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AN APPROXIMATE ANALYSIS
OF THE D M 1 QUEUE

WITH DETERMINISTIC CUSTOMER IMPATIENCE

by George P. COSMETATOS (X)

and Gregory P. PRASTACOS (2)

Abstract. — This paper analyzes the single server queue with regular arrivais, négative expo-
nential service times, and deterministic customer impatience. Such queueing Systems appear
J'requenbly w'hen modeling inventory Systems for perishable products, or dato communication
Systems. In addition they may be regarded as realistic alternatives to the standard D/M/l queue
opérât ing in heavy traffic conditions.

Approximations for measures that describe the behavior of the system under normal or heavy-
traffic conditions are derived and tested. The results indicate that the approximations developed
are very accurate.

Keywords: Queue; Perishable Inventory; Heavy traffic.

Résumé. — Cet article analyse la file d'attente à une station de service avec arrivées régu-
lières, temps de service exponentiels négatifs, et impatience déterministe du client. De tels sys-
tèmes de file a"attente apparaissent dans la modélisation des systèmes de gestion des stocks de
produits périssables ou des systèmes de communication de F information ; de plus, ils peuvent
être considérés comme des alternatives réalistes au système standard D/M/l dans des conditions
de trafic lourd.

Des approximations des mesures décrivant le comportement du système dans des conditions
de trafic normal ou lourd sont dérivées et testées. Les résultats indiquent que les approxima-
tions développées sont très précises.

Mots clés : Files d'attente; Produits périssables; Trafic lourd.

1. INTRODUCTION

In this paper we examine the class of D/M/l ; m queueing Systems, which
are characterized by single deterministic arrivais, exponential service times,
one server, FIFO queue discipline, and customer impatience. In these Sys-
tems, a customer arriving for service can stay in the system for at most m
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134 G. P. COSMETATOS AND G. P. PRASTACOS

periods; if his service is not completed by that time, then the customer leaves
the System (or, is rejected by the System) never to return.

Such queueing Systems appear frequently in inventory theory, or in data
communications. As an example, a perishable inventory System for a product
with finite lifetime of m periods can be modeled as a queueing System where the
customer (item) can stay in the System (on the shelf) for at most m periods; if
not used by then, it has to be descarded (see, e. g. Brodheim et al. [2], Cosmeta-
tos and Prastacos [10] and Nahmias [11 ]). Similarly, in data communications
a buffer receiving, storing, and issuing information can be modeled as a
queueing System where all requests have to be satisfied in a certain séquence, and
within the time period specified by the user requirements (see, e. g., Doll [12]).

In addition, this System represents a realistic alternative to the standard
D/M/l ; oo System operating under conditions of heavy traffic. Under these
conditions, the « no-limit » System would lead to infinitely long waiting times,
unless some form of customer impatience or discouragement was imposed.

Two measures of practical interest in the study of such a System are:
(a) The rejection probability, or probability of a customer reneging (i. e.,

departing prior to^service completion).

This is a function of the mean service time p = 1/À,, and of the total time m
allowed in the System, and we dénote it, therefore, by W( p, m). Since customers
arrive singly and deterministically, W( p, m) is also the average number of
reneging customers per time period. It also follows that the average number
of customers whose service is completed per time period is l — W( p, m).

(b) The average server utilization, denoted by U( p, m), and defined as
the proportion of time over which the server is busy with customers who
will eventually have their service completed. Since the proportion of customers
who have their service completed is 1 — W(p, m\ it follows that

)] (1)

We are interested in evaluating analytically the performance of the System
in terms of the above measures.

In the queueing theory literature significant work has been done for sys-
tems with finite waiting time. Gnedenko and Kovalenko [6] studied an
M/M/l ; m System (exponential inter-arrival and service times, single server,
and finite time in the System); they derived a simple expression for the rejec-
tion probability W(p, m), which in the notation given above reads:

W(p, m) = (l - p)/ [exp(m(l - p)/p)- p] (2)

Cohen [3], Loris-Teghem [7], and more recently Gavish and Schweitzer [5]
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D/M/1 QUEUE WITH CUSTOMER IMPATIENCE 135

considered generalizations of the Af/M/l ; m system by relaxing the assumptions
of exponential inter-arrival or service time distributions. However, the results
pertaining to the M/M/l ; m queue do not meet our objectives, as outlined above.

A similar system that has been examined in the literature is the one where
the arriving customer reneges (is rejected) if his queueing time reaches a fixed
length, say mq (i. e., the customer remains in the system once he starts service,
independent of the service length). Considérable work exists on Systems of
the GI/G/1; mq type (see, for example, Stanford [8]. Of particular interest
for our purposes is the analysis of the G//M/1; mq queue by Finch [4], and
the results that he obtained for the case where interarrivai times have an
Erlang distribution with parameter k. We will refer to his work in more detail
in the next sections.

