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ON UNDISCOUNTED MARKOVIAN DECISION
PROCESSES WITH COMPACT ACTION SPACES (#)

by Paul J. SCHWEITZER (x)

Abstract. — We consider a multichain undiscounted, stationary, semi-Markovian décision process
with finite state-space, compact action'Spaces, and continuous rewards, holding times and transition
probabilities. It is sfiown that the pair of coupled functional équations for the gain and values,
which arise in the infinité-horizon formulation, possess a solution if and only if two conditions are
met: at least one non-randomized maximal-gain policy exists, and the bias-vectors of all such
maximum-gain policies are uniformly bounded above, The uniform-bound restriction is new and
absent when the action-spaces are finite. Several sufficient conditions for solvability are discussed
as well, plus extensions to higher-order optimality criteria.

Keywords: Markovian décision processes; dynamic programming.

Resumé. — Nous considérons un processus de décision semi-markovien, stationnaire, multichaïné,
non actualisé, avec espace d'états fini, espace d'actions compact, et bénéfice, durée de service et
probabilités de transition continus. Nous montrons que la paire d'équations fonctionnelles couplées
pour le gain et la valeur, qui se présentent dans la formulation à horizon infini, possède une solution
si et seulement si deux conditions sont satisfaites : au moins une politique de gain maximal non
probabilisé existe, et les vecteurs de biais de toutes ces politiques de gain maximal ont une borne
supérieure uniforme. La restriction de la borne supérieure uniformément bornée est nouvelle, et
absente lorsque les espaces d'action sont finis. Plusieurs conditions suffisantes de résolubilité sont
examinées, ainsi que des extensions à des critères d*optimalité d'ordre supérieur.

1. INTRODUCTION

The functionaî équations of undiscounted, stationary, infinité-horizon semi-
Markovian décision processes (MDPs) are [15]:

gi= max Y,PUP l£^Ar, (1.1)
keK(i) j=l

r N N i
i;,- max tf- X H ^ + X ¥%vX l ^ N , (1.2)

keL(g,i)l_ j=l ;=1 J

(*) Received March 1983.

(*) The Graduate School of Management, The University of Rochester, Rochester,
N.Y. 14627, U.S.A.
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7 2 P. J. SCHWEITZER

where:

r N N i
L(g, i) = keK(î) X Pugj= max £ Pfjgj •

L j«i «««(o j - i J

Hère AT is the finite number of states, K(i) is the non-empty, compact, set of
actions in state i, and qk and Pkj are the expected one-step reward and
transition probability to state j if action k is selected in state L The parameters

N

qk, Pk
p H

kj and Tk = £ if*,- and sets K(i) are assumed to satisfy:

qk, Pkp Hkp Tk are continuous in k, (1.3 a)
N

Pki>0, y Pkn=l, Hk
i;>0, (1.3b)

IJ 7 / i IJ J IJ — 7 \ /

Hkj = 0 whenever Pkj = Q, (1.3 c)

0<Tmin^Tl (1.3d)

K(0 is a compact subset of a metric space. (1.3 e)

Hère Tk represents the mean holding time in state i if action k is chosen.
The assumptions ensure that the one-step expected rewards qk and holding
times Tk are uniformly bounded, hence the gain rate vector for any policy
[defined by (2. 3), (2, 4) below] is bounded. The assumptions also ensure that
the maxima on the right-hand-sides of (1.1) and (1.2) (of continuous func-
tions over compact sets) are actually achieved.

The 2N unknowns are the gain vector g = [gi\ and relative value vector
Ü = [ÜJ. It is known [1, 15] that if a solution pair {g, v} exists to (1.1), (1.2),
then g is unique, g equals the maximal gain rate g* defined by (2. 5) below,
and that any non-randomized policy which achieves the 2 N maxima in (1.1),
(1.2) attains the maximum gain rate g*, i. e., that the set SMG of non-
randomized maximal-gain policies is not empty.

