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A NON-DUAL SIGNATURE METHOD FOR THE ASSIGNMENT
PROBLEM AIMD A GENERALIZATION OF THE DUAL SIMPLEX

METHOD FOR THE TRANSPORTATION PROBLEM (*)

by Konstantinos PAPARRIZOS (*)

Abstract. — A combination of a new kind of dual relaxation with the signature idea provides a
non-dual signature method for the assignment problem. The dual relaxation is also extended to
transportation problems.

The algorithms, which consist of consequitive stages each one being a set of simplex type pivots,
can be considered as a generalization of the dual simplex method. From the computational point
ofview, the algorithms possess a new monotonie property, namely, during a stage ofthe algorithms
the per unit improvement of the objective function is non-decreasing.

Keywords : Assignment problem, Transportation problem, Dual simplex method, Signatures,
Rvoting.

Résumé. — Une combinaison d'un nouveau type de relaxation duel avec Vidée de la signature
fournit une non-duel méthode de signature pour le problème d'assignation. La relaxation duel se
prolonge aussi au problème de transportation.

Les algorithmes qui sont formés par des stages consécutives dont chacun d'eux étant un ensemble
simplex de type de pivot, peuvent être considérer comme une generalization de la méthode de
simplex duel Du point de vue computationy les algorithmes possèdent une nouvelle propriété
monotone, autrement dit, durant un stage des algorithmes l'amélioration par unité de la fonction
objective est non décroissante.

Mots clés : Problème d'assignation, problème de transportation, méthode de simplex duel,
signatures, pivotation.

1. INTRODUCTION

The assignment problem is perhaps the most studied and well solved
problem in mathematical programming and numerous algorithms have been
discovered to solve it in polynomial time. It has been generalized to
bottleneck, quadratic and algebraic cases and has many applications. Some
algorithms, initially constructed for the assignment problem, have been
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270 K. PAPARRIZOS

extended to network flow problems and even to gênerai linear programming.
A classical example in this case is Kuhn's [15] so called Hungarian method.

Solution procedures for the assignment problem vary from network flows
[9, 10, 11], recursive [20], cost parametric [19], relaxation [12, 14], primai dual
[6, 15, 17, 21], primai simplex [5, 13, 18] and dual simplex methods [2, 3, 12].

Dual in nature algorithms have (at the present stage of knowledge) better
worst case bounds than primai in nature methods. An efficient version of
Kuhn's [15] Hungarian method (see [16, p. 205]), a hybrid algorithm due to
Bertsekas [6], a relaxation method due to Hung and Rom [14] and three
recently discovered signature methods (Balinski [2, 3] and Goldfarb [12]) have
worst case bound O (n3). All these algorithms are dual in nature. On the
other hand, the primai simplex algorithm due to Roohy-Laleh [18] and the
algorithm due to Hung [13], which is based upon Cunningham's [7] strong
feasible trees (see also Barr et al [5], who call such trees alternating path
bases) run in O (n5) and O (n5 In A) time respectively, where A is the différence
between the initial and the final values of objective. An exception is an
efficient version of Balinski's and Gomory's [4] primai algorithm due to
Cunningham and Marsh [8], which runs in O (n3) time.

The signature idea has been introduced by Balinski [1]. The same author
used this idea later to construct two particularly simple and efficient algo-
rithms (Balinski [2, 3]). Both algorithms are dual simplex methods and run
in O (n3) time. Balinski [3] reports that preliminary computational studies are
very encouraging for his algorithms. In addition, the method in [3] includes
a theory of strong dual feasible trees with remarkable properties.
Goldfarb [12] used the signature idea inductively and developed a relaxation
O (n3) algorithm, which produces an optimal solution to the k x k problem
from an optimal solution to the (fc — 1) x(fc —1) problem.

A signature of a basic tree (solution) to the assignment problem is the
vector of its column or row degrees. Signature methods work as follows.
They start with a dual feasible tree. Then, choosing properly the edge to be
deleted, construct a séquence of dual feasible trees and stop when a tree with
a desired signature is found. The desired signature is of type (2, 2, . . ., 2, 1),
and quarantees primai feasibility of the tree (Balinski [2, 3]). Since dual
feasibility is kept throughout the computation, the final tree is also dual
feasible and therefore it is an optimal solution to the assignment problem. It
is obvious that dual feasibility is not required throughout the computation.
What is really needed, is dual feasibility of the first tree having the desired
signature.
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GENERALIZATION OF DUAL METHOD FOR AP AND TP 2 7 1

