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M/M/1 QUEUING MODEL WITH ORDINARY
MAINTENANCE AND BREAKDOWNS (*)

by M. BRAGLIA (*)

Communicated by B. LEMAIRE

Abstract. — An M/M/1 System with ordinary maintenance and possibility of breakdowns is
considered from a practical point of view. An appropriate équation for the probability of n units
in the System at any instant of time is written in terms of the Green function of the conventional
M/M/1 model and solved by an itérative technique which imposes a periodic regime state. Some
Monte Carlo simulations are used to assess the accuracy of the itérative process, i. e. verify that it
really converges to the correct solution. Special attention is turned to the analysis of the error that
is introduced if the different breakdowns that may occur during the service interval are replaced by
a single cumulative waste of time. Numerical results are reportedfor the special cases in which this
cumulative breakdown is placed at the beginning or at the end of the service interval, or is uniformly
distributed. To some extent, part of the analysis is deliberately approximated, even ifgood accuracy
is always preserved. The extension to the M/G/l model is also considered.

Keywords: Queuing system, Breakdowns, Green's function.

Résumé. —Dans cet article on propose une approche pratique pour étudier un système markovien
défiles d'attente M/M/1 avec entretien ordinaire et la possibilité de pannes. On donne une équation
convenable pour la probabilité d'avoir n unités dans le système à n'importe quel temps laquelle
est écrite en termes de ta fonction de Green du modèle M/M/1 conventionnel et résolue avec une
technique itérative qui impose un régime d'état stationnaire. Quelques simulations Monte Carlo sont
employées pour prouver la précision du procès itérative, c'est-à-dire, pour vérifier la convergence
à la solution correcte. Une attention spéciale est adressée à Vanalyse de l'erreur qui est introduit si
on considère les pannes qui peuvent passer dans V intervalle de service comme une seule perte de
temps cumulative. Les résultats numériques sont exposés dans les suivantes cas particuliers : quand
on place cette perte cumulative à la fin de l'intervalle de service, au début de cet intervalle ou si
les pannes sont uniformément distribuées. Jusqu'à un certain point, le calcul est intentionnellement
approximatif même si une bonne précision est toujours préservée. L'extention au système M/G/l est
aussi considérée.

Mots clés : Files d'attente, pannes, fonction de Green.
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2 M. BRAGLIA

1. INTRODUCTION

The problem of extending queue models, from the simplest M/M/l to the
gênerai G/G/l, to take account of possible breakdowns of the service facility
with consequent loss of time was already considered in the 1950's. Generally,
the queuing process is considered as a preemptive resumé priority process.
That is, breakdowns are treated as fictitious units of absolute priority with
respect to the real jobs [1, 4, 9, 12], and characterized by inter-arrival and
service times exponentially distributed. When a breakdown oeeurs, i. e. a
fictive job arrives, the real unit that is under service is temporarily abandoned.
It will be reconsidered just after the "breakdown" is served [8]. With such a
technique various kinds of breakdowns have been studied. In fact, a queue
of fictive jobs may be permitted [7, 12] or not [11, 12]. (In the latter case
a breakdown eannot occur when the system is out of order.) Analogously, a
breakdown may be permitted even if there is no unit in the system, or only if
the station is giving service [6, 11], And so on. In this paper, we consider the
problem of breakdowns in an M/M/l model using a quite different and, for
certain aspects, new and convenient approach. Our treatment of breakdowns
is rigorous only in part, but simple and sufficiently accurate for a variety
of problems. To extend its validity to practical situations, an ordinary (i. e.
programmed) maintenance is also introduced in our system model,

The approach is based on the fundamental solution (i e. Green function)
of the (time-dependent) équation for the probability of n units at time t in
a conventional Ml Mil system model and there is no recourse to fictitious
jobs to stimulate breakdowns. Our technique is based on the solution of an
appropriate équation for the probability p (n, t) of n jobs in the system at the
generic instant t. In particular, it permits to calculate p (nf t) at instants of
special interest, e. g. the beginning and the end of the ordinary maintenance,
when the populations in the system are at the lowest and highest levels,
respectively. The required solution is obtained by an itérative process which
imposes a periodic regime of the system with a period of T$+TM, T$ and
TM being the intervals of service and ordinary maintenance, respectively.
However, the system is considered during its temporal évolution and, in
principle, p (n, t) can be obtained at any instant.

