
method) which is a modification of MVA, and APE (approximate product
form) which is based on the concept of product form solution, to calculate
the throughput, sojourn time and utilization. Using simulations, they found:

1) MCA always underestimates the actual throughput.

2) MCA is consistent and accurate. The relative throughput error decreases
with increasing N while the APF does not have this property.

3) MCA and APF estimate the mean queue length fairly accurately. The
error, though small, frequently increases with increasing N, but the rate of
increase decreases.

Vinod and Altiok (1986) modeled the foregoing problem by an exact
equivalent network in which the service time was represented with a two-
stage Coxian distribution. They approximate it by CAN-Q and validate it
for a wide range of model parameters. The results indicate that approximate
formulae are robust.

3.7.2. Optimum breakdown models

Vinod and John (1986) studied a failure prone FMS, with a repair facility.
The FMS in their model has M stations that perform distinct operations and
each station has one or more identical machine(s). Each station represents a
distinct input resource for the repair system. Hence, there are M+2 stations
in the system and its stationary probability distribution can be obtained
from the ON formulae with multiple job types. A mathematical model was
built for determining the optimal capacities of repair facilities. They proved
the monotonicity property in steady state. Namely, if the number of repair
channels at either one or both repair facilities is increased by one, the (steady
state) number of operating machines at each station increases stochastically.
Using this property, it can then be solved by traditional discrete optimization
algorithms (Lawler and Bell, 1966).

Vinod and Sabbagh (1986) proposed a tool availability model which is
used to determine the optimal level of spares for each tool type and optimal
capacity level of repair facility. The model is a nonlinear integer program
which is solved by a modified version of lexicographic partial enumeration
algorithm (Sabbagh, 1983).
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3.7.2. Quality control models

The great majority of FMSs discussed have presumed a zero-defects
technology. In practice, this is rarely the case. Tapiero and Hsu (1988)
considered an unreliable FMS, and proposed an algorithm to compute the
average outgoing quality (AOQ) of the system based on an approximation
of Whitt (Whitt, 1983a and 1983b) for a GI/G/S network of queues. They
derived a relationship between the inspection effort and the output quality
under Bernoulli (Duncan, 1974) inspection plan. Unfortunately, under a
CSP-1 (Duncan, 1974) inspection plan, they could not obtain the above
results. They also do not consider optimal inspection plans for FMSs however.

Hsu and Tapiero (1989) modify the forgoing model (Tapiero and Hsu,
1988) and explicitly discuss the following three issues in the FMS:

1) Introduce a general procedure for measuring and managing the in-
process quality control of an FMS described by an OQON.

2) Provide some managerial insights regarding the role, position and
distribution of the quality control effort in the FMS; and

3) Formulate the intricate relationships between the FMS’s operating
characteristics and its control.

They used a nonlinear programming problem to find an optimal quality
control plan. The objective function includes the following elements:

1) Inspection cost of each part type at each process step.
2) Waiting cost per unit time.

3) Post-sales failure cost for each part type.

4) A benefit (revenue) for each part type; and

5) A scrapping cost for each part type.

The constraints are the inspection rate for each part type. By the ADM, they
calculated the throughput and AOQ. Subsequently, the value of an objective
function is obtained uner a fix inspection rate for each part type. They did not
propose a complete algorithm to solve this nonlinear programming problem
however but provided some sensitivity analysis regarding profits, inspection
rate and the AOQ.

3.7.3. Summary and Comments

The major contributions and their assumptions, methodologies, as well as
results for unreliable systems are shown in Table 6.

Two assumptions in Hsu and Tapiero (1989) seem to be unreasonable.
These are:
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TABLE 6