Motivated by this observation we investigated whether dual feasibility can
be relaxed. Our effort resulted in a new dual relaxation procedure, which
can be seen as a generalization of the dual simplex method for network flow
problems. The algorithms constructed in this way, consist of consécutive
stages. Each one of these stages is a set of pivots that resemble to the pivots
of the dual simplex method. The algorithms start with a dual feasible tree
and assure that the first tree in every stage is also dual feasible. A stage is
initialized by defining properly a set of edges, which are candidates to be
deleted in subséquent itérations. We call this set "candidate set" and the
edges in it "candidate edges". The itérations are similar, in a sense, to the
itérations of the dual simplex method, particularly in choosing the non-tree
edge to enter the basis. When the entering edge is adjoined to the current
tree, it détermines a unique candidate edge, which is deleted to construct the
adjacent tree. In that sensé our algorithms look like a primai simplex method;
first a non-tree edge is adjoined and then an in-tree edge is deleted. The stage
is completed when ail candidate edges are deleted. Intermediate trees in a
stage are not dual feasible, except possibly in the case of dual degeneracy.
When the outcome of the algorithms is a primai feasible tree, then, this tree
is an optimal solution. This is because the primai feasible tree cornes out
after the completion of a stage. This is always the case for full dense problems.
Otherwise, the algorithms stop when no edge eligible to enter the basis exists,
indicating that the problem has no optimal solution. This case may happen
when sparse problems are considered. When ail stages consist of a single
itération the algorithms coincide with the dual simplex method. An interesting
new monotonie property possessed by the algorithms is that the per unit
improvement of the objective function during the itérations of a stage, is
nondecreasing.

In paragraph 3 we combine the dual relaxation procedure with the signature
idea. In particular, the set of candidate edges consists of edges that can be
deleted by Balinski's [3] compétitive dual simplex algorithm. For this reason
the reader is advised to be aware of the results in [3]. In paragraph 4 we
show that the nxn assignment problem is solved in at most (n— l)(n —2)/2
itérations and in at most O (n4) time. The generalization to transportation
problems is presented in paragraph 5. This is accomplished by introducing
two types of stages. Section 6 describes how sparsity is handled. The algorithm
for transportation problems is easily extended to minimum cost transhipment
problems. However, we have not been able to use the dual relaxation proce-
dure in phase one. That is the reason why the algorithm for transhipment
problems is briefly described in the last section, where some properties
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272 K. PAPARRIZOS

and ideas for future research are also presented. The next section includes
preliminary results.

The main purpose of this paper is to present a new approach to attack
network flow problems. We believe that this approach deserves further atten-
tion for three reasons.

(1) Since it is in the earliest stage, future research can be initiated. The
algorithms are very flexible in choosing the candidate set and the edge to be
deleted. From our perspective, the three most interesting open research
problems are: (i) Can the procedure be generalized to upper bounding net-
work flow problems? (ii) Can the procedure be incorporated into a phase
one? (iii) Is there any variant consisting of a single stage? (2) The approach
seems promising from the computational point of view. The new monotonie
property, which accompanies the procedure (at least) as long as it is applied
to network flow problems, seems that it may reduce the average number of
itérations. In addition, ad vaneed techniques similar to those used in [2, 3, 12]
that transform signature methods into O (n3) algorithms, can be used to
reduce the number of comparisons per itération. Note that the main work of
algorithms for network flow problems is done on comparisons. Moreover,
since the largest the candidate set the faster the algorithms, effectiveness is
expected in large scale problems. (3) The algorithms construct paths to the
optimal solution passing outside the feasible région. In our opinion this fact
is very important from the theoretical point of view (and probably from the
computational). It is well known that there are always shortcuts to the
optimal solution passing through the infeasible région. We consider the results
presented here as the first step towards constructing such algorithms.

2. PRELIMINARIES

Consider the full dense assignment problem

(AP): minSfZjCyXy, s.t. Itjxij=l, E,-xu=l, x„ è 0, iel, jeJ,

where /={1 , 2, . . ., n} is the set of row nodes (in the figures they are drown
as circles), J—{1, 2, . . ., n} is the set of column nodes (in the figures they
are drawn as squares) and ctj are real numbers.

A basic solution to (AP) can be equivalently represented by a spanning
tree in the bipartite graph G = (I, J, E), where I is the set of row nodes, J the
set of column nodes and E = {(i9j): iel, jeJ} is the edge set. A spanning
tree of G contains exactly 2 n — 1 edges. Sometimes we will call spanning trees

Recherche opérationnelle/Opérations Research



GENERALIZATION OF DUAL METHOD FOR AP AND TP 2 7 3

simply trees or bases. To every spanning tree, T, there are associated the
primai variables xip iel, je J, the dual row variables u = (ul, u2, • . ., un), the
dual column variables v = (vu v2, . . -, vn) and the reduced costs, wip iel, je J
denoted by xu(T), «£(T), Vj(T) and wo.(T) respectively.