The paper is structured as follows. In section 2 the basic model with
ordinary maintenance but absence of breakdowns is presented and the
results of itérative solutions and corresponding Monte Carlo simulations are
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M/M/l QUEUING MODEL 3

discussed. The possibility of a single breakdown with exponential repair
time is introduced in section 3, while in section 4 the possibility of multiple
breakdowns is considered. In the latter case the problem is solved under
the assumption of a constant (average) repair time r . As a first step, the
breakdowns are replaced by a single cumulative breakdown and the relevant
repair time is placed at the end of the service time T$. As regards the
assumption of constant repair times, apart from section 3 it is preserved
in all sections of this paper. In fact, on the basis of our results it appears
that a possible extension of the theory to include times distributed according
to a given law would complicate the calculations with scarcely significant
improvements. Moreover, little of particular interest would be added to
theory and results. On the contrary, the considérations which follow from
the assumption of a single cumulative interruption placed at the end of the
service time T$ appear very interesting. It is evident that the procedure permits
a considérable simplification of the problem, i. e. of considering the repair
time simply as an extension of the ordinary maintenance time T^. In fact,
in this way we return to the model of section 2. For this reason we have
devoted section 5 to the analysis of the limits of such a simplification. The
problem is faced by placing first the total repair time also at the beginning
of the service time 7$, i. e. when the system is in the worst condition to go
out of order, with a queue that is most populated. The distribution pin, f) is
then obtained in a number of cases. The comparison of the solutions relevant
to the two mentioned extreme cases is found of special interest. In fact, it
shows that the discrepancies are generally small. But, as with breakdowns at
the end or at the beginning of T$ the distributions p (n, t) are almost the same,
with better reason one must expect that this is true when the breakdowns are
distributed exactly as they occur. To confirm this conclusion in section 5 it
is also considered a third case with the breakdowns uniformly distributed in
(0, 7s). As we will see, there is almost no différence between this last case
and that with breakdowns at the beginning of the service time. Needless to
say, these results suggest a number of interesting simplifications of the theory
of Systems with breakdowns. In fact, they reveal that complicated rigorous
approaches are not needed since they offer slight improvements over simpler
properly approximated models. Section 5 is concluded with some Monte
Carlo simulations to assess the accuracy of the theoretical distributions. To
complete the analysis, in section 6 the attention is turned to a discussion
of the possible validity of similar results for more gênerai Ml Gil Systems.
Finally, some conclusive remarks are made in section 7.
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4 M. BRAGLIA

2. M/M/l MODEL WITH ORDINARY MAINTENANCE

Consider the single-server M/M/l model with inter-arrival and service
times exponentially distributed. Let X and |ÜL be the corresponding frequencies.
First of all, we want to introducé a programmed maintenance which interrupts
the service for a time TM after each service period T$. Thus, the service rate
{M (t) will have the behaviour given in figure 1.

Figure 1. - Temporal behaviour of the service rate.

Our problem is that of calculating the probability p (n, t) to have n jobs
in the System at the generic instant t and, particularly, at the instant T$+TM

of highest population.
To this end, consider the fundamental solution of the conventional Ml Mil

model which corresponds to the initial value n=i, at time t=0 [5]. We will
give this solution the following form

(1)(l"P)Pn S
p (n , 0) = 8in

where, for the sake of brevity, we have introduced the quantities

= jjL t, p = A//i, Sin = delta of Kronecker

(y/2) n+2k

^n k\(n
k=0

~ !
f Modifiée Bessel fonction 1
1ofthefirstkind J
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M/M/l QUEUING MODEL 5

Of course,

p(n, 7?) =p(n,i?|i, 0) = transition probability from i to n
in the reduced time t?.