The paper is organized as follows: In section 2 we present a Markov Chain
formulation of the D/M/1 ; m system that leads to exact calculation of the
performance measures. We indicate that this formulation is not practical if m
is large, since numerical computations become complex. In section 3 we dérive
an approximation of the system performance; this approximation is tested
and evaluated in section 4. Finally, in section 5 we present a heavy-traffic
approximation for an arriving customer's average queueing time, and draw
conclusions.

2. FORMULATION

Consider the following system:
(a) Customers arrive singly at a one-server queueing system. The arrivai

rate is constant, equal to one customer per time period.
(b) An arriving customer who finds the server idle starts being served imme-

diately ; if upon arrivai the customer finds the server busy, then he joins a queue.
In either case, he cannot remain in the system longer than m time periods:
if by the end of time m he has not completed service, then the customer is
rejected from the system or, alternatively, reneges, never to return.

(c) Fully completed service times (or, alternatively, service requirements)
have a négative exponential distribution. The average service requirement
is constant, equal to 1/X, and we assume that 1/X,= p < l . It follows that,
when the server is busy with customers who will eventually have their ser-
vice completed, departures from the system have a Poisson distribution with
mean X.

(d) The queue discipline is FIFO; in a single-server queueing system, this
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136 G. P. COSMETATOS AND G. P. PRASTACOS

is equivalent to saying that customers leave the server in the order of their
arrivai.

Suppose that the number of customers is observed at the end of every period.
The number of customers in the system indicates the total time spent by
the oldest customer in the system. If the number of customers at the end
of a period is equal to m, this means that the oldest customer has already spent m
periods in the system, so he is removed from the system. This is equivalent
to refusing entrance to the newly arriving customer at the beginning of the
next period.

Let Xt dénote the number of customers in the system at the end of period t,
and Zt the number of customers served during period t. Clearly, { Xt} is a
Markov Chain, whose transition probabilities PitJ are given by:

= P(Zt — i -j +1), if 0 <j < i +1 and i < m -1
îf 7 = 0 and i < m — 1
if 0 <j < m and i = m (3)
if 7=0 and ï=0

=0 , if
where

To see these probabilities, we have to realize that the transition from any
state i to state 0 is not necessarily observed when all (i+1) customers are
served (including the new arrivai), but (and most probably) later (i. e., at the
end of the next period), when more than i customers could have been served.
A similar analysis can be found in Brodheim et al [2].

If m is not too large, then we can obtain the steady-state probabilities
{ 7t0, Ui, . . . , nm } by solving the following system of équations:

m m

Kj= X HfPij, 7 = 0,1, . . . , m and X n ( =l (4a)
i = 0 f* = 0

We can then compute the measures of performance as follows:

W(p,m)=nm and U{p,m)=ç(l-nm) (4b)

However, the exact numerical calculation of TĈ  can be very cumbersome
if m is large, and also does not provide us with the insight of an analytical
(closed form) solution which is very useful for policy sélection or sensitivity
analysis. Brodheim, et al. [2] encountered the same problem in the context
of a perishable inventory system.

An alternative approach for the analysis of the D/M/l ; m queue would
be to révise assumption (b) by considering instead that an arriving item reneges
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D/M/1 QUEUE WITH CUSTOMER IMPATIENCE 137

(is rejected) if his queueing time reaches a fixed length, say mq. If we dénote
by Uk( p, mq) the average server utilization in the EJM/1 ; mq system, then
from [4] we have;

Uk(p, mq)= p ^ t ar-1/(1 - P) ] / [ r t ar- P/(l - P)] (5)
where

ar = (pk + zr)exp(zrmq/p)/[(pk + zr + k(zr-l))(l-zr)] (6)

and where { zr; r = l,2, . . . , k} are the k non-zero roots of the équation:

(pH#-l)+(p/c)k=0 (7)

The rejection probability, Wk(p,mq\ is then, by (1):

Ïi/k(p,ffla)=l-t/k(p,ffl,)/p = l / Z ö r - P / ( 1 - P ) (8)

Ho wever, the above formulas for (7fc(p, m4) and ^ ( p , mq) present serious
computational difficultés, since they involve the calculation of k roots in
the polynomial (7). The computational difficulty inherent in the solution of (7)
will be overcome in the next section, where simple approximations for the
above quantities, as well as for their limit as k -• oo, are developped.

