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AN 0 (n3) WORST CASE BOUNDED SPECIAL LP KNAPSACK
(0-1) WITH TWO CONSTRAINTS (*)

by Ruy E. CAMPELLO (*) and Nelson MACULAN(2)

Abstract. — In this paper it is shown that a linear knapsack (0 — 1) problem amended with a
nontrivial multiple-choice constraint can be solved by an algorithm requiring running time O (n3).
Though not being a new resuit the approach of the proof is worth reporting for it is based on the
nice ideas of geometrie complexity and efficient median-jïnding.

Keywords : Linear programming; knapsack (0—1).

Résumé. — Dans cet article on montre que le problème de programmation linéaire du sac-à-dos
(0—1) dans lequel le nombre de variables valant 1 est fixé peut être résolu par un algorithme de
complexité temporelle en O (n3). Son intérêt réside dans sa preuve géométrique et Vutilisation de
Falgorithme de la médiane.

Mots clés : Programmation linéaire; sac-à-dos (0—1).

1. THE LINEAR ( 0 - 1 ) KNAPSACK PROBLEM

The problem (LKP-k) addressed here is a special linear knapsack with an
additional nontrivial constraint. This is an important mathematical program-
ming problem for it arises as a subproblem in various integer programming
problem.

Let problem (KLP-k) be defined as follows:

n

maximizexo= £ qjXj 0-1)
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subject to:

n

^ÜJXJ^T (1.2)

n

! * , = * (1.3)

OZxjZl, 7=1,2, . . . , n (1.4)

where #,., â  (/= 1,2, . . ., n) and T are real constants and 0<k<n is an
integer. We shall assume that the feasible set to (LKP-k) is non-empty and
thus v(LKP-k)<oo, where v(.) stands for the value of (1.1) at the optimal
solution.

This problem has received much attention in recent literature. Linear (0—1)
knapsack problems with generalized upper bound constraints (GUB) and
special ordered sets are treated by Johnson and Padberg (1981) where several
properties of the convex huil of the associated 0—1 polytope are derived.
Campello and Maculan (1983) report on a subgradient technique for generat-
ing a lower bound to (LKP-k) when (1.4) is replaced by Xj e {0,1},
7=1,2, . . ., n. This problem is known to be JVP-hard although it can generally
be solved in pseudo-polynomial time by dynamic programming.

The knapsack LP has been shown to have time complexity O (n) using
linear median-finding techniques while the multiple-choice knapsack LP is
O (nlogri) using efficient planar convex huil algorithms. It is also worth
mentioning that the multiple-choice knapsack with two linear programming
constraints is O (n log n + m2 log3 (n/rn)), where m is the number of multiple-
choice constraints. The details of these results are described in Dyer (1983
and 1984). For a survey of the literature see Zemel (1980) and Dudzinski
and Walukiewicz (1987).

In this paper we report on an algorithm requiring worst case time bound
O (n3) for solving (LKP-k). Though not being a new resuit the approach is
worth reporting for it is based on the nice ideas of geometrie complexity and
efficient median-finding. A complete numerical example with four variables
is included.

2. AN O (n3) ALGORITHM FOR SOLVING (LKP-k)

It is known that any linear programming problem with n variables and a
fixed number of constraints, say m, is solved in time O (nm). Problem (LKP-
k) has (2 + n) constraints and therefore, according to this resuit, could be
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solved in running time 0(n2 + n). In this case, however, one can do much
better than that for the upper bound constraints O^Xy^l, jeN on each
variable can be replaced by generalized upper-bounded constraints (GUB).
The other two constraints are left as before. As such, the complexity reduces
to O (n2).

Yet, in this particular case an interesting approach due to Muller and
Preparata (1978) and Dyer (1983) based on the ideas of geometrie complexity
can be developed so as to prove that there exists an O (n3) time algorithm.

THEOREM: There exists an O (n3) time algorithm for solving problem (LKP-
k).

Proof: Let {LKD-k) be the dual of (LKP-k):

n

{LKD -/c) minimize vv0 = Tu + Jey + £ Vj

subject to:

&jU+y + Vj ̂  qp for all jeN

u ̂  0 and Vj ̂  05 for all; G N

Define f}(u,y)= maximum {0,^,— ÜJU— y}9 jeN and f0(u,y) — Tu + ky.
Hence, problem {LKD-k) can be written as follows:

n

minimize w0 = ^ fj («, J>)
« ̂  o j-o

Once {LKD-k) has been solved the correspondent solution to {LKP-k) can
be retrieved, applying standard linear programming duality techniques in
0{n) time, therefore leaving the complexity of any algorithm for {LKP-k)
unaffected. Thus, the solution of the dual rather than the primai will be
examined.

On solving {LKD-k), it suffices to notice that one has to minimize a sum
of convex functions because f} for all jeN are convex polyhedral functions
of (u,y) (M^O), defining two régions of linearity, see Rochafellar (1970).

The tree-dimensional graph of fj {j e JV) is a polyhedral surface having two
plane faces, one edge and one vertex (M^O) (see Fig. 1).

As such, E~{(u9y90)\u^0 and q^a}u—y = 0} is the edge of fj and
V = (0,^,0) its vertex. Notice that both are unbounded though this difficulty
can be overcome.
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vertex

Figure l

Muller and Preparata (1978) have shown that an optimal solution to

maxwo=
i s e*ther a vertex to one or a "pseudovertex"

j=0

whose cordinates u and y are defined by the intersection of at least two
edges.

We do have one vertex for each fj(j^Q) and there are n of such vertices.

Since the maximum number of intersections of the n edges is f 1, it follows

that (LKD-k) can be solved by evaluating ( j + n times its objective function.

Each évaluation requires O (n) time. Therefore, finding the solution to (LKD-
k) can be accomplished by an O (n3) time algorithm.

Giving an optimal solution to (LKD-k\ the optimal solution to (LKP-k)
can be easily retrieved in O (n) time by standard linear programming duality
without increasing the overall complexity.

3. NUMERICAL EXAMPLE

Let (LKP-k) and its dual (LKD-k) be as follows:

(LKP-k) : maximize x0 = 4 xx + x2 + 7 x3 + 8 x4

Recherche opérationnelle/Opérations Research
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+ x4<;7

31

^ l , .7 = 1,2,3,4
4

(LKD-k) : minimize w0 = ]T fj (u> y)

subject to: u ̂  0

where: fQ{u,y) = lu + 3y

fx (w, y) = maximum {0,4 — Au— y)

f2 (u, y) = maximum {0,1 — 2w— y)

f3 (M, y) = maximum { 05 7 — 3 u—y }

ƒ4(w,y) = maximum{05 8 — u— y}

The vertices and edges of ƒ) are depicted in figure 2.

v v
3 4

2 3
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One évaluâtes w0 in Vl9 V2J V3, F4 , P 1 2 and P 2 3 :

fo
12
3

21
24

k
0
3
0
0

k
0
0
0
0

k
3
6
0
0

h
4
7
1
0

WO (Vj)

19
19
22
24

(0,4).
(0,1).
(0,7).
(0,8).

p =(3/2), - 2 )
P =(6, - i l )

fo
4,5
9

h
0
0

h
0
0

h
4,5
0

h
8,5

13

Wo(-)

17,5
22

An optimal solution to (LKD-k) is then: u = 3/2, y= — 2, vi=v2 = 0, t;3=4,5,
u4 = 8>5 and v(LKD-k) = 17,5. Therefore, the primai solution will be: v(LKP-
k)= 17,5, xx— x2 = 1/2 and x3 = x 4 =l .
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