Therefore, in the absence of maintenance, for any initial distribution p (l, 0)
we can write that

J ,o )
/-O

oo

\/p (Z, 0) > 0 with ^ p ( / , 0 ) = l
1=0

(2)

Concerning the distribution at the end of the ordinary maintenance, that is
at $s + $M = fJbTs + JJ>TM-> we will have

00 f9

p (n, ês + tf M) = E P (*• ^ ) , A_,„ e-r»** (3)
fc=o ^n ft;-

where XTM = P ^ M - Thus, substitution of eq. (2) into (1) yields

p (n, ^5 + I ?M) = 2 ^ 2 ^ P (fc, ^S U, 0) p (Z, 0) v^ i w y e"p^M (4)
k-ö 1=0 ^ ^

The regime state of our model implies the periodicity condition

-pin 0) (5)

In fact, this distribution is the unknown of the problem, It can be obtained
from eq. (4) by imposing the periodicity condition. A possible and convenient
technique is that of solving eq. (4) iteratively, once the transition matrix
p (n, $5 | Z, 0) is obtained from eq. (1). Some difficulties must be overcome
particularly when calculating the Bessel functions. But good "numéral
recipes" are available in the literature [10]. The procedure is simple and
goes on as follows:

First step

A generic initial distribution p (l, 0) is assumed. For instance, we may
suppose that no unit is in the System at time £=0, in which case

p(J, 0 ) = o
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M. BRAGLIA

Alternatively, the initial distribution may be assumed to be the steady-state
distribution of the Ml Mil model, that is [5]

jp (Z, 0) = op(J, 0) =

is calculated from eq. (2). Then,
S a t the n n a l instant

As a first step, the distribution op(nî
from eq. (3), the distribution op (n, $5 +
can be obtained.

Successive steps

The periodicity condition (5) is imposed. It requires that

ip(l,0)= QP(1,#S + #M)

Then, we return to the first step. The itération ends when

(Jfc-l)P(',O)= kP(h#S + #M)

within the desired précision limits. As an example, in figure 2 we report the
(steady-state) distributions p(n, #5) and p(n, &$ + ^ M ) = p(ni 0) which

4 6 8

NUMBER OF UNITS n

10 12

Figure 2. - Probability distributions p (n, #s) and p (n, $s + ^ M ) of n costumers
in the System at &$ and Î?S 4- ^ M for p = X/fi = 0.5, $5 = 10 and ÜM = 1-

Recherche opérationnelle/Opérations Research
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are obtained for p — 0.5, t?s = 10, §M = 1. Of course, from eqs. (2) to
(4) the probability p (n, $) at any instant $ from 0 to ??s + $ M c a n also
be obtained.

In the special case when the service time $$ is higher than the relaxation
time of the initial distribution p (l, 0), further analytical steps can be made.
In f act, instead eq. (2), we will have that

J, 0)

Thus, from eq. (3), it will follow that

P (n, âs + *M) = E (1 - P) Pk ( \M e-p*M

[n-k)l n k

" ^ =p(n,0)

k=0 [n-k)l n k

k=ö
In this case, eq. (4) yields

(l-p)pne-f>^ E E p(n,#s\l

Notice, as a first immédiate check, that p(n, $s + &M) = p(n> 0) is
normalized to one, as expected. In fact,

P (n, 0S + #M) = (1-P) Pn e~pdM E T ^ T T T = (1 - P) Pn

k=o {n-k)\

k=o n-
Then,

n=0

In the same way, it is easily proved that p(n, $s) is normalized to one.