Before proceeding with the analysis, the following deserves to be mentioned :
Wk(ç>, mq) in (8) is the probability of an item having to remain for time mq

in the queue rather than for time m in the system, as required by the original
assumption (b). Intuitively, one would expect the two probabilities to be
approximatively equal if mq is defined as

mq = m-l/X=m-p (9)

This intuitive relationship draws some support from the comparison between
the two rejection probabilities W(p,m) in (2) and ^ ( p , mq): When k = l,
the non-zero root of (7) is zx — 1 — p, so that

Wi(p, m,)= P(l ~ P)/(exp (mq(l - p)/p)- p2) (10)

a resuit first established by Barrer [1]. Equating the two probabilities in (2)
and(10)yields:

mq = m+ p/np/(l — p) (11)

which upon expanding In p into a series of powers in 1 — p indicates that (9)
is approximately valid when p is relatively close to unity. Of course, the
expression in (11) need not necessarily hold when the arrivai rate is constant:
both (9) and (11) will be tested in section 4, when some analytical values
of W(p,m) are compared with the corresponding approximate WJi^p^m^
values.
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138 G. P. COSMETATOS AND G. P. PRASTACOS

3. DERIVATION OF THE APPROXIMATIONS

From the définition of Uft(p, mq) it foliows that Uk(p, 0) corresponds to
the utilization of the standard EjJM/l no-queue System, and Uk(p, oo) cor-
responds to that of the standard Ek/M/1 queue System with no reneging.

RESULT 1:

WHP, m,)=/(pk)V(l + Qkf=f Wk(Pi 0) (12)

where f—fk{py mq) is a weighting factor, to be specified later, with limiting
values of 1 and 0 for mq = 0 and oo, respectively, regardless of k and p.

Proof: It is not difficult to show that for given k and p, the average server
utilization in (5) is an increasing function of mq. We therefore proceed in writing
a gênerai relationship of the form:

Uk(p, mq)=fUfà 0) + (l -f)Uk(p, oo) (13)

From [9 ] we know that

Uk(p,O)=p[l-(pk)k/(l+pk)k]

Given that Uk(p, oo)= p, we get from (13)

Uk(p, mq)= p [1 -f(pk)k/(l + pkf] (13a)

and by using (1), the resuit follows.
We will now proceed to dérive approximations for fk(p, mq).

RESULT 2: The following équations pro vide approximations for /fc(p, mq):

(a) fk(lmq)^3{k+l)k+1[kk(6krnq + Sk + 4)} (14)

(b) A(P, mq) ~ { (1 - p2)/[exp (mq(l - p)/p)- p2]

3(k+l)(l + l/k)V[2(3km + /c + 2) ] -2 / (m+l)} + (15)

Proof: To show (14), we examine the behavior of (7) when p -> 1. It turns
out that, in that case, one of the k roots of (7), say zu tends to zero whereas
ail other roots have négative real parts, whose absolute value is large. It
follows, from (6), that when mq is not too small, the terms { ar\ r=2, 3, . . . , k }
are negligible, so that by (8)

Wk(lmq)^ [a,-p/il-p)]'1 (16)

On expanding the left-hand side of (7) into a series of powers in z, it is not
difficult to verify that when p -> 1,

-(l-p)2[4pfc(fc-l)(3p/c-fc + 2)]/[3(2pfc-/c + l)3] (17)
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By introducing the above into (6) and expanding the exponential into a
power series of zl9 we obtain after some algebra on (16):

Wk{h rnq)~3(k + l)/(6kmq + &k+4) (18)

and therefore (14) follows from (13a) with p=l . We note that according
to either (9) or (11), mq in (14) or (18) is equal to m-1.

To dérive (15), we calculated Wk(p, mq) in (8) analytically for fc = 2> 3, 4,
and tabulated values of/fc(p, mq)= Wk{p, mq)/Wk(p, 0) over a wide range of mq

and p values. We found that/fc(p, mq) dépends on all three parameters, but the
différence

A(p, mq)-j\{& mq)

appeared to be insensitive to p, and therefore could be approximated by

fk(Umq)-MUmq).
Assuming this is also true for higher values of k (it will be validated in the

next section), then
/k(p,m,)-{/1(p,m( ï)+ [MUmJ-f^m^y (19)

where { x }+ = max (x, 0). Upon using (10) and (12) with k = 1 to obtain/^ p, mq\
and (14) with mq = m-l to obtain fk{\, mq\ (15) follows, and therefore the
result is proven (Note that / ^ l , mq) may also be obtained as the limit of
A(P, "M when p -> 1, using (10)).