Our goal is investigating conditions for the existence of a solution to the
functional équations (1.1), (1 . 2). Establishing existence is more difficult than
in the discounted case [4, 8], where one is dealing with the fixed point of a
contraction operator, so assumptions (1.3a, b, c, d, e) suffice.

The first difficulty arises because the next-to-last paragraph implies that
is a necessary condition for the existence of a solution to (1.1),

R.A.I.R.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S WITH COMPACT ACTION SPACES 7 3

(1.2). However, assumptions (1. 3 a, b, c, d, e) are not sufficient to assure
existence of a maximal-gain policy in the multi-chain case. A counter-example
with N=3 is given in [16], section 4. 3:

EXAMPLE 1: K(\)= {fc|0g/c^l } and K(2), K(3) are singletons, with para-
meters:

q(k) = [l, 7, 4], T(fc) = [l, 1, 1],

1_* k-k2 k2

P(k)= 0 1 0 =H(k)9

0 0 1

I , fc = U,

r(fc)*= lim p(fc)+p(fc)2+ • • • +p( f c)m_ ° l~k k

m-cc m 0 1 0
0 0 1

[1,7,4], k = 0,
[7-3k, 7, 4],

= sup g(k) = [7, 7, 4],

where k e [0, 1] is the action chosen in state 1 and g (fc) is the gain rate vector
corresponding to this choice. There is no k satisfying g(/c) = g*.

The second difficulty arises if the discontinuity in the chain structure causes
the bias-vectors [defined by (2.6) below] to be unbounded, i. e., assumptions
(1. 3 a, b, c, d, e) and SMG^0 together are still insufficient for existence of a
solution to (1.1), (1.2). A counter-example with N = 2 adapted from [16],
section 4.4, is:

EXAMPLE 2:

K(l)= {k | O^kS 1}, i£(2) = singleton,

) = [K 01 T(fc) = [l, 1],

[ \—k2 fe2n

0 i j '

P(k)*= lin = 0 1

m 0 1 ' ü < / c - 1 '

)*q(k) = [0, 0],

vol 19, n° 1, février 1985



74 P. J. SCHWEITZER

where ke[O, 1] is the action chosen in state 1 and g(k) is the corresponding
gain rate vector. Every policy achieves the maximum gain rate g* = [0, 0], so

N

SMG=K== X K(i), the full set of policies. However, the functional équations
» = i

with g = [0, 0] are unsolvable because (1.2) with î = l leads to the impossible
condition 0 = max [k + k2 (v2 — i^)].

More detailed examination shows that the bias vector vv(fe) (or relative
values) of a policy using action k in state 1 satisfies w(k)2 — w(k)1 = \/k
hence becomes unbounded as k i 0. It therefore appears necessary to require
boundedness of bias vectors in order to ensure solvability of the functional
équations.

It turns out that these two difficulties are the only ones. Our main resuit,
theorem 1, shows that if (1. 3 a, b, c, d, e) holds, then the functional équations
(1.1), (1.2) possess a solution if and only if SMG¥z0, and bias vectors for
maximal-gain policies are uniformly bounded above.

This section concludes by describing the relationship between this resuit
and previous published results. First, if each action-space K(i) is finite rather
than compact, solvability of (1.1), (1.2) may be established under (1.3 b, c, d)
alone via the multichain version of Howard's policy itération algorithm (PIA)
[1, 7, 17], with the fini te action-spaces assuring finite convergence [17]. The
technical complications arise only when the action-spaces are not finite:
one could en vison initiating the PI A with a maximal-gain policy (assuming
^MG^0)

 anc* generating a séquence of maximum-gain policies with ever-
increasing bias-vectors. An upper bound on these bias vectors is theref ore
needed to ensure convergence of the PI A.

