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A PRIMAL-DUAL ALGORITHM FOR A CONSTRAINED FERMAT-
WEBER PROBLEM INVOLVING MIXED NORMS (*)

by H. IDRISSI (*), O. LEFEBVRE (X) and C. MICHELOT (1)

Abstract. — The aim of this paper is to present a primal-duaî aigorithm for Jînding a solution
to the constrained Fermat-Weber problem involving mixed norms. Affine, polyhedral and other
convex constraints are permissible, The procedure, with very simple updating rules générâtes
séquences globally converging to an optimal solution and a dual solution. It can be viewed as a
décomposition method giving the possïbility to make parallel computations. Numerical results are
reported.

Keywords : Mathematical programming, Location theory, Fermat-Weber problem, Optimality
conditions, Primal-dual aigorithm, Partial inverse method.

Résumé. — Nous présentons un algorithme primal-dual pour trouver la solution sous contraintes
d'un problème de Fermat-Weber avec normes mixtes. Des contraintes affines et polyédriques
peuvent être prises en compte ainsi que d'autres types de contraintes convexes. L'algorithme qui
engendre des suites globalement convergentes vers une solution primale et une solution duale utilise
des règles de mise à jour très simples. Il peut être considéré comme une méthode de décomposition
permettant d'effectuer des calculs parallèles. On donne des résultats numériques.

Mots clés : Problème d'optimisation, Problème de Fermat-Weber, Conditions d'optimalité,
Algorithme primal-dual, Méthode de l'inverse partiel.

1. INTRODUCTION

The classical single facility location problem or so-called Fermat-Weber
problem, has been studied extensively from both theoretical and computa-
tional points of view.

It is to find a location x of a new facility which minimizes the sum of the
transportation costs, assumed to be proportional to the distance, between x
and the known locations of a finite family of existing facilities.

(*) Received April 1987.
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A lot of various resolution methods have been proposed to deal with the
unconstrained problem with distances measured by Zp-norms9 1 ^ / K + OO,
polyhedral norms and mixed norms.

However, while more realistic, the convex constrained problem of locating
the new facility x in some given région only, has received much less attention.
Moreover most methods are not completely satisfying and are often difficult
to implement particularly due to the nondifferentiability of the problem.

Five kinds of approaches have been investigated:

— Linear programming methods for problems involving only /x-norm and
linear constraints [13, 19].

— Methods of fitted functions, with the aim to eliminate the nondifferenti-
ability, which solve an approximated problem by standard nonlinear program-
ming routines [7, 10].

— Dual methods solving a dual problem either by a nonlinear program-
ming package or by a dual décomposition procedure [4, 8, 9].

— Subgradient methods [1],

— Other methods which minimize the objective function on the boundary
of the set of points which are visible from the unconstrained optimal location
[2, 16, 18].

These approaches do not really take into account (except ^-norm and /2-
norm cases) the special structure of the location problem—e. g. the fact that
the objective function is a sum of convex functions involving norms —and
most of the time do not easily permit mixing of different kinds of norms and
constraints (linear and nonlinear). Moreover some of them cannot be used
in dimension N>2.

The purpose of this paper is to present a primal-dual algorithm for solving
a mixed norm problem with possibly different kinds of convex constraints
(affine, polyhedral and other convex constraints) with simple updating rules.
The procedure, providing dual variables, allows to make a sensitivity analysis
from an economical point of view. It extends results of [11] to the constrained
case and can be viewed as a primal-dual décomposition method implementa-
ble on a parallel computer.

Recherche opérationnelle/Opérations Research



CONSTRAINED FERMAT-WEBER PROBLEM 3 1 5

To begin with, we recall the mathematical formulation of the problem
which is the following:

Minimize £

where for each Ï = 1 , 2 , . . . ,n, ateUN is the known location of an existing
facility, CÖ; is a positive weight and y» is a norm.