Consider first the primai variables. If an edge (i, j)e T, it is basic, otherwise
nonbasic. Similarly a primai variable xtj is basic (nonbasic) if (i, j) is basic
(nonbasic). The values xu(T) are determined as follows. Set first xij(T) = 0
for every nonbasic variable. Then, compute the values of basic variables so
that équations of (AP) are satisfied. It is well known that the values x^ÇT)
are integers and easily computed recursively. The values of dual variables are
again easily determined by solving recursively the system of équations

It is easily verified that u^T) and Vj(T) are integer valued whenever all costs
ctj are integers. With the dual variables at hand the reduced costs are directly
computed via the relations

wij(T) = cij-ui(T)-vj(T), iel, jeJ

and they are integer valued whenever the costs are integers.

A spanning tree, T, is said to be "primai feasible" if xtj(T) ^ 0 for iel,
je J and "dual feasible" if w^T) ^ 0 for iel, je J, Primai simplex algorithms
decrease (not always strictly) the objective function moving from one primai
feasible tree to an adjacent one. Dual simplex algorithms increase the objective
function moving between adjacent dual feasible bases. Primai and dual
simplex algorithms differ among each other in the way the adjacent trees are
constructed. A primai simplex algorithm adjoins first an edge (g, h)£T to
the current primai feasible tree and then deletes an edge (fc, l)eT\J(g9 h)
chosen so that the adjacent tree is also primai feasible. On the contrary, dual
methods delete first an edge (fc, J)eT and then adjoin an edge (g, h) chosen
so that { r - ( / c , 0 } U (g, h) is a dual feasible tree.

A pivot opération on the current tree, T, consists in constructing the
adjacent tree, T, and in Computing the values x^ÇF), ut(T\ VjÇF) and
Wij(T'). These values are easier computed from the corresponding values
associated with T. The procedure is the same for primai and dual algorithms.

Consider first the primai variables. T [J (g, h) contains a unique cycle,
O (g, h)9 that necessarily includes edge (g, h) $ T. Since graph G is bipartite,
O (g, h) contains an even number of edges. Therefore, we can label adjacent
edges in <P(#, h) so that one is "minus" the other "plus". The deleted
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274 K. PAPARRIZOS

edge (k, l) ^ (g, h) belongs in <D(g, h), and it is labeled minus. Clearly,
T' — {TU (g, h)} ~ (k, /) is a spanning tree. The values of the primai variables
associated with the new tree T are given by

xy (T) = x y (T) - £, if (i, j) e O (g9 h) is minus,

= xy (T) + e, if (i, j) e<ï>(g,h) is plus,

= xl7 (T), otherwise,

where e = xH(T). Figure 1 illustrâtes these opérations.

Figure 1. — A spanning tree T; plus-minus labeling of edges in $>(g, h)
and values of new primai variables x^iT').

Consider now the remaining variables. T ~ (k, l) consists of two subtrees.
The one, T7*, contains the row mode k, the other, Tc, contains column mode /
(see Fig. 2). The entering edge is chosen so that geTc and heTr. Setting
$ = wgh(T) the values of new dual variables are given by the relations

M,(r)=w«(n i e r ;

These opérations are illustrated in Figure 2. Using relations (1) we can
easily verify that

(2)

y(T) = wv(T)-8, ieT, je T,

= Wy(T) + 8, l e T , 7 6 7*,

= wy (T), otherwise.

A basic solution to (AP), which is primai and dual feasible is an optimal
solution (by the duality theorem of linear programming). The per unit increase
or decrease of the objective function is wgh(T). Also, it is easy to see that the
value of the objective function changes at each itération by the amount
xgh(T')wgh(T). In dual simplex algorithms it is always wgh(T)^0. Conse-
quently, an increase of the objective function occurs if the adjoined edge
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Figure 2. — A spanning tree T and subtrees Tr, Tc;
values of new dual variables; (g, h) adjoined edge, (k, l) deleted
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(#, h) is chosen so that xgh(T') ^ 0. Since for the deleted edge (k, l\ which is
first determined and has label minus, it is xkl(T) = e < 0, (g, h) must be
chosen so that it has label minus. This fact is accomplished by choosing
(g, h) between the edges (i,j) such that ieTc,jeT\ Now, using relations (2)
it is easüy verified that dual feasibility of T is quaranteed by choosing (g, h)
via the relation

wgh (T) = min {wy (T) : i e T\ jeT). (3)

To summarize, a dual simplex algorithm deletes first an edge (/c, /), xkl(T) < 0
and then adjoins an edge determined by (3). The procedure is repeated and
stops when a primai feasible tree is found.

Reasoning similarly we can see that a primai simplex method adjoins an
edge (g, h), wgh(T) < Ö, to the current primai feasible tree T and then deletes
another edge (/c> t)eQ)(g, h\ xkl(T) ^ 0, chosen so that (k, ï) has label minus
and (g, h) has label plus.

DÉFINITION 1: We say that a pivot opération on T is dual if the deleted
and adjoined edges are both minus.