Sheu and Farn [16] essentially establish solvability of (1.1), (1.2) under
the assumption that Pif)* [defined by (2.2) below] is continuous for every
policy ƒ e K. This works because it ensures (see theorem 2) that SMG ^ 0 and
that bias vectors are uniformly bounded, hence meets our conditions. We
also give, in theorem 2, equivalent conditions to this one and a stronger
sufficient condition (4. 1) as well:

the positive Pk
u are bounded away from zero. (1-4)

In addition, theorem 3 uses a simple proof by lexicographie optimization to
demonstrate, if P(f)* is continuous, not only that maximal-gain policies exist
and maximal-bias polices exist [16] but also higher-order optima as well.

Note in this regard that while the continuity of P(f)* is a convenient
sufficient condition, it is not the weakest one. Theorem 2 shows, for example,

R.A.I.R.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S WITH COMPACT ACTION SPACES 7 5

that one may make the weaker assumption that the gain and bias vectors
g (f) and vv(/) are continuous; this would hold if every ^ = 0, even when
the chain structure is discontinuous.

Note also that for the case where all components of the maximal gain rate
are equal, [13] establishes S M G # 0 under assumption (1. 3 a, b, c, d, e) alone
and [12] establishes solvability of the functional équations under the additional
assumption (1.4). This again is a specialization of the necessary and sufficient
conditions given in theorem 1.

Finally, a treatment with more genera! state space is given in [10].

2. NOTATION AND PRELIMINAIRES

0 dénotes a vector or matrix all of whose components are zero. Vector or
matrix inequalities x^.y hold for every component, (x; y} dénotes scalar
product, and I dénotes the identity matrix.

JV

K= X K(i) dénotes the (compact) set of all (stationary, non-randomized)
i = l

policies. A policy ƒ = (ƒ (1), ƒ (2), . . ., ƒ (AT)) e K consists of spécification of
the action f (i)eK(i) selected in state i for each i. Associated with each feK
are expected reward and holding time vectors:

1 = [qf (% T (ƒ) s [T(J)tfm 1 = [Tf

and non-negative matrices:

with row sums of T(f) and unity, respectively.
For each f e K, let n(f) dénote the number of subchains (closed, irreducible

sets of states) of P(J)9 which we label as {Cif^m), l^m^n(f)}. Let
n(f9 m) be the unique equilibrium distribution of P(f) on C(/, m):

jeC(f,m) ^2. 1)

7i(ƒ m)j>0 if jeC(f, m), = 0 elsewhere.

vol. 19, n° 1, février 1985



7 6 P. J. SCHWEITZER

Let cp(/, m)i be the probability of being ultimately absorbed in C(/, m) if
the Markov chain P (f) starts in state i:

n(f)

<p(/,m)^0, Z «pt tm^l ,
m = l

9(ƒ m),= l if ieC(f,m).

For any ƒ e K, define the Nx N (transition probability) matrix:

P(/)*= lim - £ P ( / ) ' , (2.2)
m -» oo W ( = i

It always exists, and satisfies [3], pp. 175-183, [11]:

" ( ƒ )

The gain-rate vector for policy feKis:

n(f)

g(f)i= Z <P(/ *),*(ƒ, m), l^i^AT, (2.3)

= expected reward per unit time starting in state i,

where:

< K ( / ? m);

= gain rate for chain C (ƒ m),

= g(f, m) for ail ieC(/ f m).

The maximal gain-rate vector g* is defined by:

(2.5)
ƒ 6iî

Any policy ƒ eiCachieving ail N suprema is called maximal-gain, and:

SMG={feK\g(f)=g*}9

dénotes the set of all maximal-gain policies.

R.A.LR.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S WITH COMPACT ACTION SPACES 77

For each feK, define the fundamental matrix Z{f) and bias-vector w(f)
by:

Z (ƒ) = [I-P (ƒ) + P (ƒ)*]" \

w (ƒ) = Z (ƒ) [g (ƒ ) -» (ƒ) g (ƒ)]. (2.6)

These always exist [11, 15] and have the properties:

(f), (2.7)

(2.8)

An alternate characterization of g (f) and w(f) is as the unique solution to
(2.7), (2.8) and

(2.9)

3. MAIN RESULT

THEOREM 1: Assume ( 1 . 3 a, b, c, d, e) holds. Then ( 1 . 1 ) , (1 -2 ) possess a

solution pair {g, v } if and only if ( 3 .1 ) and ( 3 . 2) hold:

(3.1)

{ w ( ƒ); ƒ e JSMG } is uniformly bounded above. (3.2)

/ / a solution pair exists, then any policy achieving all 2N maxima in (1.1),

( 1 . 2 ) lies in SMG.

