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TRADING AREAS OF FACILITIES WITH DIFFERENT SIZES (*)

by H. A. EISELT C) and G. LAPORTE (2)

Abstract. — In this paper we analyze the problem offinding the trading area for a facility on a
linear mark et. Given the objective o f maximizing profit, we first build a model with the facility
sizes as variables, Then an algorithm is developed which détermines the trading areas of all facilities
for a given set of weights. Finally we parametrically change the weight of one of the given facilities
and study the resulting changes in its trading area and thus find the optimal weight given the
profit-maximizing objective.

Keywords : Voronoi diagrams; trading areas; market models.

Résumé. — Dans cet article, on étudie le problème consistant à déterminer les aires de marché
d'établissements situés sur une droite. On envisage d'abord un problème de maximisation de profit
dans le cas où les poids des établissements sont des variables. En deuxième lieu, on décrit un
algorithme pour la déterminaison des aires de marché pour des poids donnés. On modifie ensuite
les poids de façon paramétrique afin d'étudier leur effet sur les aires de marché et on en déduit les
poids optimaux dans le contexte de maximisation de profit

Mots clés : diagrammes de Voronoi; aires de marché; modèles de marché.

I. INTRODUCTION

The concept of Voronoi diagrams has been known for a long time. The
first to use these diagrams for practical problems was the geographer Theissen
(1911) who applied the concept to a spatial missing data problem. Essentially,
Voronoi diagrams can be described as follows. Given a space 5 (which may
be some Ud, any subset of it or a graph), a set of n given points Pu P2, . . . , Pn

located in S and a metric, then the Voronoi set associated with point Pi is
V(Pt) which is defined as the set of points closer to Pt than to any Pp j^L
The collection of Voronoi sets is called the Voronoi diagram. Most of the
pertinent références deal with Voronoi diagrams in U2 with Lu L2, and L^
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34 H. A. EÏSELT, G. LAPORTE

metrics; hère we usually refer to Voronoi areas rather than sets. For instance,
an optimal algorithm for the construction of Voronoi diagrams in R2 with
the Euclidean metric has been described by Shamos and Huey (1975). For a
recent survey of a variety of problems related to Voronoi diagrams, see Eiselt
and Pederzoli (1986).

The first to develop a model for a locational game was Hotelling (1929).
Under rather restrictive assumptions he showed that the optimal locations
for his two ice-cream vendors on the beach were at the center of the market
with each of the two vendors capturing half of the market. Many extensions
of this basic model have been discussed in the literature. For example, it was
shown that the so-called social optimum has both vendors located one-
quarter of the length of the market away from its edges. Recently, social
optima were compared with individually optimized solutions, for details see
Eiselt (1987). On the other hand, it was shown by Teitz (1968) that, as
opposed to the two-vendor case, in the case of three ice-cream vendors there
is no longer any equilibrium.

In this study we will combine the concepts of Voronoi diagrams and those
of locational games. The paper is organized as foliows. In the second section
we describe the model which is the basis of our discussion. In the third
section, we develop an algorithm which détermines the Voronoi areas for a
given set of points assuming that all weights are fixed and in the fourth
section, we examine the effects of weight changes on the Voronoi areas.

IL THE MODEL

The space considered in this paper is a straight line segment, a so-called
linear market. The n given points F l 5 P2, . . ., Pn have fixed locations. If no
confusion can arise we use the expression Pt for the i-th given point as well
as for its location on the line segment. For simplicity we refer to Pi as the i-
th facility. The area served by this facility will be termed Voronoi area or
trading area, It is assumed that all facilities offer a homogeneous service.
Customers, who are interested in the service provided by these facilities, are
distributed along the line segment. We suppose that the purchasing power
represented by these customers is uniformly distributed along the market. In
this short-to-medium run analysis we exclude new entries to the market as
well as relocation of one or more of the facilities, the only décision parameter
available to the decision-maker at the facilities are the sizes (or "weights") of
the facilities. Hère we will use the form weight since it is more gênerai The
weight of a facility is a conglomerate measure of attractiveness of a facility;
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TRADING AREAS OF FACILITIES WITH DIFFERENT SIZES 35