3. THE NON-DUAL SIGNATURE METHOD

Our signature method is a variant of Balinski's [3] compétitive (dual)
simplex algorithm. It constructs rooted trees that have precisely the same
primai structure as Balinski's strong dual feasible bases. The root of the trees
is always row node one and it is kept fixed throughout the computation. The
root directs the edges away from it. If an edge (i, j)e T is directed from row
node i to column node j it is called "odd", otherwise "even". An edge or
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276 K. PAPARRIZOS

node of T is "higher" than a second edge or node (and the second is then
"lower") if the first is in the path joining the second to the root.

Given a tree, T, the column signature is the vector a = (al, a2, . . ., an) of
its column node degrees (Balinski [2, 3]). The row signature b = (bl9 b2,
bn) of T is similarly defined.

DÉFINITION 2: If T is a rooted tree satisf ying, (i, j) e T and even, implies
xtj(T) ^ 1, and (i,j)eT and odd, and not an edge (1,/) with j of degree 1,
implies xtj ^ 0, then Tis said to be a "strong basis".

Recall now that Balinski's [3] strong dual feasible trees are our strong trees
(as described here) with the additional condition that they are dual feasible.
Consequently the following Lemma 1 holds for strong bases (for the proof
see [3]).

LEMMA 1: If T is a strong basis that contains a column node j of degree at
least 3, then x y (T) ^ — 1 for the unique odd edge (i, j)eT.

The initial tree, T, has row signature b = (n, 1, 1, . . ., 1) and it is con-
structed as in other signature methods. It consists of n edges (l,j)eT,
vvij(T) = 0 for7e J, found by setting ^ ( T ^ O , vj(T)=^clj; one edge (i, r)eT
for each i # 1, wir(T) = 0, found by setting

u{ (T) = cir -vr(T) = min ; (cy - Vj (T)).

Each stage of the algorithm starts out with a dual feasible strong tree T.
Then, some edges of T are chosen in the following manner. Start tracing
down the paths of T starting from the root. The first time a column node, j ,
of degree at least three is met, delete the unique edge in the path incident to
column node;. Dénote this edge by (i, j) and call it a "candidate edge". The
deletion of the candidate edge cuts off from the root a subtree Tj which is
called "candidate subtree". The candidate subtree Tj is removed from T and
another path in the subtree containing the root is traced down determining a
new candidate edge and a new candidate subtree. The procedure is repeated
and stops when the subtree including the root contains no odd edge of degree
at least three. Figure 3 illustrâtes the candidate edges and subtrees of a strong
basis. Notice that a candidate edge (Ï, J) is an odd edge in T and that the
path joining column node j to the root contains no other column node of
degree at least 3.

The procedure described above is only used to détermine the candidate
edges and subtrees. No candidate edge is immediately deleted. The choice of
the edge to be deleted is made after the entering edge has been determined.
Dénote by (iu j \ ) , (i2, j 2 ) . . . (zfc, ;fc) and Th, TJ2, . . ., Th the candidate edges
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©
Figure 3. — A strong basis; (2,7),

(1,6) candidate edges; T6, T7 candidate subtrees.

and subtrees respectively and set T_ = \J Tjr and T+ = T~ T_. At the first

itération of a stage, the adjoined edge (g, h) is determined via the relation

): ieT_JeT+}. (4)

Edge (g, h) is then adjoined to T and the unique cycle O (g, h) is determined.
Q>(g, h) contains necessarily a unique candidate edge, say (ia,jj. Candidate
edge 0CTS ja) is deleted in order to produce the adjacent tree T, which may
not be dual feasible. At the next itération, the new subtrees T_ = T_ ~ Ty

and T+ = T+{J T^ are computed. TL and T+ are used in (4) to détermine a
new entering edge (g\ h'). <f>(g\ h') contains a new unique candidate edge,
which is deleted. The procedure is repeated until all candidate edges are
deleted. Then, the next stage of the algorithm starts. The algorithm stops
when no candidate edge can be found. Observe that Lemma 1 quarantees
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278 K. PAPARRIZOS

that candidate edges exist as long as the current tree contains column nodes
of degree at least three.

Notice that for full dense assignment problems there are always edges
eligible for entering the current basis. This is not true for sparse problems.

4. JUSTIFICATION OF THE ALGORITHM

In this section we show that the algorthm finds the optimal solution in at
most (n— l)(n — 2)/2 itérations. In addition to Lemma 1 we will use the
following two lemmas from Balinski [3].

LEMMA 2: If a spanning tree contains a unique column node of degree one,
then it is primai feasible.

LEMMA 3; If T is a strong basis and a dual pivot is made by deleting an
edge (i, j) with x y ( T ) ^ — 1 and j a column of degree at least 3, then the
adjacent tree T is also a strong basis.