The set of constraints is defined as an intersection of a family of closed
convex sets Cp j = l , 2 , . . ,,m with a linear subspace Co (possibly equal to
the whole space IR*).

If m = 1 and Co = UN we obtain a problem with a single constraint (e. g. a
polyhedron described by its extreme points). If ro>l, and if each C, is a
half-space we obtain a problem with a polyhedral constraint defined by a
family of linear équations and inequalities as studied in [4], [8] and [9], When
C0 = UN, m = n and CJ = {x/Yy(x — aJ)^rJ.} we obtain the case studied in [2],
[16] and [18]. If n= 1, problem 0* is reduced to the classical problem of finding
the projection x of at (with respect to the norm yt) onto the convex set C,
the most usual case involving the Euclidean norm.

However, it is to be noted that our formulation does not handle nonconvex
constraints as considered in [3].

The paper is organized as follows:

— In section 2, we give a dual formulation of the problem and optimality
conditions.

— In section 3, the primal-dual algorithm is described via the Partial
Inverse Method recently introduced by Spingarn [17].

— In section 4, details about the implementation are discussed and numeri-
cal results are reported.

2. DUAL PROBLEM AND OPTIMALITY CONDITIONS

First of all, let us recall that the conjugate ƒ * of a closed convex function
ƒ defined on UN and valued in R is defined by

vol. 22, n° 4, 1988
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<(.,.) denoting the usual inner product. Moreover the equaüty
ƒ (x) -f ƒ * (y) = < x, y > holds if and only if y belongs to the subdifferential
3/(x)of/atx.

In the sequel we always assume that

where C® dénotes the relative interior of Cj or merely Cj if Cj is polyhedral.
This constraint qualification assumption will be useful later.

Now problem 9 is equivalent to the following unconstrained optimization
problem

» m

Minimizeq>(x)= £ a>£Y.-(*-*,•) + £ Xc/*)

where Xc(.) is the indicator function of Cj defined by Xc-M — O if xeCj
and %c.(x) = + 0 0 otherwise,

À dual problem to & can be obtained by different techniques but an
extremely fruitful and gênerai concept is to embed the given problem @ in a
family of convex problems 0>(u) depending on parameters whose effects on
the problem are of interest

#>(u): Inf$(x;u)
X

where the parameter vector u ranges over a linear space U and <J> is a proper,
closed convex function satisfying $ (x; 0) = 9 (x).

Then problem 0* can be rewritten as

0>\ Inf<I>(x;0)
X

and the dual 2 to 0 is defined by

<D* meaning the conjugate of O with respect to x and u. The following result
(see [5] or [15]) expresses the duality and gives links between 9 and B.

Recherche opérationnelle/Opérations Research



CONSTRAINED FERMAT-WEBER PROBLEM 317

THEOREM: Assume that 0 and B both have a finite solution and that there is
no duality gap. Then x is a solution to SP and v is a solution to S if and only if

In our location problem it is natural to perturb the known location of
existing facilities (hence the objective function) and to perturb the constraints
too.

For that, let u = (a, p) be a parameter vector which lies in
ir=(R*)flx([R*)m+1 equipped with the classical Euclidean structure and con-
sider the function <ï>:

n m

O (x; (a, P)) = £ «h 1i (* - <h+«.) + £ Xcj (* + 3j)
î = l j = 0

w i t h

a = ( a 1 > a 2 î . . . , a B ) , a f € l R N
5 f = 1,2 , . . . , n

By a straightforward calculation we obtain:

( ; ( q , ) )
if I f t + Z ^ O and roeCi

t = l 7=0

+ oo otherwise.

As we have y f = %B?, Bf denoting the unit bail associated with the dual
norm yf of the norm yh we obtain the dual problem

n m

Maximize - £ <ai>qi}- £ Xc/o)

It is very easy to see that <I> is proper, closed convex jointly in x, oc and P
and vérifies ® (x; 0) = cp (x).