To conclude it will be noted that the distributions p (n, 0) =p (n, $$+^M)
as calculated from eqs. (4) and (5) for different values of p, $$ and #M? have
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Ö M. BRAGLIA

been compared with the corresponding distributions obtained by Monte Carlo
simulations of 105 samples, i. e, successive time intervals (0, &$ + # M ) - The
agreement has always been quite good. In fact, no différence would generally
be observed between Monte Carlo and theoretical distributions when using
the scale of figure 2. This conclusion is important as not only is confirmed
that our itérative process converges but even that it really converges to the
correct distribution. Anyway, we will return to this subject below (seefig. 5).

3. MIMI1 MODEL WITH ORDINARY AND SINGLE
EXTRAORDINARY MAINTENANCE

Up to this point, we have assumed that our system does not suffer
breakdowns in the interval (0, #$). But we want to generalize the theory
and introducé the possibility of service interruptions. In this case, even when
a single breakdown is permitted, the analytical treatment becomes much
heavier. So, for instance, suppose that for the only possible breakdown

QR (£) dt — 7 e~7* dt = probability it happens in (£, t + dt).

Moreover, let the duration of this extraordinary maintenance be exponentially
distributed with time-constant rfl (For the sake of brevity, when convenient
we avoid to dweil on reduced times. Alternatively, say that here we assume
jx=l). If p\ (n, t) is the probability of n jobs in the system at time t, then

, Ts)

rTs—£ r n f \+\n—k
+ / 7 e"* dt / r,e-* \EP(^TS- t) f^-r^ e~xt dt (6)

where j?(n, T$) is the distribution at time T$ in the absence of breakdown
[see eq. (2)]. Note that, if £ is the instant of breakdown, then:

1. the excess of repair time when t> (Ts~Q is treated as ordinary main-
tenance, and

2. the repair times TR are never permitted to exceed TS+7M-£-

Finally, note that in eq. (6) the repair time is localized at the end of the
service time, that is just before TM- In this way, we are tacitly assuming
that only the value of TR is important, while it does not matter when the
breakdown happens. In other words, the service interval (0, T$) rnay be
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M/M/l QUEUING MODEL 9

replaced by (0, TS-TR). Alternatively, we could localize TR at the beginning
and assume (TR, TS) as service interval. We will discuss the limitations of
such assumptions in section 5.

In the context of an approximate theory of M/M/l model with ordinary
maintenance and breakdowns, we can further simplify the approach by
introducing a mean repair time T, defined as follows (assume

fTs

T=<t>= ƒ 7e"7 t d£ I rrte"97* dt
fis f*

= / 7 6 " ^ d£ !
Jo Jo

7e
7-?7

and then giving eq, (6) the form

n,Ts)

±(n, Ts) + (1 - e-rTs) ± p (k, Ts - r)
fc=0 l™ - ^ ) !

But the assumption of constant repair time permits an extended analytical
treatment of the problem, while preserving a relative formai simplicity of the
theory. This will be done in the successive sections.

4. M/M/l MODEL WITH ORDINARY MAINTENANCE AND
BREAKDOWNS WITH CONSTANT REPAIR TIMES

In principle, there is no difficulty to extend the preceding theory to include
the possibility of more than one breakdown with exponential inter-occurence
and duration times. However, both from the theoretical and practical points
of view, the situation can be greatly simplified if the assumption is made of
constant repair time. Let us extend, then, our model to include the possibility
of k breakdowns in the interval (0, Ts), each one causing service interruption
for a time r. Even in this case, the system may be approximated by an M/M/l
model with the ordinary maintenance increased from $M to I?M + kr. In this
section we will accept this point of view, but we will return to the question
in section 5.