Proof: Assume first that a solution pair exists. Then the last assertion is
in, for example [15], theorem 4. le , and implies (3.1). In addition, the
reasoning for [15], équation (4.1), implies, for any feSMG, that:

or:
w(f)t^v( — min vp

which confirms (3.2).

Conversely, assume (3.1), (3.2) hold and seek a solution pair to (1.1),
(1.2). Recall that the PIA, if started at a policy ƒ° e SMG, using bias vectors
as its choice of relative values, and breaking ties by retaining the previously-
used alternative whenever possible, will generate a séquence of policies { fn }

vol 19, n° 1, février 1985



78 P. J. SCHWEITZER

satisfying:

g(fn)=g*> « = 0, 1,2,3, . . . , (3.3)
1 n = 0, 1, 2, 3, . . ., (3.4)

where g : EN -> £* is defined by:

N

t= max
r N N i

q\- £ Jf?jtf + £ P*JXJ ,
, oL j=i j=i J

i. e., the PIA will improve bias vectors if it cannot improve gain vectors [17],
theorem 6. Insert (3.4) into (3.5) to obtain:

(3.6)

Each ƒ" e SMG due to (3. 3), hence the monotone séquence { w (ƒ")} is bounded
above via (3.2) and has a limit w. Then (3. 6) has a limit w = Q w as n -> oo,
which is (1.2).

N

To establish (1.1), note ƒ " lies in both 5MG and X L(g*, i), so:

ksK(i) j=i

for all i, with the penultimate equality coming from (2.9).

4. OTHER EXISTENCE CONDITIONS

This section provides other conditions that ensure the solvability of (1.1),
(1.2). These conditions are stronger than (3.1), (3.2) but can be easier to
verify. The logical relationships among these sufficient conditions are laid
out in theorem 2, and the ensuing remarks relate them to previous published
results.

THEOREM 2: Assume (1.3 a, b, c, d, e) holds. Then,

R.A.I.R.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDFS WITH COMPACT ACTION SPACES 79

1. The following conditions each ensure the existence of a solution pair to
(1.1), (1.2):

there exists a number a>0 such that for each triple (i, j , k),

with IShj^N and k eK(i), either pk
{j = 0 or p% ̂  a. (4.1)

every transition probability matrix P(f), feK,

has one subchain (closed, communicating set of states), (4. 2)

n ( ƒ) 15 continuous on feK, (4.3)

P(f)* is continuous on feK, (4.4)

Z(f) is continuous on feK, (4.5)

g (f) and w(f) are continuous on feK, (4.6)

both (3.1), (3.2) hold (recall theorem 1). (4.7)

2. Conditions (4.1) and (4.2) each imply (4. 3).

3. Conditions (4. 3), (4.4) and (4. 5) are equivalent and each implies (4, 6).

4. Condition (4. 6) implies (4. 7).

Proof: We show (4.1) and (4.2) each imply (4.3); (4.3) and (4.4) are
equivalent; (4.4) and (4. 5) are equivalent; (4.4) and (4. 5) imply (4. 6); and
finally (4.6) implies (4.7). From theorem 1, (4.7) ensures solvability of
(1.1), (1.2).

Conditions (4.1) implies (4. 3) because two neighboring policies will either
both have Pu = 0 or both have P^a, hence their tpm's will have identical
chain structure.

Condition (4. 2) implies n (f) = 1 for all ƒ, hence (4.3) holds.