Our algorithm performs always dual pivot opérations (in the sense of
Définition 1). Since the first tree is a strong basis, by Lemma 3 all trees
constructed by the algorithm are also strong bases. Suppose now that the
algorithm stops. Then, there is no candidate edge, meaning that there is no
odd edge (i,j) incident to a column node of degree at least 3. Consequently,
all column nodes are of degree 2 or 1. Since there are 2n—l edges the
algorithm stops with a strong basis, T, containing a unique column node of
degree 1 and by Lemma 2, T is primai feasible. Therefore we have shown
the following.

THEOREM 4: The algorithm stops with a primai feasible strong basis.

To prove that the algorithm terminâtes with an optimal solution to (AP)
it remains to be shown that the last strong basis is dual feasible. To this end
it suffices to show that the first tree in every stage is dual feasible. Recall
that the algorithm stops always at the beginning of a stage.

Let T\ Tk+1 be two consécutive strong bases in a stage of the algorithm.
Dénote by Tk the candidate subtrees associated with the strong tree Tk and
set

Tk_ = Uj Tk
p T\ = Tk ~ Tk_.
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Also, set

: ieT\jeTk_}.

DÉFINITION 3; Given a subtree, T', of a spanning tree, T, we say that T' is
dual feasible if wu(T) ^ 0 for every edge (i, j) such that ieT\ je T.

LEMMA 5; Let Tk, Tk+1 be two consécutive strong bases in a stage of the
algorithm. IfTk_ is dual feasible and 5fc ̂  0, then 5fc + 1 ^ ôfc.

Proof: Let T\, be the candidate subtree eut off from Tk. Since

(5)

= min{al5 a2}y

where

: Îe7*_+1,jeT*},

) : ieTk_+\jeTk}.

For i e Tk_+ 1 = Tk_ ^ T\ and ; e Tk
+ it is wy (T

k + 1)= wtj (T^. Since Tfc_+1 c Tfc_
we conclude that ax ̂  ôfc. Candidate tree T\ contains the column node to
which the deleted edge is incident. Using relations (2) we get
wij(T

k + 1) = wiJ(T
k) + Sk for ieTk_+\ jeT\. Since Tk_ is dual feasible,

wy(7*) ^ 0, i ' e r ^ 1 c Tfc_,7eTÎ c Tfc_. Therefore, it is a2 ̂  ôfe and by (5) it
is 5k + 1 ^ 5k completing the proof. A

LEMMA 6: Let Tk, /c = l, 2, . . . be consécutive strong trees in a stage o f the

algorithm. IfT1 is dual feasible, then 5'k + i ^ - 8 f t , fe = l5 2, . . .

Proq/; Let T} be the candidate subtree eut off from T1. Then

: ieT2
+JeTi}

l5 b2},

where

By relations (2), wl7(T
2) = wij-(r

1) for ieT\, je Tl. Dual feasibility of T1

implies that &! ̂  0. For IGTJ, jeT2 . we get (again) from relations (2) that
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wij(T
2)=wij(T

1)-èv Since 6t ^ 0, wu(T
2) ^ -6X, î e r J j e T t . Therefore

Assume that the lemma is true for k, k^2. By Lemma 5 and dual
feasibility of T1 we get inductively

0 ^ Sx ̂  S2 ̂  . . . ^ S k ^ 5 k + 1 .

Let T$ + 1 be the candidate subtree eut off from Tft + 1.

Then

where

b'2 = min {wy (T
k+2) ; i G 7 * + \ j G 7*_+ 2 } .

Reasoning as in the case k—l, we get b2 = ~~Sft+1. Since Tk*2 cz T*L+1 and
wu(T* + 2) = w0.(T

fc + 1) for ieTk
+

+\ jel**2, b{^Sf
k+1. By the induction

hypothesis, b\ ^ ô^+1 ̂  — Sfc. Since

0 S 8fc S 5fc+1, S i + 2 = min{6'1, b'2} ̂  - 5 f c + 1 . A

THEOREM 7; T/ie first tree in every stage of the algonthm is dual feasible.

Proof: It suffices to show the statement: if the initial tree in a stage is dual
feasible, the initial tree in the next stage is also dual feasible. The theorem is
then true because the initial tree in the first stage is dual feasible.

Let T1, T2, . . . be the consequitive trees in a stage. We will show
inductively that T\ are dual feasible subtrees. Clearly, T\ is dual feasible
(because T1 is dual feasible). Assume Tk

+ is dual feasible. Then
Tk

+
+1 = Tk

+ U Ti» where T\ is the candidate subtree eut off from Tfc. By the
induction hypothesis wij(T

k + 1)=wij(T
k) ^ 0 for ieTk

+, je T + . For the edges
(ijl ieT\, jeT\y it is wy(7* + 1) = wu(T

k) = Wy(r1) ^ 0. For edges (ij\
ieT\jeTk

+y it is wij(T
k+1) = wij(T

k)-§k £ 0. For edges (ij\ ieT\jzT\
using Lemma 6 we get

wlV(Tfc+1) = w0.(Tk) + 5fc ̂  ô̂  + 5fc ̂  -8k_1 + 5fc ̂  0

because wu(T
k) ^ Si for ieT\, jeTk a Tk_ and Sfc ̂  bk_1 (by Lemma 5).