the components are its size, its relative price advantage, courteousness of
staff, etc. Each customer is now attracted to every one of the given facilities.
In the traditional (unweighted) Hotelling and Voronoi models, this attraction
is exclusively based on the facility-customer distance. Here we will use an
attraction function which is a blend of facility weight and facility-customer
distance. In particular, define w£) Ï = 1, . . ., n as the weight of the i-th facility
and let d(Pt,x) dénote the distance between Pt and a customer located at
some point x. Then the degree to which a customer at x is attracted to the
facility Pt is measured by the attraction function cp (i, x) = wjd (P(, x). Even
though this attraction function is considerably simpler than those employed
by Coelho and Wilson (1976) and other researchers, it still captures the
essential behavioral features: the attraction of a customer to a facility increases
with increasing facility weight and decreases with increasing facility-customer
distance. A customer at some point x will then patronize the facility he is
most attracted to. This is captured in the service function
\|/(x) = max-{(p(i5x)}. Using this concept we can construct the Voronoi or
trading areas V(Pt). It can easily be shown [see for instance Eiselt, Pederzoli
and Sandblom (1985)] that F(PJ is now no longer necessarily connected (or
convex in two or more dimensions). On a linear market, this means that
V(Pt) may consist of a number of unconnected line segments. As an example,
consider a linear market with Px being located at one end of the market, P2

being one distance unit away from P l s Le. d{P1,P2) = l and let
à (P2, P3) = d (P3, P4) = 1, and to the right of P4 there are another two distance
units without any other facility. Let the weights of the facilities be given as
w1=20, w2 = 6, w3 = 2, and vv^l . Then the resulting Voronoi diagram can
be visualized in figure 1. The points bordering the trading areas V(P^ are
called Voronoi points. In other words, a customer located at, say 4 distance
units away from Pu (which is one unit to the right of P4) will pass P4, P3,
and P2 in order to patronize P1 since this is the facility he is most attracted
to.

In order to simplify matters, one could assume that any customer located
between two adjacent facilities Pt and Pi+V will always patronize one of
these two facilities. Clearly, the resulting trading areas will be connected
making this case more tractable. Such a model has been used in an optimiza-
tion process by Eiselt, Laporte and Pederzoli (1986). In gênerai, the convex
case could be applicable if the given facilities are widely dispersed. If they
are densely clustered, any facility, no matter what its size, which is highly
surrounded by other facilities, will have an almost non-existent trading area.
This is not a realistic model.
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Figure 1. — Voronoi diagram with unconnected trading areas.

In the ensuing discussion we assume an underlying optimization model as
follows. First assume that each facility opérâtes independently, i. e. we address
the case of decentralized decision-making. The cost at any facility is assumed
to be a function of its weight. Finally, given uniformly distributed purchasing
power, the revenue of a facility is proportional to its trading area. Hère we
will concentrate on the size of the trading area, i. e. the revenue, and incorpor-
ate the cost component later.

The problems addressed in the succeeding two sections are as follows:
given a number of facilities with fixed locations and weights, what are the
trading areas ? and secondly, what happens with respect to the trading areas
if the weight of one of the given facilities changes ?

lu . TRADING AREAS FOR FIXED FACILITY WEIGHTS

In this section we devise a procedure which enables us to détermine the
trading areas of a given set of facilities. As usual, let Pl9 P2, . . •, Pn dénote
the facilities as well as their fixed locations, let wt be the weight of the ï-th
facility and dénote by à (Ph Pj) the distance between the z-th and the j-th
facility. Finally, let EL and ER symbolize the left and right end of the linear
market, respectively. In order to develop a procedure it is useful to prove.

LEMMA 1: Let Pj be two different facilities on the market with w(^Wj. Then
V(Pi) cannot embed any point PE V(Pj).

