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OPTIMAL CONTROL
OF A PRODUCTION-INVENTORY SYSTEM

WITH STATE CONSTRAINTS
AND A QUADRATIC COST CRITERION (*)

by J. WARSCHAT (*)

Abstract. — In this paper a production-inventory system with state constraints is considered.
For the unconstrained case optimal bang-bang and singular controls are derived. If the constraint
is active an additional boundary-controi occurs. For both cases the structure of the optimal control
is obtained and it is shown that the control is discontinuous at junction points.

Keywords: Minimum principle; state constraints; production-inventory Systems.

Résumé. — Dans ce travail on considère un système de stockage de la production soumis à des
contraintes d'état. Dans le cas où aucune contrainte ne s'exerce, une commande optimale est
dérivée, qui consiste d'une part « bangbang » et d'autre part singulier. Lorsqu'il y a une contrainte
active, une commande en marge supplémentaire se met en place. Dans les deux cas, on obtient la
structure d'une commande optimale et il est démontré que la commande est discontinue aux points
de jonction.

Mots clés : principe de minimum; contrainte d'état; stockage.

1. INTRODUCTION

Since the production-inventory model of Holt et al. [7], which developed
optimal production planning policies by the application of variational cal-
culus, a number of control theoretic papers appeared (for survey see Sethi [12]
and Feichtinger [3]) on this topic. Some of these models incorporate restric-
tions on the control as well as on the state variables, thereby the models
consist of an inventory and an "inertless" production. Recently Warschat,
Wunderlich [13, 14] derived time-optimal and output-maximal policies, respec-
tively, for cascaded Systems consisting of inventories and time-delayed produc-
tions in the présence of control and state constraints. In this paper we are
dealing with a single production-inventory System of order two with control
and state constraints and a quadratic cost criterion. Thus not only regular
and bounded but also singular arcs may occur.
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276 J, WARSCHAT

2. THE MODEL

Consider a plant consisting of a production unit and an inventory for
finished goods. The rate of change in inventories is equal to the différence
between actual production rate p(t) and sales rate s(t):

di(t)/dt=p(t)-s(tl *(0) = i0. (1)

The production plant is assumed to react only with a certain time-delay
on a change of the desired production rate pd (t). So we get the following
differential équation (cf. Bradshaw and Erol [2]):

dp (t)/dt = *(pd (0 -p (0), P (0) =Po, (2)

with the time delay
Commonly pd (t) cannot be chosen arbitrarily but only within certain limits,

say:

n (3)

where T dénotes the planning horizon.

Moreover let us assume:

p(t)^0, fe[0, 7], (4)

such that backorder from the inventory is excluded.

To avoid an overtension of the system, the actual production rate is
restricted:

p(t)^pmax<l, te[0,T}. (5)

For micro-economie problems, if the plant represents a small part of a
company, especially in the case of short term planning, the sales forecasts
concerning the company are broken down by the production plan where the
sales rate for the plant is determined as fixed number of goods, which must
be delivered at the end of the planning horizon T. So we have instead of a
function s (t) the endcondition:

i'O'r- (6)

Choosing the state variables as follows:

* i (0 : =K0-'r . (7)

x2(t):=p(t), (8)
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we get the initial conditions from (1) and (2):

x2(0) =/?(,, where we assume po = 0,

the endcondition from (6):

X l(T) = 0, )
> (10)

x2(7):free, ƒ {W)x2

and with the desired production rate pd (t) as control variable u (t) the System:

i ( 0 = Ax(t) + bii(0, (11)

with the state matrix:

L° -«JA-

and the control vector:

where |u(t)| ^ 1 . (12)

The objective is now to drive the system (11) from (9) to (10) with minimal
production and inventory costs, both assumed to depend quadratically upon
the respective state variables, which leads to the cost functional:

(13)

where C dénotes a 2 x 2 positive semidefinite weighting matrix. Additionally
we assume C to be diagonal C : =diag[cl5 c2], with the constant cx weighting
the déviation from the desired inventory % and c2 for the costs producing a
good.

3. OPTIMAL POLICIES FOR THE UNCONSTRAINED MODEL

In order to get optimal control policies for (13) with the side conditions (9),
(10), (11) and (12) we apply the following minimum principle (Boltjanski [1]):

For each optimal solution x(t), u(t) of the problem (9) to (13) there exists
and adjoint vector >.(t)elR2, a real number X.o and a real number CT^O
satisfying(14) to (17):

vol. 19, n° 3, août 1985
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with the Hamiltonian:

H (x (t), « (0, l (0) : = XT (0 A x (t) + kT (!) b « (I) + - Xo \
T (t) C x (t) (14)

we get:

: =-Hx=-ATX(t)-\oCx(t), (15)

(16)

where g dénotes a function Q : R2 -• R, representing the terminal
manifold (10).