Therefore, for every edge (f, j)9 ieTk
+

+\ jeTk
+

+1 it is wtj(T
k+1) ^ 0.
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Consider now the first tree at the next stage. Since all candidate subtrees
of the previous stage have been eut off, it is dual feasible. A

THEOREM 8: The algorithm stops with an optimal solution to the (AP).

Proof: It comes easily from Theorems 4 and 7. A

The counting process for determining the maximum number of itérations
uses the notion of the "level" of a tree. The level of a tree is the number of
I's in its column (or row) signature, Balinski [2, 3]. Using levels Lemma 2
can be stated: if a tree is in level 1, it is primai feasible. We will also use
the following notation. T1 is the first tree in level a, 1 ̂  a ^ n—1, and
T2, T3, . . ., Tq are the first trees in the next, second next and so on stages
respectively. Every tree, T\ i—l, 2, . . ., q is in level a and Tq + 1 in level
a —1. Notice that if a column node has degree at least two it will never
become of degree one. Therefore the level is non-increasing. Let now n(T)
dénote the number of column nodes of tree (or subtree) T. Finally, let tt be
the number of the remaining itérations at the first stage and ti9 i = 2, 3, . . ., q
the number of itérations at stage L

THEOREM 9: The algorithm solves the nxn assignment problem in at most

(n -1) (n - 2)/2 itérations.

Proof: If a candidate subtree is eut off and the level is not reduced, the
eut off subtree will be part of a candidate subtree at the next stage. This is
so because the candidate edges are incident to column nodes of degree at
least three and the degree of column node h is at least two. Therefore,

n(Tl) <n(Tl) < . . . < n(VL).

Clearly, tx ^ n(T\_). For i = 2, 3, . . ., q it is

because the candidate edges at Tl are incident to column nodes not in TL *.

Therefore, the number of itérations, t, at level CT is

q

(TL contains column nodes of degree at least 2). Since 1 ̂  a ^ n— 1 and the
algorithm stops when the first tree in level 1 is reached, the maximum number
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of itérations is

1+2+.. . +n-2 = (n-l)(n-2)/2. A

THEOREM 10: (n-l) (n — 2)/2 ÏS t/ie best

Proof: If at each stage there is a unique candidate edge, the algorithm
coincides with Balinski's [3] compétitive (dual) simplex algorithm. Therefore,
the algorithm applied to Balinski's [2] assignment problem, defined by
Cij = (m — i) (n—ƒ), takes precisely (n — 1) (n — 2)/2 itérations. A

T H E O R E M 11: TTie algorithm solves the nxn assignment problem in at most

O (n4) time.

Proof: Clearly, each itération of the algorithm requires at most O (n2) time.
The work required in determining the candidate set is done in no more than
2n — 1 comparisons. Therefore, the nxn assignment problem is solved in at
most O (n4) time. A

Note 1; The counting tricks used in [2, 3, 12] that transform signature
methods into O (n3) algorithms don't seem to be combinable with our algo-
rithm. The reason is that several stages may be required to reduce the level
by one.

5. AN ALGORITHM FOR FULL DENSE TRANSPORTATION PROBLEMS

Everything said in section 2 can be easily extended to transportation
problems

s, t. Xj xtJ = au Sf xu = bp x y ^ 0, J

where iel={l, 2, . . . , m}, j e J = { l , 2, . . . , n}, S f a ^ £,. bp at^ l, iel, and

bj^lJeJ.
A basic solution to (TP) is a tree containing m + n— 1 edges. The values

Xy(T)5 Mj(T),- Uj(T) and wy(T), associated with the tree T, are determined in
a similar manner, Le., the values xl7(T) are determined via the relations
xi} (T) = 0 for (i, 7) £ T, the values a, (T), ^ (T) via the relations
^ ( T ) + ^(70 = ̂  ( ï ,»eTand Wy(T) = C y - W l . ( ^ ) - ^ ( n

The initial rooted tree (the root is always row node 1) is constructed as in
the algorithm for the (AP). Notice that at the initial tree only odd edges can
be primai infeasible. Ail primai infeasible edges (1, j) are the candidate edges
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to start the first stage. The adjoined and deleted edges are chosen as in a
stage of the algorithm for the (AP). When the first stage is completed either
a primai feasible tree has been constructed and the algorithm stops with an
optimal solution (because the current tree is also dual feasible) or not. If not,
a new stage starts.

The algorithm for (TP), unlike the algorithm for (AP), consist of two types
of stages. We call them "odd" or "even". A stage is said to be "odd" (even)
if all candidate edges are "odd" (even). The first stage of the algorithm is
always odd. Similarly, a candidate subtree is "odd" (even) if the candidate
edge associated with it, is odd (even). The candidate edges are determined in
a manner similar to that in the algorithm for the (AP). For instance, the
candidate edges of an odd (even) stage are determined as follows. Start
tracing down a path starting from the root; the highest odd (even) edge in
the path, which is primai infeasible, is a candidate edge. Then, choose another
path and stop when all paths have been examined.