At this point, for our purposes it becomes necessary to calculate the mean
number of breakdowns per service interval or, even better, the probability
QK (T$) of k breakdowns in (0, Ts). This will be done under the assumption
that the probability of a breakdown occuring in (t, t+dt) is 7 e~~7* dt. Note

vol. 27, n° 1, 1993



10 M. BRAGUA

that the question is not of immédiate solution. In fact, if r —» 0, we may
use the Poisson law

But for r ^ 0, it is necessary to take account that a second breakdown can
only occur in the time interval (t+r, T$), if the first one occured at time t.
In fact, there is no service between t and H-T. This complicates the theory,
particularly if more than two breakdowns are possible in (0, T$). A further
difficulty originates from the possibility that the repair time ends between T$
and TS+TM- This happens when a breakdown occurs in (T$~rf T$). In this
case, only a fraction of T must be subtracted from T$ while the remainder
must be neglected, L e. considered as ordinary maintenance. Finally, it will
be convenient to assume that r < TM, in order to avoid that the repair time
extends beyond

4,1. Probability Qk of k breakdowns in the time interval (0,

The probability that in (0, t) no breakdown occurs is

independently of T.
As regards the probability of one breakdown in (0, t), we have

Jt-T

As one can see, this équation considers the probability that a breakdown
occurs in (£, %+dÇ) and no breakdown occurs both in (0, £) and (£+T, t)9 for
any ^ G (0, t). Moreover, it is taken into account that

In fact, it is certain that further breakdowns cannot occur if £ G (t — r, t).
Thus, after some calculations, it is found that

Qa (t) = 7 ( t - r ) e-^*-T) + c-^*-T) (1 - e-^T)

Recherche opérationnelle/Opérations Research
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It is interesting to observe that if we treat the second term of the right
hand side as a correction, to the first order in yT we have

which corresponds to assuming that

Q1(t) = f e -
Jo

or, alternatively, that

Qo(t - (£ + r)) = e - ^ - « + T ) ) , V£ G (0, t)

If the above expansion is extended to the second order, we have

which represents alreadyt a very good approximation to Q\ (f) if yj is small.
By similar arguments, for t > r, Q2W c a n be given the form where terms

t—2r f pi—rf pi

1 ƒ

t-T ) Jt~2r Ji+r

= ->2( t-2 T)2
 e-7(t-2r) + { 7 ( i _ 2 r ) + 1 } e-7(t-2r)

In this case, as first and second approximations we may assume

of the order (7T) 3 /3! have also been neglected.
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12 M. BRAGLIA

In the same way, for t > 3r,, it is found that

e-7(«-3r)

At this point, we could proceed to the calculation of the succesive Qk (t)
9$.

In this respect, the following recursive équation could be useful

Qk(t) = ƒ Qo(0 Qk-i(t - ( £ + ( * - l

even if it is not difficult to infer the expression of Qk (t) from those found
for k < 3 given above. However, in practice, it is quite reasonable to assume
that breakdowns are not so frequent, in virute of the ordinary maintenance,
which is introduced just to this end. Under these conditions, a convenient
approximation is that of assuming the simple form

Otherwise, we can also use the second order représentation and write that

This assumption is also justified by the fact that the expressions of Q^ (t) are
not complete. They require t>kj. For simplicity, we have not considered the
possibility that (fe — l ) r < t < kr. ïn this interval, it can be proved that

3-

Recherche opérationnelle/Opérations Research



M/M/l QUEUING MODEL 13

But we do not expect these events to have significant probability and much
importance under our conditions, otherwise one must use the rigourous Qk (t).

For our calculations, we have adopted the rigorous représentations of
the Qk (tys and the approximations of various orders given above without
observing any appréciable différence. From the numerical point of view, the
normalization condition £& 0^=1 is satisfied, in any case, with sufficient
approximation (say, from about 10"4 to 10"5 for reasonable values of 7, r ,
Ts)- To give an example, in figure 3, we report some distributions Qk (T$)
obtained for different values of 7 and r .