These relations hold for the problems fulfilling the Slater-condition (see
Girsanov [5]), which is assumed in the present case. This includes the regular-
ity of the problem such that we can set Xo= 1. The minimum principle takes
the form:

H(x(t), u(t), k(t))= min H(x(t\ u, M0)-

As switching function we define:

Hu: =<p(t) = XT(t)b. (18)

In the regular case (18) posses only isolated zéros and we dérive a bang-
bang control from (17):

•«-{•/ ; <p(t)<0.

Since u(t) enters H( . ) linearly, 9(t)=0 may hold over a nonzero interval:

F: =K,f2]c[0, T\9 (20).

which is called a singular are.

For the following dérivations it is assumed that the generalized Legendre-
Clebsch (GLC) condition holds on an optimal singular trajectory:

with inequality (strengthened GLC-condition).

R.A.LR.O. Recherche opérationnelle/Opérations Research
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To get an expression for u (t) one has to evaluate the total derivatives of
<p(t) along the trajectories of (11) and set them equal to zero (Gabasov,
Kiriilova [4]):

^ r 9 ( 0 0, m = l, 2, . . . (22)
dtm

The value of the index where u appears explicity in (21) must be even
(McDanell, Powers [11]), m = 2q:

q><2«>(0 : = a ( x , X) + fc(x, 3L)u = 0, (23)

with b(x, X)^0. The integer q is called the order of the singular control.

Thus we dérive:

X). (24)

(a) Regular case

Let us consider the regular case in phase plane (fig. 1). From (11) we get:

dxjdx2= - x 2 / a (x 2 -u ) . (25)

Integrating (25) with respect to (12) the following trajectories turn out:

x1=--x2 In|x2+l| + -x 2 0±-ln |x 2 0+l | +xl0\ ' (26)
a a a a { w = - l .

From the structure of A follows that the set of stable points coincide
with the Xj-axis. Another evident fact is that: starting within the stripe
Zo : = {x | | x21 ^ 1} we can never leave So with an admissible control.

Now we turn to the time dependent behaviour of (11).

Integrating the second équation one gets:

('-'o)x2(to). (27)2 (0= Va('"T)

Jto

Taking (12) into account it turns out with x2(t0) = 0:

x2(t)= ± (1-^0-0) for u(t)= | + j ' (28)

vol. 19, n° 3, août 1985
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Integrating x2 (t) we have as solution for xx (t):

a
(29)

With (28) and (29) we have the candidates for the bang-bang controlled
part of the optimal trajectory. In the next section the singular arc candidates
are worked out.

u(t) = +1

u(t) = -1

FSgure 1. — Trajectories for the regular case.

(b) Singular case
The switching function follows from (18):

oM0- (30)

Applying (22) we see that ^ = 1 :

(31)

9(0 = 0.
R.A.I.R.O. Recherche opérationnelle/Opérations Research
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From (15), (30) and (31) we get:

t i - ( t )=—*i(O + *2(0- (32)
otc2

The substitution of (32) into (11) leads to the singular system:

xs(t) = Asxs(0 (33)

with:

-C i} c : = cjc2.

Remark: As dépends no longer upon a.
From:

dx1/dx2 = x2/cx1, (34)

we dérive:

ci-xla, (35)

which yields to the phase diagram shown in figure 2.
Obviously the singular control is not admissible in the entire phase plane

because of (5). Satisfying this relation, only a stripe in the phase plane remains
for admissible singular controls:

C - (36)
a

which gives:

xv

a

(37)

Regarding the factor — c/a, which is equivalent to the slope of the limiting
straight lines [equalities in (37)], we can see that low production costs c2 -• 0
leads to the coincidence of the straight lines with the x2-axis. There remains
no possibility to apply a singular control. This is in accordance with the
GLC-condition (21), which holds in its strengthened form only for c2>0. If

vol. 19, n° 3, août 1985
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Figure 2. — Trajectories of the singular System.

we neglect on the other hand the inventory costs c1=0, the straight lines
become horizontal and it follows from (35) that the phase curves are hori-
zontal iines too, x2 = Const

The solution of (33) is derived by calculating the state transition matrix
(Kailath [9]):

\|/(r): =Xe nX~V' (38)

where X dénotes the modal matrix and F is the diagonal matrix of the
eigenvalues y. From the characteristical polynom the eigenvalues are calcul-
ated as:

(39)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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The modal matrix becomes:

x = re - TcV (40)

As state transition matrix finally we obtain:

1

c
sinh (^/cCt-f 0 (41)

(t-to))

With (41) we are able to compute the candidates for the singular are by:

Now we turn to the synthesis of the optimal trajectory.

