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AN ALGORITHM FOR THE MINIMUM VARIANCE POINT OF A
NETWORK (*)

by Pierre HANSEN (*) and Maolin ZHENG (2)

Abstract. - An O (mn log n) algorithm is proposée to détermine a point of a network with m
arcs and n vertices which minimizes the variance of the weighted distances to all vertices.

Keywords : Network; variance measure; distance.

Résumé. — On propose un algorithme en O(mnlogn) pour déterminer un point d'un réseau
avec m arcs et n sommets qui minimise la variance des distances pondérées à tous les sommets.

Mots clés : Réseau; variance; distance.

1. INTRODUCTION

Traditionally, single facility location on networks (see Handler and
Mirchandani [4], Tansel, Francis and Lowe [11], [12], Hansen, Labbé, Peeters
and Thisse [5], Brandeau and Chiu [2] for surveys) has been concerned with
measures of efficiency (e. g. sum of distances to ail vertices) or of effectiveness
(e. g. maximum distance to any user). More recently, increasing attention has
been given to equity aspects of location. This gives rise to several new
location problems, in which an equity criterion based on the dispersion of the
distribution of distances from the facility to ail users is maximized or mini-
mized. Halpern and Maimon [3] consider the following two criteria:
(i) minimize the variance of the distribution of distances, (ii) maximize the
Lorenz measure of the distribution of distances. They compare location on
trees according to these criteria with location at the médian or the center.
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120 P. HANSEN, M. ZHENG

Maimon [9, 10] proposes an O(n) algorithm to minimize the variance and
an O (n3 log n) algorithm to maximize the Lorenz measure on a tree network
with n vertices. Kincaid and Maimon [7, 8] study variance minimization
problems in triangular and in 3-cactus graphs. Hansen and Zheng [6] present
O(n2\ogri) and O(mn2logn) algorithms for maximizing the Lorenz measure
on trees and on gênerai networks respectively. In this note, we consider
variance minimization for gênerai networks and obtain an O (mnlogn) algo-
rithm; this complexity of course reduces to O (n2 log n) for the case of planar
networks, which is frequent in practice.

We fîrst recall définitions and introducé notation, following [1], [6] and [9].

A topological arc is the image of interval [0, 1] by a continuous mapping ƒ
from [0, 1] to R3 such that ƒ (0) ̂ ƒ (9') for any 9^0' in [0, 1]; a rectifiable
arc is a topological arc of well-defined length. A network is then defined as
a subset TV of R3 which satisfies the following conditions: (i) N is the union
of a finite number of rectifiable arcs; (ii) any two arcs intersect at most at
their extremities; (iii) N is connected. A tree is a network without closed
curve.

The set of vertices of the network consists of the extremities of the arcs
defîning N, and is denoted by V= { vl9 . . ., vn}. We use E to dénote the set
of arcs defîning JV, and assume |i£| = 7w. The length of each arc [vt, vj\eE is
given, and denoted by iv. v.. Each point s e N belongs to some arc of N but s
may or may not be a vertex. For any two points su s2e[vh vj\, let [sl9 s2]
dénote the subset of points of [vh vj\ between sx and s2 and including them;
(su s2) dénote the subset of points of [v^ Vj] between sx and s2 and not
including them. Half-open sets are defined similarly. A path P(sl9s2)
joining su s2 BN is a minimal connected subset of points of TV containing sx

and s2. The length of a path is equal to the sum of the length of all its
constituent arcs and subarcs. The distance d(su s2) between sxeN and s2eN
is equal to the length of a shortest path joining st and s2.

Let s be a vertex of N, [u, v] be an arc of N and x be a variable point
along [u, v]. We assume that x also dénotes the length of the subarc [u, x],
Thus JC = O means x coincides with u. It is easy to see that the distance d(s, x)
has the following properties: (a) it is continuous and concave; (b) let

then d(s, x)^d(s, u) + x for xe[05x*] and d(s, x) — d(s, v) + lUt v — x for
xe[x*, lUt J.
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A positive weight w (v) is associated with each veV. For a subset of vertices
F i V, let w(V) = YJ W(V). Without loss of generality, we may assume that

veV'

w(V)=l. The médian function for xeN and V'^V is defined by
zm(x, V)= YJ vv(u)rf(x, v). For simplicity, we use zm(x) for zm(x, V). The

veV'

variance measure for xe N is then defined by

*,(*) = I w(v)[d(x9v)-zm{x)]\
veV

and we want to locate a point xv such that

for all xeN. We call such a point xv a minimum variance point. Clearly, the
variance measure is continuous along an arc.

An interior point x of [w, V]EE is said to a bottleneck point if there is a
vertex vk such that there are two shortest paths from vh to x, one of them
containing [w, x] and the other containing [x, v]. We say that vk and x are
relative to each other, Since any vertex is relative to at most one bottleneck
point on each arc, the number of bottleneck points of N is at most mn.
Bottleneck points play an important rôle in the sequel.