Conditions (4,3) and (4.4) are equivalent, due to [11], theorem 5. They
are shown equivalent to (4.5) as follows. If P(f)* is continuous, so is
'-**(ƒ)+ **(ƒ)* and so is the latter's inverse, Z(f). Conversely if
Z(f) = [I-P(J) + P(f)*] is continuous, so is Z(f)-1-I+P(f) = P(f)*.

Conditions (4.3) and (4.4) imply that, in a neighborhood of any ƒ the
chain structure of P ( ) is unchanged, hence the gain rate on each subchain
will be continuous and so will be the absorption probabilities from transient
states into the subchains. Hence g (f) as defined by (2.3), (2.4), is continuous
in ƒ Recall w(f) = Z(f)[q(J)-H(f)g(J)] where all terms on the right are
continuous in ƒ, since Z(f) and g (f) are when (4.3), (4.4) and (4. 5) hold.
Hence (4. 6) holds.

vol 19, n° 1, février 1985



8 0 P. J. SCHWEITZER

If (4.6) holds, select a policy/which lexicographically maximizes
g(fh> • • -,*(ƒ)*, " ( / h , • • - , * ( ƒ ) * over ƒ e X, [14], Le.,

with g(f)j=g(T)j for

with *(ƒ)=*(ƒ)},

with g(f)=g(J) and w(f)j = w(J)j for l < ^ i -

These are all maxima of continuous functions over compact sets, hence the
maxima are achieved. Initiate the PIA with policy J. As in [14], the PIA
cannot improve g (/), nor can it improve w(J). Hence it terminâtes with
the pair {#(ƒ)> w(7)} solving the functional équations (1.1), (1.2), and
consequently g (ƒ)=£*. Thus J e SMG ̂ 0 . •

REMARKS ON THEOREM 2: 1. If the action-spaces are finite, then K is finite
and n(f), g(f) and w(/) are "continuous" on K Since conditions (4.3) to
(4. 6) are met, (1.1), (1. 2) is solvable.

2. The non-solvability of (1.1), (1.2) for example 2 can now be traced
back to the unboundedness of both w(f) and Z(/) , the discontinuity in
P(/)*, and the change in P(f)12 from >0 to =0 as k|0.

3. For the special case where ail components of g* are equal, [12] establi-
shed solvability of the functional équations under condition (4.1) via the
Leray-Schauder fixed point theorem. The present proof is simpler. For this
special case, SMG^0 holds without any assumptions beyond (1.3) [13], and
the rôle of (4.1) in [12] is merely to prove that Z(f) is bounded uniformly in
ƒ e K Since <?(ƒ), H(f)> and T{f) are bounded uniformly in/, so are:

^max rnax |<Z(A|/Tmi„
ƒ e

and:
w(f) = Z(f)[q(f)-H(f)g(f)l

The solvability of (1.1), (1.2) again can be demonstrated by the PIA
argument in the last part of the proof of theorem 1, since only the bounded-
ness, not continuity, of w (ƒ) is required.

4. Condition (4.2) requires only n(/) = l, not that P{f) be aperiodic,
hence is weaker than the assumption in [16] that every P(f) is ergodic. The

R.A.LR.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S W1TH COMPACT ACTION SPACES 8 1

condition n (ƒ) = 1 forces continuous chain structure, which suffices. Condi-
tion (4.2), along with the additional assumption that the maximizing policy
in g x is unique, was used in [19] to establish convergence of the policy
itération algorithm to a solution of the functional équations.

5. Hordijk [5, 6] was apparently the first to observe that the continuity of
P(f)* suffices to establish existence of a maximal-gain policy. Sheu [16] later
showed it suffices to establish existence of a maximal-bias policy. Theorem 3
below shows it in fact suffices to establish existence of an optimal policy for
any of the discount-related higher-order optimality criteria.

6. If K is connected (e. g., if convex), then the continuity of n(f) on K
reduces to n (ƒ) = constant. In gênerai, K décomposes into one or more
disjoint connected components, with n (ƒ) constant on each component.

