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NON-TERMINATING STOCHASTIC RATIO GAME (*)

by V. AGGARWAL, K. P. K. NAIR (*) and R. CHANDRASEKARAN (2)

Abstract. — In an earlier work by Derman, a flnite state Markov Ratio Décision Process was
considered with the objective of maximizing the ratio ofrewards. We gêner alizé the above mentioned
process to a game context resulting in a Stochastic Ratio game. It is shown that in the non-terminating
Stochastic ratio game, the players have stationary optimal stratégies with an unique value. A
convergent algorithm is provided to compute the solution.

Résumé. — Derman a étudié dans un travail antérieur un « Finite state Markov Ratio Décision
Process » ayant pour objectif de maximiser un rapport de gains. On étend le processus mentionné
ci-dessus pour le placer dans un contexte de jeu, qui conduit à un « Stochastic Ratio Game ». On
démontre que dans un tel jeu indéfiniment joué (c'est-à-dire « à horizon infini ») les joueurs ont des
stratégies optimales stationnaires avec une valeur unique. On donne un algorithme convergent pour
calculer la solution du jeu.

INTRODUCTION

In an earlier work by Derman [1], a finite state Non-terminating Markov
Ratio Décision Process (abbreviated by NMRDP) was considered with the
objective of maximizing the ratio ofrewards over an infinité planning horizon. It
has been shown in this process that, an optimal policy is stationary and pure, and
the value is unique. Fox [2] has provided an algorithm for Computing the
solution in the context of an Undiscounted Markov Renewal Program (MRP)
but it is applicable to the NMRDP also. Schweitzer [4] has described an itérative
procedure for finding a solution of the MRP and has established that a simple
data-transformation reduces any MRP or NMRDP into a discrete time Markov
Décision Problem, which is equivalent in the sensé that it has the same state and
policy spaces, and that every policy has the same long run average return per unit
time.

In this paper, the finite state NMRDP is generalized to a game context
resulting in a Non-terminating Stochastic Ratio Game (NSRG). This game is
similar to the game of Hoffman and Karp [3] except that the payoff function is a
ratio. Thus, the game proceeds in stages and at each stage, the game is in one of a
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finite number of states. Each of the two players observes the current state and
then chooses an action from a finite number of alternatives of actions available in
that particular state. The players' actions and the current state jointly détermine
a set of two rewards and transition probabilities to the succeeding state. Thus,
there are two séquences of rewards and the payoff function is the limiting ratio of
the average rewards per stage over the infinité number of states.

In the stochastic games of Shapley [5] or Hoffman and Karp [3], the game
played at each stage is two-person zero-sum type. In NSRG, the game played in
each stage is a ratio game. It is shown that the players have stationary optimal
stratégies and the game has a unique value both of which are independent of the
initial probability distribution. A convergent algorithm for Computing the
solution is presented. It may be possible to generalize the data-transformation
approach of Schweitzer [4] for MRP and NMRDP, to introducé data-
transformations to reduce NSRG into a non-terminating stochastic game.
However, the approach taken here is the generalization of Hoffman and Karp's
algorithm [3].

Both theoretical and practical aspects have motivated this work. The
generalization considered, simultaneously, achieves also a generalization of
MRP [2] to game context. Suppose two players control a MRP. Dependent on
the state occupied by the process and the actions taken by the players, the
process makes a transition after a random interval of time giving rise to a reward
and the time taken for the transition. Thus the séquence of games gives rise to
two streams, one of rewards and the other of time intervals respectively. The
payoff function defined here is the limiting ratio of the sum of rewards to that of
the time intervals. Clearly, NSRG developed in this paper solves the above
generalization of MRP also. The generalization has also significance in practical
situations of conflict. For example, consider two parties involved in a conflict
that continues indefinitely, but may be in different levels or states. Dependent on
the state and actions taken, two streams, one of gains and the other of losses,
occur. Here the limiting ratio of the sum of gains to that of losses is of interest,
and the generalization given in this paper solves this game.

The existence theorem and its proof given in this paper do not foliow from the
works of Shapley [5] or Hoffman and Karp [3]. An entirely different approach is
taken for pro ving the theorem.