Proof. Assume, without loss of generality that Pt<Pr First note that the
équation cp(z, x) = (p(/, x) has two solutions given by

x' - (Pt wj - Pj W^KWJ -wt) (1)
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and

x" = (Pt wj + Pj w^/iwj + W;). (2)

These solutions satisfy x' <Pt<x"<Py Furthermore cp (Ï, x) >cp (/, x) iï
x ' < x < x " and <p(ï, x)<q>(/,x) if x<x ' or x>x". Therefore, K(Pf) g [x'^"]
and 7(P.) g [£L, x'] U [x", £ J . This proves the lemma. •

An immédiate conséquence of lemma 1 is

COROLLARY 2: If Pt is the facility with the smallest weight, then V(Pt) is
convex,

This enables us to design a procedure for the détermination of the Voronoi
diagram. First consider only the facility with the smallest weight (ties are
broken arbitrarily). Let this facility be Pt. According to corollary 2, V(P() is
convex and thus it is bordered by exactly two Voronoi points. Let those two
points be vt and vr where vt is located to the left and vr is located to the right
of P,-. Suppose that the facilities are consecutively numbered from left to
right. The attraction of facility Pp 7 = 1, . . . ,n at point vt can be expressed
as <f>(j9vù = Wj/d(Pj9và for all j or as Wj/[d(PpPÙ-d(vl9PÙ] for all j<L
Similarly, the points of equal attraction of Pt and Pp j>i are at
dJ(vt,PÙ<[Wi/(Wj-wi)]d(PpPd for all j>i. Clearly, the tightest of these
bounds applies and thus the boundary of F(Pf) is located at vt at a distance
from P; of

l j < i l w i + wj J J > i l wj — wi

The right boundary point vr of V(P() can be calculated similarly. Then the
Voronoi area of the facility with the smallest weight has been determined in
linear time since no more than n boundary points have to be compared for
each vt and vr, each such boundary point is evaluated in constant time. For
convenience reorder now the points, so that w 1 ^ w 2 ^ . . , ^ w „ . Ties are again
broken arbitrarily. Suppose now that the Voronoi areas F(P1),
V(P2), . . ., V(Pi-i) are already known. Using lemma 1, the Voronoi area
V(Pt) can then be determined as follows. First delete all points P l5

P2, . . . ,Pi-i from the line. Note now that Pt is the facility with the smallest
weight. Consequently, the above procedure with relation (5) is again appli-
cable to Pj. Let its result be a set S(P{). Then the Voronoi area of Pt is

i - i

V(Pj). This procedure is repeated (n-1) times, and the
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38 H. A. EISELT, G. LAPORTE

facility with the largest weight captures ail territory not occupied by any
other facility. Thus we obtain

LEMMA 3: The weighted Voronoi diagram on the line can be found in O (n2)
time.

Also, as a byproduct we find that

COROLLARY 4: The maximal number of Voronoi points is 2n.
and as a conséquence of the construction of V(P() from S (P^) we obtain

COROLLARY 5: The Voronoi area of the facility with the k-th smallest weight
has no more than k connected components.

IV. INTRODUCTION OF A NEW FACILITY WITH VARIABLE WEIGHT

In this section we will study the effects of the parametric change of the
weight of a single facility, say Pt. We proceed as follows: initially set wt <- 0
and assume that the trading areas of ail other facilities have already been
determined, e. g. with the method developed in the previous section. Bef ore
analyzing the effects of an increase of wh consider the service function

\|/ (x) = maXfc { 9 (ks x)} = maxfc {wjd (x, Pk)}, where k e { 1, . . ., n }.

Attraction and service functions are displayed in figure 2 where the solid
lines indicate the respective attraction functions and the shaded line represents
the service function.