The pivot opération of an even stage is slightly different than that of an
odd stage. Let T be the current tree in an even stage and Tx a candidate
subtree associated with the candidate edge (k, /), kei, leJ. Since now ke 7\
the entering edge (g, h) must be chosen so that heTv Suppose (k, l) is deleted
and (g, h) is adjoined to produce the next tree T. Setting wffh(T) = 5 and
applying relations (1) it is easily varified that

ieTl9 jeT~Tit

5, ieT~Tu jeTu (6)

otherwise.

The edge to be a adjoined is chosen by the relation

wgh(T) = mm{wij(T): isT+JeT_}. (7)

Using relations (6) and (7) and slightly modifying the arguments of section 4
(interchange the rôles of row and column nodes), it can be easily verified
that an even stage is completed with a dual feasible tree.
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Now, it is clear how the algorithm for the (TP) works. When a stage is
complétée!, examine whether the current tree is primai feasible. If it is, stop.
Otherwise, either an odd or an even stage can be applied to continue.

6. HANDLING SPARSITY

The two algorithms described earlier work provided they are applied to
full dense problems. When dealing with sparsity there are two difficultés
that we must overcome. First, an initial dual feasible tree may not be
constructed as in the full dense case and second, there might be the case
where no edge eligible to enter the basis is available. We describe how the
algorithm for (TP) is modified to handle sparse transportation problems.

Suppose some of the costs ctj are undefined because the associated edges
(i, j) do not exist. Then, approach the problem as follows. Assign very high
costs to not existing edges (ï, j) and make them temporarily admissible. Such
an edge is called "artificial". Then construct the initial dual feasible tree by
applying the algorithm to this transf ormed as bef ore but consider in computa-
tion only existing edges. The initial dual feasible tree can be constructed
provided that each row of the cost matrix has at least one (non artificial)
edge. Otherwise, there is no primai feasible solution to (TP). These conditions
are easily checked.

The algorithm terminâtes either when a primai feasible solution is found
or when no edge eligible for entering the basis exists. Dénote by T* the last
tree.

LEMMA 12: If T* is a primai feasible tree of the transformed problem
containing at least one strictly positive artificial edge, then (TP) is (primai)
infeasible. Otherwise, T* provides an optimal solution to (TP).

Proof: Clearly, if T* contains positive artificial edges, (TP) is primai
infeasible.

Suppose T* does not contain any positive artificial edge. Then, either T*
does not contain any artificial edge or ail artificial edges of T* are zero
valued. In the former case T* is a primai feasible solution to (TP). Since
primai feasibility is achieved at the beginning of a stage, T* is also dual
feasible. Therefore, T* is an optimal solution to (TP). In the latter case,
delete all zero valued artificial edges from T*. Then T* décomposes into
subtrees. It is easy to see that every subtree is an optimal solution of a
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subproblem of (TP) having as constraints all row and column equalities for
which the associated nodes are in the subtree under considération. A

LEMMA 13: If T* is not primai feasible and no edge eligible for entering the
basis exists, then (TP) has no optimal solution.

Proof: Case (1). The stage is odd. Let ut, vp wtj be the values of dual
variables and reduced costs associated with T*. We will show that the dual
problem of the transformed problem is an unbounded linear program. Notice
that T* may not be dual feasible. For i e I and j e J we set

U; = tt£ + 8, ie T*L9

= ut, ie T%,

and

= vj, jeT*.

Since there are no edges (i9 j)9 ieT*, jeT% the variables Ui9 Vj constitute a
dual feasible solution of the transformed problem for sufficiently large 8. To
see this observe that

wu = ctj - üt - Vj = xv y + 5, for ieT\9je TTt

= wijy otherwise.

It suffices to take 5 ̂  -min{wy; ieT%JeT±}. Then wy + 5 ̂  0 for ieT%,
jeTt and because of dual feasibility of TÎ, T%, it is wtj ̂  0 whenever i,

The value of the objective function, ƒ (u, v), associated with the dual
variables w, v is given by

Let A be the sum of the candidate variables. Then A < 0. Subtracting all
column équations associated with column nodes in T* from row équations
associated with row nodes in T* results in

Z *t- E, bj=-A>0.
i e T - j e T*-

Now, it is easily verified that

f(ü,v)=f(u9v)-5A.
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So, the maximum of the dual objective is unbounded. The dual of (TP) and
the dual of the transformed problem have the same objective function (row
and column équations of (TP) are constraints in the transformed problem).
The feasible région of the dual of the transformed problem is contained in
that of the dual of (TP) because the constraints associated with artificial
edges do not appear in the constraint set of the dual of (TP). Therefore the
dual of (TP) is also feasible and unbounded. This complètes the proof for
case (1).