(c) Synthesis of the optimal trajectory
The synthesis problem of optimal trajectories can be regarded from two

points of view, from a local and from a global one. From local considérations
we can dérive the behaviour of the control function u(i) at junction points
of regular and singular subares (McDanell, Powers [11]). The global investiga-
tion yields the structure of the problem, i. e. the séquence of bang-bang and
singular subares. In default of a gênerai analytic solution of this problem,
only numerical methods or special, problem dependent, analytical methods
remain. In this chapter we shall give the structure of our problem by geometri-
cal considérations and we shall show that the behaviour of the control u(t)
can be stated globally for our problem.

Let us formulate the following theorem to describe the structure of the
optimal control:

THEOREM 1: Let x*(T) = (l/oc)e™r-f T— (l/a) — % dénote the maximal xA-
coordinate reachable from x(0) = [ — %, 0]T and let f dénote the junction point
o f a regular and a singular are of an optimal trajectory. Then:

(1) ifxf (T)<0, there exists no solution;

(2) if x*(7) = 0, the endcondition x1(T) = 0 is reached with u(t) = \y

te[0, T);
(3) ifxf(T)>0, the terminal manifold is reached by:

, . , -, OSt<t\
u(t) =

vol. 19, n° 3, août 1985



2 8 4 J. WARSCHAT

Proof: The problem has a solution if x1(T) = 0 lies in the set attainable
from x(0) by an admissible control. The boundary point of this set with
respect to the x^coordinate is given by the maximal distance between x^O)
and xx (T). This leads to an optimization problem for the System (9) to (12)
with the new optimization criterion:

J(u) : =-x 1 (T) ->min . (43)

The Hamiltonian becomes:

H: =V(t)Ax(t) + lTbu(t) (44)

and as switching function we get:

$(t): =a!2(t). (45)

The adjoint System takes the form:

(46)
A.2(O=o£2-i, ^2(T)=o, J

which yields:

l (t)--(e<«- *T) ( 4 7 )

a

Since %2(t) is négative over the whole interval [0, T), it turns out from
(19) and (45): u(t)=l, te[0, T).

With M (0=1» te[0, T) we get from (29) with to = 0 and x t (to)= ~X*

x*=ie-
ar+r---x. (48)

a a

Thus, if xf(T)<0 there exists no solution, which proves part (1). If
xs*(T) = 0, then u ( 0 = l , ts[0, T) holds, which proves part (2). If xf(T)>0,
a singular subarc with \u(t)\ < 1 occurs. And we know that it is optimal if it
is an admissible solution, because of (21) (see Gabasov, Kirillova [4]).

At the point [ — %, 0]T the gradient of the singular trajectory is [ — 2c%, 0]r,
i. e. it is directed in an inadmissible région with respect to (4). The same fact

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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holds for u(t) = -1. Therefore we have u(t) = 1, 0 ^ t < f, and us(t\ f^t^T,
where the switching point f is derived from (28), (29), (41) and (42):

x1(t
s)=-e-«tS + f - - - x , (49)

a a
x2(ts)=l-e"a 's, (50)

F (f): =cosh( % /S ( r - t0 )x 1 ( t0+^s inh(^ ( r -O)x 2 ( t0 = 0. (51)

Thus we have an implicit function where we seek for a % satisfying (3), a
and Tfixed, a tse(0, T).

It can be easily seen that:

lim F(f)<09

(52)
lim F(f)>0.

Hence a zero exists.

In order to show the uniqueness of f we use the f act that F (f) is a
monotonous function.

The derivative of (51) with respect to f yields:

V) (53)

The second term is always positive bearing in mind our assumptions. As a
conséquence Fts(.)=0 if sinh( Jc{T- f)) = 0. But this holds only for fo=T,

which contradicts (3). Therefore we have:

Fts(f)>0 if fe(0, T). (54)

From (49), (50) and (51) we can compute the switching time f and thus
we are able to compute the control u(t) and the state variables xx (i), x2(t),
te[0, T].

This complètes the proof.