As <p(x) tends to infinity when x tends to infinity in RN, problem 9 has al
least a finite solution x0. Then we have Oeôcp(xo), Moreover, thanks to the

vol. 22, n° 4» 1988
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constraint qualification assumption we get (see [14])

Therefore there exist ^ e ( UN)n, qt e (% ôy,- (x0—at) for i=1,2, . . ., n,
rG(UN)m+\ roeCi rj€Ô%Cj(x0) for ; = 1 , 2 , . . . , m, such that

n m

r i = ^ * T*"s ÎMpues that (q, r) is dual feasible. Using the properties

of conjugate functions we obtain <p(xo) = — £ < % € i ) ~ X Xc (rj) whieh
i=i j=i

proves that (q9 r) is a dual solution and that there is no duality gap.

Consequently x is a primai solution and (q, r) is a dual solution if and
only if

<ï>(x;0)+€>*(0;(g5r))=0

or in other words

j = 0

m « m

providing that x e f i C,, (^t/o^eSf for each i, roeCo, and ^ î i+ ^ ^ = 0
i=o î=i i=o

which assures that all the terms in the preceding équation are finite.

Using the last equality and rearranging the terms in the summations we
obtain

E e>« hi (x - at) + y f ~ at

Recherche opérationnelle/Opérations Research



CONSTRAINED FERMAT-WEBER PROBLEM 319

Observing that d%c.(0 — ̂ c• (•)> where Nc.(x) dénotes the normal cone to
j at x, the optimality conditions become

m

j = 0

ft6a>j3Yi(x-öi), i = l , 2 , . ..,11

rj€NCj(x% 7=1,2, . . . , m

3. PRIMAL-DUAL ALGORITHM

In this section our aim is to give an algorithm based on duality. To this
end, let us introducé the space H=^(UN)n+m whose éléments are denoted by

n + m

x = (xt\ xteUN
9 equipped with the scalar product <£»>>> = X (*I>.VI>- The

optimality conditions previously given can be written as:

findxe^, peB, pçT(x)
where

À f -v r~ TI Y (*Y Y Y^ V C C* \
SX jAtlijA \J^% A, . . . 5 - * ^ ? A t V/0 ƒ

n + m

= lpeH,

1=1

Ti(x) = (oiôyi(xi—a^ ï = l , 2 , . . , , n

We can easily see that T, defined on H, is a maximal monotone multifunction
and that A and B so defined are two complementary subspaces of H.

Now from Spingam [17], these optimality conditions are equivalent to

peB, OeTA(x+p)

where TA is the partial inverse of T with respect to A.

vol 22, n° 4» 1988
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TA is a (maximal monotone) multifunction defined by its graph T in the
following way:

zA and zB denoting the orthogonal projection of z onto A and B respectively.
This means that if z is a zero of TA [i, e. satisfies 0 e TA(z)] then the pair

(zA,zB) satisfies the optimality conditions and zA (resp. zB) is a solution to
^(resp. to B). Such a zero of TA can be approached by making use of the
proximal point algorithm which générâtes from any starting point z0 the
séquence

f+l=(!+Tj-Hn (3.i)

The projections xfc=z^ and p — z\ of ? onto A and B give two séquences
{xk} and {p*} which converge to a primai and a dual solution respectively.
In f act, the main problem as underlined in [16] is to know if this method is
implementable. To see that, we need to express itération (3.1) in terms of
the multifunction T rather than TA.

The proximal itération (3.1) can be rewritten as

which is equivalent to

Put

It follows that

&k)A and i ^ %

By the définition of TA, we get

pfksT{xfk)

meaning that x/k is the image of zk = x/k+pfk under the proximal mapping
associated with T or equivalently that p'k is the image of ? under the proximal
mapping associated with T"1.