5. HIGHER-ORDER OPTIMALITY CRITERIA

Consider a discounted Markov renewal program whose interest rate a > 0
goes to zero [2, 9, 17, 18]. The functional équations to be solved are:

max

where <j((a)* is the expected discounted one-step reward and Q (£)£• is the joint
probability that the next state is j and that the holding time in state i will
not exceed t, given entry into state i and selecting action k. i?(aX is the
maximum expected discounted reward over an infinité horizon, starting from
state i.

Heuristically, we might expect that the following two Maclaurin series and
Laurent series converge for small a > 0:

f
Jo

(5.2)

(5.3)

(5.4)

vol. 19, n° 1, février 1985



8 2 P. J. SCHWEITZER

Heuristically, if the maximization over k in (5.1) is replaced by spécification
of a fixed policy k — f (i), leading to a set of équations for a vector i?(/s a),
then use of the first r +1 terms of (5.2), (5. 3) is expected to yield the first r
terms of:

where the v(f)in) are exhibited below. Then the characterization
v(a),-= sup v(f, <x)i implies, for small oc, that one lexicographically optimizes

ƒ e *

over v(f){-x\ then over v(f)i0\ then over v(f)a\ etc.
The coefficients of a " \ a°, a1, . . ., oer in (5.1) are then given, for sufficien-

tly small oc, by the following set of r + 2 nested functional équations, obtained
by inserting (5.2), (5. 3), (5.4) into (5.1):

N n + 1

(5.5)

l g ï ^ N , n = - l , 0, 1,2, . . , ,r ,

where:

| - N n + 1 - .

v\n)= max tf <•>+ X Z S^tf-» l
keL(n-l;i)l_ j=i 1 = 0 J

L(n; i) = set of maximizing /c's in (5. 5), for n^ — 1,

When r = 0, the two functional équations reduce to (1.1), (1. 2) upon making
the identifications w("1) = g, i?(0) = i>, S?/0) = P ^ S^1)= -H^ , q{0) = q.

Using the same techniques as above, we can establish existence of a
solution to the r + 2 nested functional équations, along with the uniqueness
characterization:

v(rX)=max[v(f)(rX)l l^ï^iV, (5.6a)
ƒ eK

v^ = m a x [i? ( f ) \ n \ feK w i t h v (f)m = v{m) f o r - 1 ̂  m ̂  n -1], (5.6 b)

R.A.LR.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S WITH COMPACT ACTION SPACES 8 3

[where v(f){n) will be defined below] as well as existence of a policy ƒ achieving
all maxima in vi~1

9 v
i0\ . . ., t;(r~1). The need for such a policy and such a

lexicographie optimization was discussed above in a heuristic way.
We shall assume, in parallel with (1.3), that:

q\{n) and S£-(/l) are continuous in k for

l^iJ^N, - l^n^r+1, keK(i), (5.7a)

I*=S*,«» and H^-Stf1* satisfy (1.3b, c, d% (5.1b)

(1.3e) holds. (5.7c)

For fixed policy ƒ we let q(f){n) and S(f)in) dénote the vector [<£= f <0<TI)]
and matrix [S£= ' <°(B)], and let the vectors vif?'1*, v(fY°\ v(f)a\
. . ., v(f)(r) dénote the solution to the associated specialization of (5. 5):

n + l

<> < X (/ vin"°> - 1 ^ n ^ r. (5.8)

LEMMA: Under the above assumptions, (5.8) possesses a solution for any
with v (/)(n) unique for —l^n^r—1 but not unique for n~r. In addition,

v(f)(n) for O^n^r— 1 are continuons functions offifP(f)* is. Explicitly,
for l^i^JV:

n + l

i = i

P.»»

n + 2

1 = 2
r- n + l

• H (f)Z(f)\q (ƒ)<"> + Z

arbitrary, n = ï

vol. 19, n° 1, février 1985



8 4 P. J. SCHWEITZER

and Z ( ƒ) is the fundamental matrix for P (ƒ).
The proof simply in volves left multiplication of (5.8) by Z(/) , using

Z ( / ) [ l - P ( / ) ] = / - P ( / ) * . The unknows <*(ƒ, m); t;(/)(n)> which appear
can be evaluated by taking the scalar production of 71 ( ƒ m) with équation
(5.8) for n +1 , and recalling (1.3c).