Let us now investigate the behaviour of u(i) at the junction point. From
McDanell, Powers ([11], Thm. 3) we have a local condition for the continuity
of u(ts). In our case we can dérive a global condition:

vol 19, n° 3, août 1985
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THEOREM 2: Let l = 0 dénote the lowest order derivative of u{t\ which is
discontinuous at f, Then 1 = 0 for all fe(0, T).

Proof: Suppose />0. Then:

T). (55)

This yields:

c
a

(56)

which is exactly the expression for the upper limiting straight line of the
admissible singular région. Thus within the admissible stripe u (f) is discontinu-
ous, i. e. / —0. •

Example 1; Figure 3 shows the history of the production rates and inventory
with a = 0.8, c1=c2=l9 T=4.0, x=l-5. The switching point is f= 1.7007 and
the minimal costs become J(ü) = 3.5565.

3
rsr

X

X

•j

- 1 ,

- 2 ,

0 -

0 ^

— —

UNCONSTRAINED

^ ^

1,0 2,0 ^,

CASE

y 2
'

- ,—j—

- •

- ^ r-
t 4, 0

Figure 3. — Production rates
and inventory for the unconstrained case.

4. OPTIMAL POLICIES FOR THE CONSTRAINED MODEL

Now restriction (5) cornes into play:

0, T]. (57)

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Analoguously to (20) we define an interval:

Ib: =[*î, #<=[<>, 71, (58)

called a boundary arc, where the trajectory lies on the boundary S (x).
Because of the linearity of the Hamiltonian concerning u(t) we apply

Maurer's [10] version of the minimum principle, which goes back to the
works of Jacobsen, Lele and Speyer [8] and of Hamilton [6]. For each optimal
solution x(t), u(t) of the problem (9) to (13) and (57) there exists an adjoint
vector X (t) e IR2, a real number a ^ 0 and a measurable function r| : [0, T] -• M
with r](t)S(x(t)) = 0, te[0, T] satisfying (59) to (62):
with the Hamiltonian:

(0) (59)

we get:

1 (t) = - AT i (t) - C x (t) - ri (t) Sx (x (t)), (60)

MT) = aÖx(x(T)). (61)

Setting:

v(t) : = ri(t^)-ri (tr),

hence:

(62)

where tt dénotes the junction point between an interior arc and a boundary
arc.

The conditions stated in section 3 with respect to (14) to (17) remain valid,
particularly the minimum principle (17) holds also for H (. ). In the following
we omit " ~" if no confusion is possible. Because of the "duality" of singular
and constrained problems (see McDanell, Powers [11] and Maurer [10]) we
can proceed in a similar way as in section 3.

Let r dénote the lowest order of the time derivative of S (x (t)) where u (t)
appears explicitly, then S(x(t)) is called of order r. From (57) we dérive:

u(t) = 0, telb. (63)
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Thus:

(64)

Remark: In order to ensure the validity of (60) to (62) one has to avoid
that | M ( 0 | =1 for telb. But due to (57) \u(t)\ <1, telb holds.

Because S(x(t)) is of order 1 it follows (Maurer [10], Thm. 5.6) for a
junction point between a regular arc and a boundary arc: v = 0 at t\ and
additionally the optimal trajectory contains at least one boundary arc, if the
constraint is active, i. e. if the unconstrained trajectory violâtes (57).

Now let us proceed to the investigation of the structure concerning the
constrained problem.

THEOREM 3: Let the constraint (57) be active and let t* and f dénote the
junction points between an interior regular arc and a boundary arc and a
boundary arc and an interior singular arc, respectively. Moreover let:

1

a

with:

1

a

be the maximal x^coordinate reachable from [ —x> 0]T. Then:

(1) ifx^*(T)<09 there exists no solution;

(2) if xî*(T) = 0, the endcondition x1(T) = 0 is reached with:

(3) if xf*(T)>0, the terminal manifold is reached by:

us(t), fgt^T.

Proof: By the same considérations as in the proof of theorem 1 we yield
as optimal control for the point [ — %, 0]r, u(0)=l. This holds until the
trajectory reaches the boundary at:

* 6 = - - l n ( l - p ) . (65)
a

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Since the unconstrained optimal trajectory (48) violâtes (57) for te[tb, T],
the optimal trajectory remains on S(x(t)). From (28), (29) and (64) one easily
dérives:

x**Cr) = u l n ( l - P ) - u - - + p r - x . (66)
a

This proofs part (1) and (2).