Case (2). The stage is even. The proof of the Lemma for case (2) is made
by interchanging the roles of T* and T* and following the arguments in
case (1). A

The conclusion that the method processes sparse (TP) comes easily from
Lemmas 12 and 13. The specialization to (AP) is obvious.

7. CONCLUDING REMARKS

1. The dual relaxation procedure can be easily generalized to minimum cost
transhipment problems so long as an initial dual feasible basis is available. A
transhipment problem is a transportation problem with intermediate nodes,
i. e., some of the a/s and b/s are zero valued. In addition all edges are
directed. In terms of graphs, the transhipment problem is represented by a
gênerai (not bipartite) directed graph. The reader acquainted with the dual
simplex method for transhipment problems will have no difficulty in verifying
that our dual relaxation procedure works provided the candidate edges in a
stage are chosen so that all are directed either towards the root or away
from the root. The construction of the initial dual feasible tree is not that
simple as it is in transportation and assignment problems. Restoring to a
phase one, destroys the graphical représentation of the problem. On the other
hand, adopting a big M method similar to that used for handling sparsity
seems more promising.

2. Most of the time in simplex type algorithms for assignment and trans-
portation problems is consumed on comparisons that détermine the entering
edge. When our algorithm is used, the number of comparisons required per
itération can be substantially reduced if the entering edges in a stage are
chosen as follows. For every row node ieT_ set 5(- = min {w^iT): jeT+}
and choose the entering edge by the relation wgh(T)=min{5i: ieT_}. At
next itération for ieT'_ find ô̂  = min{5£, min{wy(7v): 7'eTj} where Tx is
the candidate subtree eut off from T. Then w^(T') = min {5;.* ie TL}. When
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this trick is employed the algorithm for (TP) becomes O(kmri) [the signature
method becomes O (kn2)], where k is the number of stages. It is therefore
désirable to have k as small as possible. This f act somehow implies that the
stages must be large, i. e., the number of candidate edges in each stage must
be relatively big.

3. There is another reason to believe that the algorithms may perform well
provided the stages are large. Examine for example, what is happening during
a stage, say an odd stage. At the first itération, it is
5 = min{wl7; ieT_JeT+}. If the first candidate subtree T1 is eut off by a
classical dual simplex algorithm the per unit improvement of the objective
function is 6/ = mm{wij: ieT^jeT* T^. Since 7\ a T_, 5 ^ S' meaning
that the real improvement of the objective function is larger when our
dual relaxation procedure is employed. Examine also, the effect of the new
monotonie property in subséquent itérations. In particular, the per unit
improvement at the last itération of a stage is larger (probably much larger)
than it would be if the same candidate subtree is eut off (from the initial tree
in the stage) by a purely dual method. Clearly, safe conclusions cannot be
derived from such comparisons since different algorithms follow different
paths to the optimal solution. However, our arguments indicate that the per
itération improvement of the objective function is probably (in average) larger
with our algorithms.

4. We described the algorithms in such a way that the deleted edge is
always a candidate edge. However, this is not necessary. The algorithms work
provided (a) the objective function does not decrease and (b) the first tree at
the next stage is dual feasible. It is easy to see that (b) is quaranteed by
deleting any edge belonging to $ (g, h) O T_ and (a) by deleting either a
primai feasible edge with label minus or a primai infeasible edge with label
plus. From the computational point of view it seems promising to enlarge as
much as possible the set of edges eligible to be deleted. Then, the edge to be
deleted can be chosen to be the best one among all eligible edges. Many
criteria for choosing the best edge can be used. For example choose the edge
inferring the maximal improvement of the objective function. We have already
been able to take care of this problem. Actually, we have constructed an
algorithm for the transportation problems consisting of a single stage. This
work will be the subject of a fortheoming paper.

5. It is well known that simplex type algorithms for network flow problem
suffer from degeneracy (stalling), particularly when the data are integers.
However, there is no known pivoting rule that prevents cycling in the network
dual simplex method analogous to the elegant cycling free rules of the network

vol. 22, n° 3, 1988



2 8 8 K. PAPARRIZOS

primai simplex methods as it is for example Cunningham's [7] method of
strong feasible trees. Moreover, it is not quite so obvious that cycling free
pivoting rules for gênerai linear programming problems can be easily adapted
to our dual relaxation method. This area seems to be promising for future
research.

6. Enlarging the stages seems to be promising from the computational
point of view. A question coming to someone's mind is if enlargements can
be done by combining the two types of stages. In other words, does the
method work when the candidate edges in a stage are both even and odd
edges? Unfortunately, the answer is no as long as the entering edge is chosen
in the way we have described. The reason is that the first tree at the next
stage may be not dual feasible. However, other rules for choosing the entering
edge may work.
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