235

Summary of major models of unreliable system and inventory

Author Assumption I(\i/{)eigg;’- Main result
C=[M, M, m, I, FCFS]
Vinod S=[m, C, G, m]
d U=[M<M, 2,2,2,2,2,2] 1. IBM Optimal repair
and John M=[-, S, - 2. MPM capacity.
(1980) K=[R, -]
two stage repair facility.
C=[M, M, m, I, FCFS] Two approximated 1. Throughtput.
S=[m, C, G, m] method-MCA 2. Sojourn time.
Vinod and APF
and Solberg U=sM,M, 1, - - — — -] which are modified 3. Utilization
(1984) M=[-, §, -] form MVA and product
K=[R, - solution of unreliable
ample repair capacity. respectively. FMSs.
C=[M, M, m, I<FCFS]
S=[m, C, G, S)
U=M,M, 2, -, -, -, — -
. . M=[-, S, S] .
Vinod and Altiok Approximate
=[R, -] . Throughput
(1986) Ample repair capacity. it by CAN-Q
Service completion
time=two-stage Coxian
distribution.
Buzacott _ _ Idle machine rule
and C_[_M' M 1,1, -] Same as Buzacott is better than FCFS
Shanthikumar §=[3, 0, G, S} (1976) under a constant part
(1980) K=[R, IM or FCFS] number in the system.
C=[MPP, M, m, F, FCFS i
MIRELETT | | o
Yao (1986) M=[-, S, -] 2. Classical Ty POLTL-
LG = optimal theory 2. Optn:nal
*: Optimal delivery point. batch size.
C=[M, M, m, I<FCFS)]
S=[m, C, G, M] i
Vinod U=[M<M<1, =, = =, - — nl.{nIf:l{e “cvl‘;'s‘s Optimal allocation
M=[-, §, - X
and Sabbagh K=[[R:g—] 1 2. MPM of spare tools
Ample repair capacity.
. C=[G, G, m, I, FCFS]
Tapiero S=[m, O, G, M]
and Hsu U=[-, -~ - R ACM AOQ
(1988) or CSP, D, -, O]
K=[R, -}
Hsu C=[G, G, m, I, FCFS]} Relationships
. S=[m, O, G, m] 1. ADM between profit,
and Tapiero U=[-,-,-,— R, D,,— 0] 2. MPM inspection plan
(1989) =[R, — and AO

1) Infinite local buffer (almost all real FMSs have finite local capacity
(Buzacott and Yao, 1986 a and 1986 b); and
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2) All defective parts are scrapped (this is impossible when the part value
is high and defective parts can be repaired in a reasonable cost).

3.8. Inventory models

Yao (1986) considered the following inventory problems in a generic FMS,

1) When to deliver a batch from the central warehouse to the buffer storage
of the FMS, and

2) How large the batch size should be.

Clearly, this is traditional inventory problem which can be solved by an
(s, Q) inventory model (Silver 1981). It can then be formulated using a total
expected cost function which includes the order, holding and production
losses. These correspond to the lost sales case in (s, Q) models. By using
queueing network performance measures and classical optimization, Yao
(1986) proved the convexity of the cost function and solved it using a “one-
dimensional search”, i. e., for a collection of s values, compute Q from first
order conditions and its corresponding total expected cost, and then find the
optimal solution based on the local optimal solutions. The routing and part
mix plicies were not considered in this model however.

4. CONCLUSION

This survey has reviewed a large number of papers which have dealt with
a network of queues approach to the design and the management of FMSs.
We categorized this survey into eight management problems and compared
various research papers relating to each of the problems. We note throughout
our survey that the essential measures of performance used were throughout
or flow time. Using these measures, many authors have derived formulae
for various optimal decision rules. In some cases, exact results are obtained
while in the greater part, they are only approximations.

Optimum configuration models are most useful for determining the initial
investment in an FMS and for specific production goals. These models require
the solution of complicated nonlinear programming problems however,
although their formulation seems to be straithforward. Loading, routing, and
part selection models are basically intermediate FMS policies. Nonetheless,
they ought to be combined to determine an optimal configuration. We find no
papers that dealt simultaneously with these management problems. Releasing
and scheduling models belong to a class of real time control problems.
However, all optimal models studied are not easy to execute in a real time.
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Breakdown and quality control models usually assume breakdown rates
which are too simple and therefore not realistic. Further, associated problems
of maintenance are rarely dealt with conjointly. In quality control models,
inspection rates are used to find a “good” quality control policy. We note
here that traditional quality control methods are not suitable for FMSs, and
that flexibility in routing compounds the difficulties to measure a process
reliability (but it augments the potential for reliability management).

To use profitably queueing networks in FMS systems, Dallery (1986)
suggests that we respond to the following questions:

1) Does the FMS have universal or dedicated pallets for each part?