Recherche opérationnelle/Opérations Research
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Now, examining the définition of T, the relation p'k e T(x/k) is equivalent
to:

pf € (ùi ôji (xj* - ai, i = 1,2, . . ., n

and we have

xk—at +p\ —pfk e NBf {p^/m^ i = 1,2, . . . » n

Then on one hand, for i= 1, 2, . . ., w, p't
k is uniquely determined by

p? = (ùt Proj Bo [(xk - at

and we get the corresponding xf by x'k = xkjrpk—p/k.

On the other hand, for j = 1,2, . . . » m» x^+i is uniquely determined by

and we get the corresponding p/k
+j by p/

n\j=xk+pk
+j-x

/k
+j.

To summarize, the algorithm for solving the constrained problem is the
following:

Starting point: choose

p such that X! />? e c i*

Step k: compute for i= 1, 2, . . ,, n

. p/k = ©j ProjBo [(xk - at

compute for j = 1,2,, , ., m

.xfk
+j=Pro]c.(x

k+pk
+j)

n+j Xn+j

vol. 22, n° 4» 1988



322 H. IDRISSI, O. LEFEBVRE, C. MÏCHELOT

and update

kE p't
k)l(n + m)\

t=i / / J

4. IMPLEMENTATION AND NUMERICAL RESULTS

First, Iet us remark that xk+l and p k + 1 can be determined without comput-
ing x-\ 1 = 1,2, . . ., n and p'f+p j= 1,2, . . . , m. Indeed, since
we have (x'k)A~xk — ip/k)A and then

with

iï ^ {pk
n+j-x>n\

This remark is significant when large size problems for which the dual
variables are numerous, must be solved using a micro-computer with limited
memory.

Another crucial point is the problem of computing the projections onto
the balls B? and onto the convex sets Cr While any convex constraint can
theoretically be handled, in practice Cj is often either a polyhedron, possibly
a halfspace, or a bail associated with the Euclidean norm (see for instance
[4, 16]). In dimension two, spécifie routines can be used for finding the nearest
point of a polyhedron. Concerning the projections onto Bf we refer the
reader to [11]. In dimension iV>2, a very efficient procedure which has been
given by Mifflin [12] can be used.

Finally, as in the unconstrained case [11], our method provides a rule to
stop the itérations via lower and upper bounds of the optimal value of
the objective function cp. As an illustration we shall study three types of
constraints.

Recherche opérationnelle/Opérations Research
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In the following and according to the notation of section 2, the vector of
dual variables /? will be decomposed into two vectors qke(RN)H and rke(!RN)m

of dual variables associated with faciiities and constraints respectively.

4.1. Affine constraints

Consider the case m—O and Co = {xeMN,Mx = b} where M is an sxJV
matrix with full row rank s. Owing to a change of variables we can suppose
without loss of generality that b = 0. Then the dual problem S becomes

n

Maximize - £ < at, qt >

Applied to this particular case, the algorithm générâtes a primai feasible
séquence {xk} and a dual infeasible séquence {qk}.

Consequently a (converging) upper bound Mk of the optimal value is
straightforwardly given by

Put

Without restriction, we can suppose that ock>O. Then the "modified" dual
variables qkj&k are dual feasible and a (converging) lower bound of the
optimal value is given by

This allows us to get a rational rule to stop the algorithm with little
computational effort.

vol 22, n° 4, 1988
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4.2. Polyhedral constraints defîned by extreme points

Consider the case for which m= 1, C0 = UN and C1 is a (bounded) polyhed-
ron whose set of extreme points denoted by Ext(C t) is supposed to be known,

It may be seen that the conjugate of the indicator function of Cx is given
by

Hence the dual & becomes

n

Maximize — £ i ai> %i ) ~~ Max { < r, e >, e e Ext (Cj)

3 "

I

In this case, while the algorithm is neither primai feasible nor dual feasible,
a stopping rule can be defined by making use of a lower bound mk and an
upper bound Mk of the optimal value in the following way.