1 0 "

T=l, 7=0.1

T = 0 . 1 , 7=0.05_

1 2 3 4

NUMBER OF BREAKDOWNS IN (0..10)

Figure 3. - Probability Qk (Ts) of k breakdowns in the service interval (0, Ts) for
different values of the repair time (T) and the breakdown frequency 7. (Arbitrary units.)

4.2. Mean time of service réduction for k breakdowns

Having calculated the Qk (Ts/s, we are now interested to answer a further
question, that is: how much is shortened, on the average, the service time?
This problem can be reduced to that of calculating the mean service-time
réduction relevant to the latest breakdown. In fact, if many breakdowns are
possible, only the last one has a repair time T which may extend beyond 7$,
in the interval of ordinary maintenance.

If we assume that all instants of service are equally probable for breakdown
(in accord with the assumptions of section 4.1), in case of single breakdown

vol. 27, n° 1, 1993
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we write that,

1 ~~ e——^— « T~ T ~ probability of breakdown in (0, Ts - r)

1 ^ ^ — = 7jr- ~ probability of breakdown in ( T$ — r, 75)

In the first case, the service réduction time is r as the breakdown is completely
repaired in (0, Ts). On the contrary, in the second case, part of the repair
time falls into the ordinary maintenance interval (Ts, T$+TM) with an average
réduction of service that, for small T'S, is given by

LTs

TS-T

dfyy being the probability of breakdown in (£, £ + d£), V£ e (Ts -r,Ts).
Thus, the mean time r\ of service that is lost because of a single breakdown
can be given the approximate form

T* — T T T T T

+n - T +
 r + 2 T * - T 2 T* ~ p l "

where T* = T5. Notice that rx w T5 /2 for TS=T and TI=T in the limit
Ts -+ 00.

When assuming that two breakdowns are possible, only the second one
may eventually end in the ordinary maintenance. In this case, the équation
for Ti is assumed to remain the same, but with T* = (Ts — T ) / 2 . Thus,

r2 = r + n(T*) = 2 r - - — = 2 r - - ^—^ « r + rexp ^ - ;

In the genera! case we will have that T* — (Ts - (k - l)r)/k and

kr

r0 = 0, fc = 0

This loss of service will occur with probability Qk (Ts). Note that, in
principle, the (extended) exponential form of T* we have written here can be
used for any Ts>(k-l)r, even if we are tacitly assuming that T£>/:T and not

Recherche opérationnelle/Opérations Research
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too small. On the contrary, for (k — ï)r < T$ < kr with k = 1 and 2, the
behaviour of r^ is much better represented by the équation

In fact, if Ts = fi is the (itérative) solution of the équation

_Ts-(k- l ) r
(k

a very good représentation of T> is found to be the following

T 5 - ( f e - l ) r

= l, 2

(Jfe
for (jfc - 1) r < T5 <

This can easily be shown through Monte Carlo simulations.

4.3. Results

At this point we have all the necessary éléments to complete the analysis of
section 2 and calculate the probability of n jobs in the System at the reduced
time $s — ftTs when breakdowns are possible. To this end, let t?̂  — JJLTJ

and

Then, as an extension of eq. (2), we can write that

oo

(8)

which is the probability we were looking for. Note that p(n, $5) is given by
eq. (2). Thus, instead of eq. (3) we will have that

\n—i
Ü_ e-P*M ( 9 )

Substitution of (8) into (9), yields the equivalent of eq. (4), that we obtain
when only ordinary maintenance is considered.

vol. 27, n° 1, 1993
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5. ANALYSIS OF THE APPROXIMATIONS

As will be noted, eq. (7) assumes that the total time lost to repair
breakdowns may be simply added to $M- AS a conséquence, in case of j
breakdowns, the total service time reduces from $5 to #5 — $*?. Needless to
say the procedure is approximate as in the interval (0,#s) the distribution
p(n, $) is not constant and, in particular, it changes the probability of empty
queue when a breakdown occurs. (Note that a breakdown does not produce
queue effects as long as there is no unit in the system). The entity of the
approximation deriving from the use of eq. (8) can be assessed if we have
recourse to the opposite extreme case of placing the cumulated repair time
at the beginning of the service time. In other words, assume now that there
is no service in f 0, #*M, there is service in f $ | , #5 ] and, finally, that there
is an ordinary maintenance in ($s, $5 + # M ) . In this case, instead of (7)
we have that