In the case (3) we get from (28), (29), (41), (42) and (64):

: =cosr

+ sinh ( y ë ( T - f)) p = 0. (67)

One gets:

lim F*(f)>0. (68)

Moreover it turns out:

lim f*(O<0, (69)

since for f = tb we have exactly the case where no constraint is active.
Obviously the new ts = tb is smaller than the ts

0 of the unconstrained problem.
As it was shown in theorem 1, F (f) dépends monotonically upon f. Therefore
F(ti)<F(t2) tf *i <*2- But F(t£) = 0and for that reason F*(tb) = F(tb) <0. Thus
a zero ts

0 of Fb(ts) exists. The uniqueness turns out, analogously to theorem 1,
since one can show that i^(^)>0, fe(t\ T). Finally we get from (67) the
time t\ which enables us together with (65), the équations (28), (29), (41) and
relation (57) to compute the time history of the control and state variables.
This complètes the proof.

Analoguously to theorem 2 we obtain for the junction points tb and f:

THEOREM 4: Let tb and f be defined as in theorem 3. Let / ^ 0 dénote the
lowest order derivative of u (t) which is discontinuous at tb and t5, respectively.
Then 1 = 0 at t\ tse(0, T), f>tb.

Proof: Suppose />0.

(a) Junction between a regular interior are and a boundary are. If / > 0:

«reguUr (*•) = «*(**)> (70)
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Thus: 1 = p, which contradicts (57).
Hence / = 0 for all tbe(0, T).
(b) Junction between a boundary are and an interior singular are. If />0:

(71)

Thus:

P=^-x1(f) + x2(f). (72)
<xc2

This holds only if Xj (O = 0. But that is exactly the case where we have no
singular are, hence / = 0, for all f e(tb, T), which complètes the proof.

Example 2: With the same values as in example 1 and an additional
constraint p = 0.5 one gets £fc = 0.8664, f = 2.4738 and J(u) = 3.6989. The
history of xx (t\ x2 (t) and u (t) is shown in figure 4.

Remark: In the constrained case as in the unconstrained case as well
the necessary conditions for optimality are also sufficient (see Girsanov [5],
Thm. 16,2).

5. INTERPRETATION OF THE RESULTS

The production-inventory model (1), (2) is an extension of the models
described by Sethi [12]. In the papers reviewed there the production rate is
taken as the control variable so that production can be altered immediately.
The model of Bradshaw and Erol [2] distinguishes between a desired produc-
tion rate and an actual production rate. The interaction between both works
like a regulator. The actual production rate follows with a certain time delay
the desired rate. Such "inert" dynamic behaviour can be found for example
in the field of chemical processes or in production processes with learning
curves.

As a conséquence of the model formulation, especially by the définition of
Xj (0 in (7), which says that we consider the déviation of the actual in ventory
from the inventory requested at the end of the planning horizon, and the
quadratic cost criterion (13) which weights a great différence much more than
a small one, we start with the maximal desired production rate (fig. 3).

Approaching the desired inventory level a strategy which avoids high
production costs is optimal, so we produce by a singular policy. The négative
desired production rate means that backlogging should be admissible, though
the actual production rate remains positive. If desired backlogging should be

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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1,0-

f\ (\ _
3 0,0 -

X

- 2 , 0 -

CONSTRAINED CASE

i ' o ' ' ^ l o ' " J ^ — ^ - ~ T l ~ ~ ~ 4 ! o

Figure 4. — Time history of the production rates
and the inventory for the constrained case.

avoided the desired production rate can be restricted to O^pd(t)^ 1, te[0, T].
Then ail results are still valid, but in some cases an additional regular arc
(u(i) = 0) at the end of the horizon is necessary to reàch the target xx (T) = 0.
No further problems arise if we let the actual production rate at the end
time T free. If we wish a fixed production rate at the end of the planning
horizon only the formulation (3) guarantees the controlability of the endpoint.
Without desired backlogging a production rate x2(T)=0 would not be
realizable because the origin do not belong to the interior of the admissible
set of u (t).

6. CONCLUSION

It was shown that for a state constrained production inventory System
governed by a state équation of order two and subjected to a quadratic cost
criterion the structure of the solution i. e, the séquence of interior regular,
boundary and singular arcs can be determined uniquely. Moreover one can
dérive easiiy the optimal control for constrained as well as for unconstrained
problems. More efforts should be made to investigate the behaviour of
cascades consisting of a number of basic Systems described in this paper.

Hère the structural problem becomes more serious since the support of the
phase plane technique is no longer at our disposai.
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