In the next Section, we investigate some basic properties of the variance
measure for gênerai networks. An O(mn\ogri) algorithm to détermine a
minimum variance point for a gênerai network is given in Section 3.

2. PROPERTIES OF THE VARIANCE MEASURE

For xe[u, v], let

V(u; x)={re V:d(t, u) + x£

B(x; [u, v]) = {teV:d(t, v) + l([u, v])-x = d(

The following properties easily follow from the above définitions:
(i) t e V(u\ x) if and only if d(t9 x) = d(t, u) + x.

(ii) te'V(u; x) if and only if d(t, x) = d(t, T>) + /([W, v])-x<d(t,
(iii) B(x, [u, v]) P\B{y, [w, v]) = 0 for xi-y and x, ye(u, v).
(iv) B(x9 [w, v])^V(u; x) for xe[w, v].
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122 P. HANSEN, M. ZHENG

Let xu x2, - . ., x k - i dénote the bottleneck points of [u, v] ranked by
increasing distance from w; let xo = 0 and xk — l([u, v]), i.e., x0 is equal to u
and xk is equal to v; / ^ ( X - i , xt] (z= 1, 2, . . ., k) and I0 = [x0, x0]. For
simplicity, we restrict our discussion to given [u, v] and Jf(i= 1, 2, . . ., k).
The propositions and theorems obtained below are true for any arc of N.

The following four propositions and their corollaries are easy and given
without proof; they are proved in [6].

PROPOSITION 2 .1 : Let x be an interior point of arc [w, V] of N. Then x is a
bottleneck point if and only if there is a vertex te V such that

x

COROLLARY 2 .1 : Let x be an interior point of arc [M, V] of N, Then x is a
bottleneck point if and only ifB(x; [w, v]

COROLLARY 2.2: If x is a bottleneck point of[u, v], then B(x; [u, v]) is the
set ofvertices relative to x.

Since for x e [M, V],

teV

v, V(u;x))

M, v])w(V(u; x)) + (w(V(u; x))~w(V(u; x)))x. (1)

we need to know how V(u; x) changes when x moves along [u, v]. The
following propositions describe this.

PROPOSITION 2.2: For xelt (l^i^k), V(u; x) is unchanged.

PROPOSITION 2 .3: Let y be a bottleneck point of [u, v], Then V(u; y) and
V(u; y + z) are different, where Q<E^mm{xi — xi-1:i=l, . . ., k}.

In view of these two propositions, we can dénote V(u; x) by V(u\ /t) and
V(u; x) by V(u; /f) when xelv Clearly, for xelt and v'eV{u\I^
d(v',x) = d(v', u) + x.

PROPOSITION 2.4:

V(u; I0)^V(w, Ix)^ . . ,^V(u; Ik)

and

V(u; ƒ,)= V(u; ƒ , _ , ) - B(Xl.u [u, v]) ( i= l,...,k).

Recherche opérationnelle/Opérations Research



AN ALGORITHM FOR THE MINIMUM VARIANCE POINT... 123

COROLLARY 2.3: V(u; I0)cV(u; / ^ . . . c V(u; Ik).
As zm(x) is continuous for xe[u, v], from (1) and Proposition 2.2, we have

(2)

for x^^x^Xi, where b^z^u; V(w, I$ + zm(V(u; /,)) + /([", v])w(V(u; It))
and at = w(V(u\ Id)-w(V(u; IJ) for i=l, 2, . . ., k.

So zm(x) is a piecewise linear function for xe[u, v]. We may therefore
express the variance measure as follows.

teV

for xi_l^x^xi(i=l, 2, . . ., k).
Then, using

(i) w(V{ 7
(ii) 1 - ^ =

(iii) at+l=

and the expression of bt, we expand and simplify (3) as follows:

zv{x) = cix
2-\-dix-\-ei for xi_1^x^Lxh (4)

where

Ï3), (5)

dt = 4[w(V(u; Id)zm{u; V{u; IJ)-W(V(K /,))zm(t;) V(u; I,

-w(V(u; Q)w{V(u; IJ)l([u, v])], (6)

e,.= X w(/)rf(/, w)2+ Z w(t)d(t,v)2-bf
teV{u;

)2+ 2 /([«, t,]) zm (T,, T^TQ) + w (V(ënj)I([u, v])2, (7)

for i=l , 2, .. . ,*:. Let

gi= Y. w(t)d(t,u)2+ X w(/)<i(r,t;)2. (8)
teV(u;Ii) t s V <w. j ^ j

vol. 25, n° 1, 1991
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Then

[u, v])zm(v, F ( ï ^ ) + w(F(SrQ)/([«, ^])2- (9)

It follows from (5)-(9) and the expression of bt that

PROPOSITION 2.5: For any given i, if zm(«, V(u\ IJ), zm(v; V{u\ It)),

w(V(u; IJ), and gi are known, then zv(x) for xi_1^x^xii can be constructed
in constant time,

Moreover (4) implies

PROPOSITION 2.6: For any given ze{ l , 2, . . ., k}, the function zv(x) is a
poîynomial function of de g ree at most 2 along the interval [x£_l5 x j , and the
coefficient of x2 is greater than or equal to 0.