1=0
! >

F I -J

, 0 ) —r-j-^A—- e~p 3 \p[ n . i?5 — t ^ U , 0 ) ( 1 0 )

where it is taken into account that

As regards the équations for p*(n5 #5) and p*(n, $5 + $ M ) Ï they preserve
the same forms (8) and (9). In fact, the only variation concerns the transition
matrix M{n^ j ; &$) which must be calculated from (10) instead of (7).

At this point, it becomes interesting to analyze the différences which
follow from the use of eq. (10) instead of eq. (7) in the calculation of
p(n5 $s + $j\/f) — P*(^Ï $ S + # M ) - TO this end, in figure 4 we report
a comparison between the distributions obtained in two cases, for p=0.5,
$$ = 10 and &M = 1. Concerning the breakdowns, it is assumed that
jjir — I ? M / 2 = 0.5. The mean time between extraordinary interruptions
is given the value /x/7 = 2$$ — 205 i. e., on the average, we have one
breakdown in 2$$. As one can see, the différences are generally small and
often do not seem to justify the recourse to still more complex formulations,
even if they can improve the effect of the interruptions caused by breakdowns.
These différences are still reduced for lower values of \h/y or |XT. For instance,
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Figure 4. - Probability P{n, ês + $M) as obtained for p=0.5, ês = 10, êM - 1. As regards
breakdowns, fXT=0.5 (i. e., breakdown repair time of ( ? M / 2 ) and 7/|x=0.05 (i. e., on the
average, one breakdown in 2ês) with various distributions of the cumulative interruption.

under the conditions of figure 4 but with p/r=0.1 the discrepancies disappear.
But there is another interesting observation. Up to this point the cumulated
interruption TR produced by breakdowns has been placed at the end or at the
beginning of the service time. As a third case we can distribute the waste of
time TR uniformly in (0, #5). This is equivalent to reduce the value of JUL to
a new value JJL* in such a way that the following condition

is satisfied. Thus, this case is equivalent to consider a conventional M/M/l
model without breakdowns with service rate //*. This means that we have
only to substitute

= — ê and M

to $ and p in eq. (3), or eq. (4), to obtain the distribution in the présence of
breakdowns uniformly distributed over the service time. As will be noted, in
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Figure 4 the distribution relevant to this case is also reported. The resuit of
the comparison is particularly interesting as it reveals how this distribution
is not mid way between the two corresponding distributions obtained with
cumulated interruption paced at the beginning or at the end of the service
interval (0, $$). In f act, distributing the waste of time uniformly does not
appear so different from placing it at the beginning. But this can be justified.
At time û = $s the probability of an empty queue is higher than that
at any other time and, in particular, at $ = 0. (See, for instance, fig. 2).
An interruption at the end of the service interval drastically decreases the
probability of an empty queue at the end of the maintenance period while
the probability of n>l units is increased. However, the effect of interruptions
is almost negligible, under our conditions, if the cumulated interruption is
placed at the beginning of the service interval or is uniformly distributed
during the service. The reason is that, at any time, the probability for the
queue to be empty is not zero. Thus, for a certain fraction of time the
System is not busy. In a sense, in the absence of breakdowns this time is
lost. The présence of interruptions caused by breakdowns tends to reduce
the probability of empty queue and is in compétition with the activity of the
system which, on the contrary, tends to empty the queue. If we permit the
system to serve after an interruption which has increased the queue, most
probably it will be working at full rate and will restore soon the normal
situation. In fact, under our conditions, the présence of breakdowns only
reduces the time of absence of units in the system. It does not matter very
much when the interruptions occur, at least if they do not occur too close to
the end of service. In this case, as mentioned, no time is left to the system
to reduce (if not to empty) the queue and a substantial lowering of p(0, #5)
and p(05 Ï?5 + # M ) will be observed.