Let a* = ?î

We define m* and Mk by

fl.-> «î > + M a x { < r ' e >>e 6 E x t ( c i )

4.3. Polyhedral constraints defîned by inequalities

We consider now the case m>\> C0 — UN and Cj = {x, <x, w ^ ) ^ ^ } ,
j= 1,2, . . . ? m, where Wj is a vector of MN, Uj^O and 6y.6 R.

As the conjugate %*• of the indicator function of Cj is given by

+ oo otherwise

Recherche opérationnelle/Opérations Research
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the dual problem & becomes

n m

Maximize - £ < ̂  4t > ~ Z h bj

Applied with such constraints the algorithm is again primai infeasible and
dual infeasible. A lower bound of the optimal value is straightforwardly given
by

with otfc = Max {y? (<$M, i = 1,2, . . ., n }.

An upper bound could also be obtained by projection of the séquence
m

{ xk} onto C= O Cj in the same way as in the previous case. However, from

a practical point of view, the choice to represent a polyhedron by inequalities
rather than by its extreme points is often made to avoid computing the
projections onto C (e. g. in dimension JV>2). In such a case, it would be
better to generate an upper bound differently. For instance if one has at
hand a point x0 satisfying < xOi Uj > < bj for all j , we can explicitly obtain the
unique point yk of the boundary of C which belongs to the segment of line
joining x0 and xk, and evaluate the objective function at yk.

4.4. Numerical results

The algorithm was programmed in FORTRAN and has been implemented
using a MATRA 550-CX computer at the Dijon University Computing
Center. It was tested on several problems in the plane. Some results are
summarized in Tables I to III. The times indicated in seconds do not include
input/output times. Even when lower and upper bounds, as studied in the
previous section, were available the stopping rule used was

... l-v|||<io-
vol. 22, n° 4, 1988
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with | | |^| | |= Max )|z,|| , ||.|| denoting the Euclidean norm in R2.
1=1, . . . ,« + m

The tests concerning a family of problems (numbered from 1 to 16)
in vol ving the Euclidean norm proposed by Schaefer and Hurter [16] and
Watson-Gandy [18] are reported in Table L The results are also compared
with those obtained by Hansen, Peeters and Thisse [2] for five of these
problems. Even taking into account the différence of computer our results
are always efficient while generating in addition the dual variables.

In Table II we give tests concerning the following problem involving
three polyhedral norms and polyhedral constraints. We consider the set
{aua29...9a€} with ^=(0 ,1 ) , a2 = (0,2), a3=(2,3), a4 = (2,0), % = (3,2),
a6=(3,1) and the weights oo1 = 1 + /2, Ö>2 = 0)3 = . . . =tö6 = 1. The distance
between a point x and facility ax is measured by an octagonal norm (the
uunit bail of which is a regular octagon inscribed in a circle with radius one)
for 1=1,2, by the norm Y(JC)=(1/2) (x^ + lx2) for i = 3,4, and by the l1-
norm for i = 5,6.

Constraint C imposed on the solution is the intersection of five half-
planes defined (using notations of section 4.3) by u1 = (l9~ 2), bt = —3,
t*2 = ( + l , - l ) , h~~h % = ( U X £3 = 5, «4 = (0,1), h=l/2, « 5 = ( - l , 0 ) ,
b5 = 0. This set is a polyhedron whose set of extreme points is
Ext(Q = {el9e29...,e5} with ^ = (0,3/2), c2 = (l,2)f *3 = (2>3), e4 = (3/2,
7/2), e5 = (0,7/2).

The set S # of optimal locations is a segment of line joining e2 and the
point with coordinates (1/3, 5/3). If C is considered as a single constraint
represented by Ext(C) it can be easily verified that the optimal dual solution
is made up of the dual variables ^ = (1 , ^5 +1), ^2 = (1,1-^/2) , qz = (-1/2,
- 1 ) , £4 = ( - l / 2 , 1), 3 f 5 =(- l , - 1 ) , 36 = ( - l , +1) associated with al9 a2, a3,
a4, a5 and a6 respectively, and of the dual variable r= ( l , — 2) associated
with C. It is interesting to note that the optimal location obtained always
belongs to the relative interior of S&.