A direct conséquence of Result 2 is the estimation of the rejection pro-
bability in the D/M/1 ; m system which is obtained by letting k -> oo (deter-
ministic arrivais):

RESULT 3 : The rejection probability in the D/M/1 ; m system can be approxi-
mated by:

^OO(P, mq) ~ {(1 - p2)/[exp K ( l - p)/p» p2 ]
+ [3e/(6m + 2)]- [2/(m + l ] }+ . exp(- l /p) (20)

4. EVALUATION OF THE APPROXIMATION

In order to evaluate (20), we solved the steady-state équations in (4a) for
m=2, 3, 4, 6 and 10, and 0.30 < p<0.99. We then compared the analytical
values for the probability of a customer reneging (as obtained from (4b))
with the approximate rejection probabilities calculated from (20). Table 1
gives the percentage errors incurred; these are defined relative to the arrivai
quantity per period (equal to 1 for the system considered here) as 100' (approxi-
mate value-analytical value). We assume that mq is given by (9). It can be
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140 G. P. COSMETATOS AND G. P. PRASTACOS

seen that the errors are quite small: almost always they are less than 1%,
and in the important (realistic) région (p>0.80) they are less than 0.67%.
They also appear to be rather insensitive to m, and, as expected, they are found
to tend to 0 when p tends to 1. Similar errors occurred under the assumption
that mq is given by (11). We can, therefore, assume that mq=m— p, this being
a simpler expression.

TABLE I

Evaluation of formula (20) ; percentage errors

^ ^ ^ m

P ^ s .

0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.95
0.99

2

- 0.14
- 0.85
- 1.25
- 1.26
- 1.02
- 0.67
- 0.31
- 0.14
- 0.01

3

- 0.00
- 0.09
- 0.50
- 0.72
- 0.31

0.03
0.14
0.10
0.02

4

- 0.00
- 0.00
- 0.10
- 0.51
- 0.34

0.17
0.32
0.21
0.05

6

- 0.00
- 0.00
- 0.00
- 0.05
- 0.35
- 0.03

0.38
0.30
0.08

10

- 0.00
- 0.00
- 0.00
- 0.00
- 0.02
- 0.21

0.21
0.30
0.09

5. THE AVERAGE QUEUEING TIME IN HEAVY TRAFFIC

In his analysis, Finch [4] also dérives the queueing-time (excluding service)
distribution function. Letting Qfe(p, mq) dénote the average queueing time of
an arriving customer, in time periods, we have, in the notation used previously,

p[pZ { (1 -zr)ar(l - exp (-~zrmq/p)) }/zr-mq/(l - P)] / [ p E "*- P/tt " P)]

(21)
RESULT 4: Under conditions of heavy traffic (p -> 1) the average queueing

time of an arriving customer is given by:

Qk( 1, mq) - mq(4 + 2k + 3kmq)/(4 + ik + 6kmq) (22)

Prooj: It was pointed out in section 3 that when p -» 1, one of the roots
of (7), say zl9 tends to zero» whereas the remaining k — l roots have négative
real parts whose absolute value is large. It is not difficult to show that, if mq

is not too small, the terms in (21) that correspond to r > 1 are negligible in
comparison to the one for r = l. In order to prove (22) we then expand
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D/M/1 QUEUE WITH CUSTOMER IMPATIENCE 141

exp( —z^/p) int o a power series of zl9 replace zx by its expression given
in (17) and finally calculate the limit of (21) as p tends to 1.

To illustrate the implications of the above results, consider a queueing
system D/M/1 ; oo which opérâtes under conditions of heavy traffic, the average
queueing time of an arriving customer being infinitely large. Imposing an
upper limit, mq, on each customer's queueing time has two conséquences:
It reduces the average queueing time to

Öoo(l> mq) c mq(2 + 3m,)/(8 + 6mq) (23)

time periods (obtained from (22) for k -> oo) but causes a proportion

pyx(l,<>~3/(8 + 6mg) (24)

of arriving customers to spend mq time periods in the queue and then be denied
service (obtained from (18) for k -• oo).

Letting cq be the unit cost of queueing and cw be the unit cost of refusing
service, it can be seen that the expected total cost per arrivai is equal to

C = [mq{2 + 3m«)/(8 + 6mq) ]cq + [3/(8 + 6m,) ]cw (25)

Differentiating (25) with respect to mq, we get

à C/dmq = 2[(8 + 24mq -h 9m\)cq - 9cw]/(8 + 6mq)
2 (26)

Thus, if cjcq < 8/9, à C/dmq is positive over the whole range of mq values and
a system where no queueing is allowed (i. e., mq = 0) would yield the lowest
total cost. If, however, çw/cq > 8/9, then (26) is minimized for :

(27)

and the optimum operating characteristics of the system can easily be derived.
Alternatively, if management imposes a limit such as, for example, that

the rejection probability should not exceed 6%, this would imply, by (24),
that mq = l. 8oo(l> 7) would, by (23), become equal to 3.22 time periods, and,
therefore, the customers who do receive service (i. e., 94 % of the total) would
each have to remain on average in the queue for

[000(1,7)-7WU1,7)]/ [1-WcoU, 7)]

or less than 3 time periods. The 6 % rejection probability would also imply,
by (27) with mq = 7, that the ratio cjcq is implicitly assumed to be of the order
of 70.
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