The function \|/(x) increases to infinity near the given facilities and it has
break points at ail Voronoi points. It should be pointed out that \|/(x) has
minima at only those Voronoi points where the attraction of a facility to its
left equals the attraction of a facility to its right and their attraction of the
Voronoi point is larger than that of any other facility. In figure 2, v2 is such
a Voronoi point. On the other hand, if the attractions of two facilities on
one side of the Voronoi point are equal and larger than those of any other
facility at a Voronoi point (such as v1 in figure 2), then this point does not
constitute a minimum of the service function.

Consider now increases of wt. If wt is positive but sufficiently small, then
P( is the facility with the smallest weight and according to corollary 2 its
trading area is connected. Actually, a small area around Pt will develop as
V (Pt) as wt increases. In gênerai, for any positive weight wt > 0, the attraction
function 9 (1, x) consists of two branches of a hyperbola around P( (as usual)
which move upwards as wt increases. If wt is large enough, 9(f,x) will be
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<t>C. x

Vi Vo

Figure 2. — Attraction and service functions.

higher than \|/ (x) at various places and wherever that occurs, a new pièce of
V(Pt) is created. It is easy to show that these new pièces of V(Pt) form
around the Voronoi points. Suppose that this is not the case. Then there
must be a weight wt, for which <p(i, x) equals \|/(x) at a point x which is a
linear convex combination of two adjacent Voronoi points Vj and vj+1,
i.e. x = XVj + (l—X)vj+1 with X,e]0;l[. In other words, <p(i,x)>\|/(x) but
<p(i,ü,-)<*|>0>j) and q>(i,üJ-+i)<\|/(v</-+i). This would require <p(i,x) to twice
intersect (p(/c,x) which forms the pièce of \|/(x) between ^ and t?7-+1; this is
impossible since parts of branches of attraction functions intersect only once.
Thus

LEMMA 6: For increasing values ofwh new pièces of V(Pt) form around the
Voronoi points.

This lemma suggests a procedure for finding the entire trading area of
facility P( for all weights wfe[0, oo[. First détermine the service levels at all
Voronoi points, i. e. find vJ/̂ iX ^ (vi)> - • • > ^ Ov) where V dénotes the number
of Voronoi points. Then détermine the weights at which Pt achieves the same
attraction at those points. These "critical weights" are

or

vol. 22, n° 1, 1988



4 0 H. A. EISELT, G. LAPORTE

These ratios are now reordered, so that

Then for wie[0;\|/(t?1)d(P;, ujt, the function (p(i, x) is higher than v|/(x) only
in the vicinity of Pt, so the trading area is a connected pièce around Pf. For
wie[\|/(i;1)d(PjS vt); ^(v2)d(Pi,v2)[, the trading area consists of a connected
pièce around Pt as well as a connected pièce around v2. In gênerai, for

the entire trading area of Pt consists of pièces around Pt and ail vp j = 1, . . ., k.
Note that it may happen that some of these pièces have grown together. This
occurs if the next Voronoi point to be considered, say v„ is adjacent to either
Pt or to any Voronoi point vp j < r.

Rather than introducing the heavy machinery of a formally exact descrip-
tion of the procedure, we will explain the method by means of a small
numerical example. Consider five given facilities P l s . . ., P5 with weights
w1 = 16, w2 = 2, w3 —8, w4 variable and w5 = 12. The distances between the
facilities are d (Pl9 P2) = 12, d (P2, P3) = 3, d (P3, P4) = 3 and d (P4, P5) = 7. This
situation together with the Voronoi points as well as the trading areas
(tentatively assuming that w4 = 0) is depicted in figure 3.

I 10 • 1 . 1 !•» • 2-4 I 3 I 1 . 6 |

P, V 2 V3 P2
 V4 P 3 P 4 V1 P5

V(P3)V(P2;

Figure 3. ~ Trading areas of the facilities in the example.

Calculating the service level at the Voronoi points, we obtain \|/(i;1) = 2J

\|/(z;2) = 1.6, \|/(i>3) = 2 and \|/(t;4) = 3.33. Thus the critical weights are w4 = 2,
w4=12.8, w4=14 and w4=18. For weights within the interval [0: 2[, F(P4)
consists of a pièce around P4. To the left it extends to dx distance units at a
point which the attractions of P4 and P3 are equal, i. e.