The différence of behavior of the algorithm when constraints are repre-
sented in different ways is also and more especially illustrated by the following
example. We consider the set {a1,a2,a3} with ^ = ( " 2 , 2 ) , a2 = (—3, —1),
a3 = (0,0), the weights (ÙX =<Ö2 = œ3 = 1 and as constraints the segment of line
joining the points e1 = (2,2) and e2 = ( —3, —3). The set S<? of optimal loca-
tions is the segment of line [xf, x|] with xf=(0,0) and xf = (— 1, — 1).

The algorithm has been tested with the three following possible représenta-
tions of the constraints.

Recherche opérationnelle/Opérations Research
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TABLE II

Number itérations. . .

CPU time ( s e c . ) . . . .

Optimal v a l u e . . . . . .

Optimal l o c a t i o n . . . .

Dual variables

Constraints
with

inequalities

206

1.8

13.4142

x=(O.67O7, 1.835 3)

qt = ( 1.0000, 2.4142)
<22=( 1.0000, -0 .4142)
g3 = (-0.5000» -0 .9999)
§4 = ( -0 .5000 , 1.0000)
45 = {_l.QO0O, -0 .9999)
g6 = ( -1 .0000 , 1.0000)
rx = ( 1.0000, -2 .0000)

r2 = (-2.10~6» 5.10"6)
r3 = (~2 .10" 6 , 5.10"6)
r 4 = ( - 2 . 1 0 ~ 6

s 5.10"6)
r5 = ( -2 .10~ 6 , 5.10'6)

Constraints
with

extreme points

131

1.18

13.4142

x = (0.5301, 1.7650)

^ = ( 1.0000, 2.4142)
q2 = ( 1.0000, -0.4142)
g3-(-0.5000, -1.0000)
g4 = (~0.5000, 1.0000)
^ 5 - ( -K0000 s -1.0000)
ç6 = (-1.0OOO3 1.0000)
r=( 1.0000, -2.0000)

— Représentation 1:

— Représentation 2:

m=l ,C 0 =

— Représentation 3;

Results are présentée in Table III. It is worth noting that with the représen-
tation 3, the location problem is solved very efficiently. This is due to the
f act that in this case the convergence of the algorithm has been proved to be
finite [6]. Indeed the interior, with respect to the subspace COi of S^ is non
empty and the dual solution is unique, given by <h=(l, — 1), <22 = (MX
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TABLE III

329

Constraints

Number of
itérations. . . .

CPU time (sec.).

Optimal
location. . . . .

Optimal value.. .

Dual variables. .

Représentation 1

54

0.14

x=(-0.5Q411, -0.50418)

8.00
qx = ( 0.9998, -0.9998)
q2 = ( 0.9998, 1.0000)
€3 = (_1.0000, -0.9998)
r=(-0.99945 0.9994)

Représentation 2

51

0.16

(-0.58803, -0.58812)

8.00

«!«( 1.0000, -1.0000)
q2 = ( 1.0000, 0.9998)
g3 = (-0,9998, -1.0000)
r 1 = ( 4.9408, -4.940 8)
r2=(-5.9416, 5.9416)

r3=( 1.10"4, -1.10"4)
r4 = ( 1.10~4, -LIO ' 4 )

Représentation 3

15

0.06

(-0.53694, -0.53694)

8.00

*i~( 1-. - 1 0
**«< L, 10
q3 = ( - l . , - 1 . )
!-!=( 0., 0.)
>2 = ( 0 - » 0

q3 = (—l, —1% r 1 = r 2 = (0,0), Consequently the main Theorem of [6] works
and the algorithm has finite termination. Note that again the optimal location
found lies in the relative interior of S«.
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