Equations (5.9) specify i>(/) ( 1 ) explicity and the remaining v's recursively.
The assumptions assure that n(/), q(f)in\ S(f)in\ Z(f\ cp(/, m), TC(/, m),
T(f) and x(/) (n) are ail continuous functions of ƒ Therefore (5.9) implies
that the i?'s are continuous in ƒ. •

THEOREM 3: Fix r^O. 1/nJer assumptions (5.7) awd (4.3), (4.4), (4.5),
there exists a solution to the r + 2 nested functional équations (5.5), with the
characterization in (5 •6)of{vi~1\ v(0\ . . ., t;(r~1)} . Furthermore, there exists
a policy J eK which lexicographically optimizes these r+ 1 vector s:

t/»> = y (ƒ)(«) = sup { v (ƒ)(n) [ ƒ e K with v (ƒ)(m) = v (J)(m)

/or - l g m g n - 1 } /or

Proof: The extended PIA [2, 9, 17, 18] for the set of r + 2 nested functional
équations attempts to lexicographically optimize the first r+1 vectors. By
initializing the extended PIA with a policy J that lexicographically optimizes
the successive members of the ordered set:

{»(ƒ)<-A), • • -, vlffc», v(f)f\ . . ., ,(ƒ)<?>,

one obtains one-step convergence of the PIA, just as in theorem 2, to a
solution of the r + 2 functional équations. It is then straightforward to show
that Ü("1}, . . ., i?(r~1) are maximized lexicographically. •

REMARK: When r = l , the 3 functional équations are given in [14] and
consist of (1.1), (1.2) plus a third one. The lexicographie optimization was
described in [14]. Any solution to these 3 functional équations will satisfy:

and i;<0) = w*

Any policy achieving all optima in the 3 functional équations will be bias-
optimal (or 1-optimal). This establishes the existence of a 1-optimal policy
by a different approach than the one in [16]. Note that, in the Markov
renewal case, the bias vector v(f)i0) = w(f) is now more complex than (2.6),

R.A.I.R.O. Recherche opérationnelle/Opérations Research



UNDISCOUNTED MDP'S WITH COMPACT ACTION SPACES 8 5

but reduces to (2.6) upon special choices of q (/) (1 ) and S (f)i2):

v(f)m=Z(f)[q(f)i0)-H(f)g(f)]
» ( ƒ )

6. SUMMARY

The main resuit of this paper is the exhibition of necessary and sufficient
conditions (3.1), (3.2) for solvability of the pair of functional équations
(1.1), (1.2) under the assumptions of continuous data {#(ƒ), H (f), P(f)}
and compact action sets. These conditions, especially the upperboundedness
of bias vectors, are new, and are weaker than the sufficient condition (4.4)
in [16]. We also give equivalent conditions (4.3), (4.5) to (4.4) and new
stronger conditions (4.1) and (4.2) as well. The ergodic assumption in [16]
is relaxed. It is also pointed out that (4.4) suffices for the existence of
maximal-gain policies, maximal-bias policies, and more, because it ensures
the continuity of g (f), vv(/), and more. This provides a painless existence
proof for the higher-order optimality criteria.

In addition, the method of proof . . . initiating the (multi-vector) policy
itération algorithm with a lexicographically-optimal policy . . . may be of
independent interest.

Finally, the non-existence of solutions in pathological cases is traced to its
source . . . a discontinuous chain structure as a transition probability drops
from positive level to zero, which in turn causes a discontinuity in P(f)*
and unboundedness in both Z(f) and w(/). In particular, if every P(f) is
unichained [n(f) — l], then /*(ƒ)*, Z(f), g (f) and w(f) are continuous for
ƒ GK, and solvability is assured.
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