"Jdt = wj[d (P3î P4) - d J = 8/(3 - dd
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or

Similariy, V(P4) extends dr units to the right, to a point where
or d, = 3 w4/(8-w4). In other words the size | V(P4)\ of F(P4) is

8 + w4 8 — w4
f o r w4e[0;2[ (4)

If w4>2, then a small pièce around ul9 will form. Since, however, vx is
adjacent to P4, for w4 = 2 the right part of the area around P4 reaches v1

and for w4>2 it reaches beyond vu so that no unconnected pièces develop.
In particular, V(P4) reaches dr units to the right to a point where
wJdr = w5/(7 — dr) [since all points to the right of vt belong to V(P5)]. This
yields

for w4e[2;12.8[ (5)

Increasing w4 to and beyond 12. 8 will create a new pièce of K(P4) around
v2. Since v2 is adjacent to P1 and u3, this pièce will be unconnected to the
current area. lts left border is at a distance of dx from v2 at a point where
the attractions of P 4 and Px are equal i. e.

or

d/ = (10w4-128)/(16 + w4).

Similariy, V(P4) extends dr units to the right of v2 to a point where P 4 and
P3 are equally attractive, i. e.

wjdr = w3/[d (P3, Ü2) - dr] = 8/(5 - dr)

or

vol. 22, n° 1, 1988
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The part around P4 grows in the same way as before, so that

^ ^ i 1 0 w * - 1 2 8 5 " ' * - 6 4 (6)
w4 12 + w4 16 + w4 w 4 - 8

for w4e[12.8;14[

Increasing w4 beyond 14 does not create a new unconnected pièce since the
next Voronoi point to be considered is v3 which is adjacent to v2. Thus the
only change is that the area between v2 and v3 is now completely in F(P4)
which extends dr units to a point right of u3, so that

dr) ord r = (w4-14)/(w4-2). Thus

4 12 + w4 16 + w4 w 4 - 2 (7)

for w4e[14;18[

where the first two terms describe the left and right pièces around P4, the
thrid term measures the area left to v29 the fourth term dénotes the area
between v2 and v3 and the last term measures the area right of Î;3.

Finally, if w4^18, then yet another unconnected pièce develops, this time
around i>4. Its left border extends dt units to a point where

wj(5.4 + dd = w2/[d (P2, P4) - d j = 2/(.6-dt)

or

d, = (.6w4-10.8)/(2 + w4).

On the right, the new pièce extends dr units to a point where

w4/(5.4 - dr) = wj[d (P3, vj - dr] = 8/(2.4- dr)

or

rfr = (2.4W4-43.2)/(W4-8).

Thus we obtain

, 7w4 { 10w4-128 | n w 4 -14

12 168 + w4 12 -f w4 16 + w4 vv4 — 2

.6w 4 -10 .8 2.4w4-43.2 _ r i O _ .o.
+ + for w4e[18; oo[ (8)

2 + w>4 w4 — 8
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The size of the trading area V(P4) in relation to the weight w4 is displayed
in figure 4.

2 . 0 12.8 18.0 40.0

Figure 4. — Sizes of trading areas of P 4 for variable weights.

Recall that under the given assumptions, the size of a trading area is
proportional to the revenue achieved for that facility. This means that the
function in figure 4 is proportional to the revenue and by incorporating a
cost curve in that figure (the costs were assumed to be a function of the
weight of the facility), the profit function could be determined. This will
enable the décision maker at the facility in question to choose its weight
optimally.

CONCLUSION

In this paper we have introduced a spatial model based on the concept of
Voronoi diagrams. Attraction and service level functions were introduced
and a method was developed which détermines the trading areas of a set of
facilities with given weights. Finally it was shown how the trading area of an
individual facility changes if its weight is altered.
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