To complete our analysis, a Monte Carlo simulation assessed the validity
of the distributions p(n, $) in the présence of breakdowns. As an example,
in Figure 5 we report a comparison between Monte Carlo and theoretical
distributions p(n, $s + $ M ) as obtained for p=0.5, #$ = 10 and $ M = 1)
and 105 samples. The two distributions assume absence of breakdowns
[see eq. (4)] and cumulative breakdown at the end of the service interval
[see eqs. (7) to (9)], respectively. As one can see and already mentioned,
the agreement is quite good, which confirms that even in the présence of
breakdowns our itérative process converges to the correct solution. Of course,
this also confirms the validity of our approximations. But the same agreement
is also observed for different distributions of the cumulative breakdown
interruption. However, for the sake of clarity, in figure 5 we have avoided
to report further points as nothing would be added to the conclusion.
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Figure 5. - Comparison between Monte Carlo and theoretieal distributions p(n. 'as
for p=0.5, es — 10 and $M = 1. AS regards breakdowns, we have assumed an interruption
of $ M / 2 per single breakdown and a rate of one breakdown per 2$s-

6. EXTENSION TO THE MODIFIED M/G/l MODEL

To this point our considérations have been restricted to an M/M/l model.
This has been done first for the sake of simplicity, Secondly, our model
permits a complete analytical treatment of the problem and to give explicit
forms to results (e* g., probability distributions) which hardly could be
written under gênerai conditions. However, the conclusions of our analysis» as
reported in section 5, when considered a posteriori, turn out to have a much
more gênerai validity than spelled out so far. In particular, the interprétative
considérations of section 5 relevant to the advantages to cumulate the time
lost in breakdowns at the beginning or at the end of the service period are
clearly independent of the particular service law for any given rate /x. In
other words, using a simple MIMIl model we really have been able to obtain
results that certainly can be applied to Ml Gil models properiy modified to
take account of breakdowns.

7. CONCLUSIVE REMARKS

The study of an MIMIl system with ordinary maintenance and including
the possibility of service interruptions (extraordinary maintenance) caused
by breakdowns, can be based on the (numerical) itérative solution of an
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appropriate équation for the probability p (n, t) that n units are in the System
at the generic instant of time t. The équation for p (nt t), in turn, can be
obtained from the fondamental solution of the conventional M/M/l model,
that is the probability p(n, t\k, 0) of n costumers at time t conditioned to the
assumption that the population is k at the initial instant of time. Comparisons
with Monte Carlo simulations confirm that the itérations really converge to
the correct solutions.

As regards interruptions of service, while there is no difficulty to take
account of the ordinary maintenace, the rigorous treatment of the wa.ste of
time caused by breakdowns can make the theory much more complex. In
part, the analysis becomes simpler if the réparation times are assumed to be
constant. In this case there is no particular difficulty even to assume that
a number of interruptions are possible during the service time. Of some
interest are the conclusions that are obtained when some limiting cases are
considered for the temporal distribution of breakdowns. In particular, it is
observed that the différences between the distributions p (n} t) obtained under
the assumptions that all the breakdowns occur at the beginning or at the end
of the service period, are generally small but can become significant under
certain conditions. On the contrary, the différences between the p (nf t)'s
obtained under the assumption that all the breakdowns occur at the beginning
of the service interval or are uniformly distributed over the service time,
always remain small. The analysis suggests a number of approximations
that, in practice, can simplify the rigorous but more complex treatment of the
problem of breakdowns (even for modified MI Gil models) and also throws
light on their limits. The validity of the approximations is also assessed by
means of Monte Carlo simulations.
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