Finally Proposition 2.6 leads to the following result:

THEOREM 2.1: zv(x) is convex along each [xi^1, xj Moreover if c^O, then
the minimum zv(xf) ofzv(x) along [x£_ls JCJ occurs at d^lc^eix^^ jct), other-
wise it occurs at J ^ ! or xt.

Proof — The conclusion follows from the convexity of zv(x) along
IX_l5 xj . The expression of xf when ^ / O is obtained just by setting the
first derivative of zv (x) equal to 0. D

The following proposition shows how to obtain zm(u; V(u; IJ),

zm(v, V&ldX w(V(u; It)l and gi from zm(u; V(u; I^j), zm(v, V(u; !,_,)),
w(V(u; Ii-i))9 and gi-1. Indeed updating leads to an algorithm with lower
complexity than if each ït is considered repeatedly.

PROPOSITION 2.7:

(i) zm(u, V(u; /i)) = zM(«, K(M; / i_1))-zm(«, B(xt.l9 [u, v]));

(ii) zm(v, V(u; Id) = zm(v, V(u; I^t)) + zm(v9 B(xt_l9 [u, v]));

(iii) w(V(u; IJ) = w(V(u; I^^-wiE^^, [u, v])), and

(iv) ft = ft-!+ I w{t)[d{t, v?-d{u u)2].

Proof - From Proposition 2.4, V(u; It)= V(u\ It-X)-B(x^u [u, v\) and
V(u; It)= V(u; I^J \JB(Xi-u [u, v]), we can obtain (i) —(iv) easily. D
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3. ALGORITHM

Before giving the main algorithm, we fîrst do some preliminary calculations.

(1) Calculate the distance matrix D(d(u, v))for ail pairs ofvertices of N.

(2) Rank the bottleneck points of each arc [u, v] as xt<x2< . . . <xk-l9

and calculate B(xt, [w, v])for z= 1, 2, . . ., k— 1.

These opérations can be done in O(mn\ogri) time, using n times Dijkstra's
algorithm with a heap structure to store temporary labels, and m times
Heapsort to rank the bottleneck points.

The principle of the algorithm is to compute zv{.) for each I{ along an arc
[u, V] by updating using Proposition 2.7, then fïnd the minimum of zv(.)
along I{ by Theorem 2 .1 . Rules of the main algorithm are the following,

Algorithm MVP (Minimum Variance Point)
0 ) zoPt *~ M (A suitable large number); xopt +- 0;
(2) For [M, v]eEdo

Let xu x2, . . ., xk_ t be the bottleneck points of [M, V] ranked by increasing distance from
[u, v]; x0 = 0; xft = ƒ([M, V]); /<- 1;

(a) calculate V(u; It), V(u; IJ, zm(u, V(u; / J ) , zm(V(u; ÏJ), gt and w(V(u; IJ);
zv(x) — clx

2 + dlx-\re1 for O^x^x^ calculate xj and zv{xX)\
if ztt (JCÎ) <z t then z ^ z (xj) and x t ^- x*;

(6) whilez</cdo
(0 ^(«» n » ; / , + i)) = ̂ (» , V(u;Id)-zm(u, B(xit [u, v]));
(ii) zm(v, V(u; ItVx)) = zm(v, V(u; fy) + zm(v, B(xit [u, v]);
(iii) w(V(u; Ii+1))=w{V(u; IJ)-w(B{xu [M, V])) and

(iv) ^ + ! - ft + X w (0 (rf(/, z;)2 - rffc. «)2);
teB(ïj, [u, »]) . _

(v) calcuiate c i + 1 , rfi+1 and ei+1 by (i)-(iv); z[?(x) = cI.+1x2 + ̂ + 1 x + ei + 1 for ^ 1

calculate x* and zv (xf);
if zv (xf) <zopt then zopt *- z (xf ) and xopt +~ xf;

(vi) I 4 - / + 1
end while

end For;
return zopt and xop t .

THEOREM 3.1: Algorithm MVP détermines a minimum variance point in
O(mnlogn) time.

Proof. — Theorem 2 .1 , and Proposition 2.7 ensure the correctness of the
algorithm. Now we do the complexity analysis. For each arc [u, v], time is
O (n). The reason is as follows. In (a), since

V{u\ Ix)=V(u; x) = {teV:d(t, u) +

vol 25, n° 1, 1991



126 P. HANSEN, M. ZHENG

for any given xelu we can obtain V(u\ /L) in O (ri) time. Similarly for the

remaining calculations in (à), time is O (ri). In each itération of (b), (i)-(iv)

require O(\B(xh [M, V])\) time, where | * | is the cardinality of *; (v) takes

constant time. So (b) requires 0( £ \B(x; [M, v])\) = O(ri) time.
xe{xt, . . . , xk^t)

Since the preliminary calculations take OQnnlogri) time, MVP détermines a

minimum variance point in O (mn log ri) time.
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