2) Is the FMS controlled according to fixed queueing disciplines, or in
such a way that prescribed production ratio for each part type is achieved?
i. e., features such as identical work stations, storage location, and a material
handling system can be easily incorporated in a given queueing network
model.

Although the queueing network models reviewed here can be used to
solve many of the design and operation problems of FMSs, there are some
limitations.

1) They only model the equilibrium-system-behavior which is appropriate
for long-term planning problems or for screening systems design. Operational
issues require that a transient-system-behavior which is far more complicated,
be used.

2) They neglect the tool management system. Tool management system
is a critical issue in the FMS (Gray, Seidmann and Stecke, 1993) since it
largely affects the productivity of a facility. Kiran and Drason (1988) argued
that tooling has become one of the hindrances to efficient FMS performance.
Using industrial data, it has been pointed out that tooling accounts for 25-
30% of the fixed and variable costs of production in an automated machining
environment (Ayres, 1988).

3) Queueing networks can be applied primarily at the design stage. They
are very useful at the preliminary design stage where we seek information
regarding the structural performance of the system under a broad range
of parameters variation. However, at a detailed stage, they lose some of
their usefulness. To compensate these deficiencies, simulation models must
be built to capture the detailed system operations, processing requirements,
and resource allocation. Nevertheless, combining queueing networks with
simulation can provide an efficient means to validate complex models by
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testing special cases whose performance are, in the long run, predictable
(Shanthikumar and Sargent, 1983; Buzacott and Yao, 1986).

4) They rarely respond to any unexpected situation in real time when the
environment changes.

5) No model here considers the costs of information acquisition in the
decision process and its execution.

6) They seldom consider flexibility as a measure of system performance.
Further, flexibility pertains not only to a potential for productivity enhance-
ment but also to an ability to respond to and adapt to changes in the market or
to other unpredictable factors. As a result, it is necessary to stress flexibility
as a design objective, rather than just estimate it once the FMS structure has
been designed in terms of standard performance measures.

7) The performance measures used throughout this survey do not always
measure the productivity of an FMS. We found that the throughput and
flow time are widely used in performance evaluation. Sometimes the facility
utilization has also been used. If we use the throughput or the flow time as
a measure together with a utilization and/or budget constraint, it may lead
to a sub-optimal solution because it does not capture the marginal effects of
constraints (e. g., the throughput may increase substantially due to a minor
change in the constraint (Nankeolyar and Christy 1989). They do not capture
the essential benefits of flexibility. Some models (Yao, 1986; Dallery and
Frein, 1986) use some other cost factors, such as WIP, interest, and discount
rate. These performance measures, seem to be more reasonable in practice
on the one hand but do not value the advantages of flexibility on the other.
Nandkeolyar and Christy (1989) suggested a measure based on weighted
productivity (weighted output/weighted input). This approach seems to be
better then traditional measures if a proper set of weights is selected. There
are some shortcomings however:

a) It is difficult to identify all the relevant factors to be included in the
measure.

b) The factors weights are difficult to assign.
¢) It does not include the value of flexibility.
d) It is difficult to relate to specific production activities of FMSs.

8) Heuristic algorithms for solving the mathematical programming prob-
lems are not efficient for large FMS. Although FMS design models can be
formulated, their solution is very complicated and time consuming (especially
for large FMSs). For this reason, only simple numerical examples were
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considered in the papers we reviewed. Thus, the development of efficient
heuristic algorithms is an important issue to be dealt with in the future.

9) No paper discusses bulk arrival and bulk service. While in manufactur-
ing, lot (bulk) sizes are conventionally used in processing jobs, their study
in a network of queues is lagging.

10) The integration of scheduling algorithms in controlling jobs flow in
OQN and CQN manufacturing systems have not been addressed in sufficient
depth. No work has studied practical scheduling rules such as earliest due
date first (EDD), largest processing time first (LPT), etc. which are often
used in scheduling job shops.

Finally, network of queues are by no means the only technique to
study FMSs. Although this is perhaps one of the first techniques applied
successfully to design such systems. These last few years, Petri Nets, Max-
Plus algebra, fuzzy sets, expert and decision support systems of various sorts
and philosophies have been conceived and extensive studies are still being
performed to design, assess and manage in real time the extremely complex
problems which arise in the management of flexible manufacturing systems.
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