1. DESCRIPTION OF NSRG

NSRG is a séquence of ratio games played in consécutive periods of equal
intervais, where each pair of matrices for each ratio game is chosen from a finite
set 5 consisting of AT pairs (Ait Bi} i = l, .. ., N) of matrices. If in a period, the
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ratio game is played with matrices (Ait Bt), the game is said to be in state
i (i= 1, ..., N). While in state i, Player ƒ has a finite set Ct of Kt alternatives
numbered 1, 2, . . . , k, . . . , Kt and similarly Player II has a set Dt of Lt

alternatives numbered 1,2, . . . ,Z , . . . , Z , f . Thus

It is assumed that JB£ > 0 (i= 1, .. ., JV).
The probabilities of transition to the successive states are given by pfj(i,jeS,

keCit leDi), and since the NSRG is assumed to be non-terminating type,

5 > g = l, ï'eS, keCit leDt.
j = x

It will be assumed that corresponding to any choice of actions by the players, the
underlying Markov Chain is irreducible. That is, if mixed strategy vectors x t and
yt are followed when the game is in state i, and

Pijix,.y,)= E Ipgxfyi.
keCi leDi

are the transition probabilities of a Markov Chain { X„, n = 0, 1, . . . } , then for
any i and j , the probability that state; will ever be reached from the initial state i
is 1.

Now, in gênerai given that the game starts in a specified state iQ, the évolution
ofNSRGcanbe représentée! by the séquence {iBf A„,Sn},n = 0 ,1 , . . .,whereï„,
A„ and En respectively are the state occupied and actions taken by the Players /
and II at period n such that in e S, Ane Cin and En e Dt . If rio dénotes the payoff
function for NSRG started in state i0 , then

rio=limV^ —> (!)
T-*oo v^ A R V / T

n = 0

where A„ and Z„ are viewed as vectors.

2. RESULTS OF NMRDP

An NMRDP is a special case of NSRG in which the second player is a
"dummy" being allowed a fixed strategy in each of the JV states. An optimal
solution of NMRDP has been characterized by Derman [1] as belonging to the
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set of pure stationary stratégies. Following Fox [2], its solution can be obtained
by solving the following N relations

M a x t a f - r & î + ^ p J ^ - s J ^ O , ï = l , ...,N, (2)

where st(i— 1, . . ., JV) are relative values. By setting sw =0, a unique solution
can be obtained. The solution (r,su . . . , sN) is independent of the initial state in
which the process starts.

3. EXISTENCE OF MINIMAX SOLUTION FOR NSRG

Let T be the set of all possible stratégies available to Player / which are
generated by the sets Ct(i=l, . . ., IV). Let I ( I c ï ) dénote the set of all
stationary stratégies available to Player/, where xeX is an JV-tuple of
probability vectors such that

x = (xlt x2> • • •> XN) where ^ - ( x f , xf, . . . , x£')

such that £ x\ = L
feeC,

Let the corresponding sets for Player / / be, 1/ the set of all stratégies; and
F(F<= (7) the set of all stationary stratégies among them.

Let ra (t, u) dénote the ratio for the NSRG starting with an initiai probability
vector, a, when Players I and ƒ/ follow te<T and we U stratégies respectively.
For a fixed strategy y e F for Player / / , Player 1, if 'y is known to him» faces a
Markov Ratio Décision process and the maximal value of this problem is:

rB(y)=Maxra(t,j0. (3)
teT

Following Derman [1] and Fox [2], it has a stationary optimal solution which is
independent of the initial state. Therefore,

ra(j;)=Maxra(x, y) (4)
xeX

=r(y).

where r (y) can be obtained as the value of a linear program which is continuous
in its data. Since X and Y are convex and compact,

r(y*), (5)
y e y

exists at atleast one point y* e Y with a unique value r (y*).
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Suppose Player II is fixed at y * and NMRDP corresponding to Player I as in
(4) above is solved with

ai^^afyf, (6)
leDi

b\= E bfyf, (7)

/eD,

Let the optimal solution be (r{y*), s*t . . . , s$).

Let S* be the set of N two-person zero-sum games such that zth game has as its
payoff matrix, Qf = { qf } (i = 1, . . ., N) where

sf), ksCif leDt. (9)

LEMMA 1 : The stationary strategy y* is optimal for Player II in the set S* such
that y f is optimal in the ith game which is of two-person zero-sum type and whose
pay-off matrix isQf (i = 1, . . . , JV). Further, the value ofeach game in the set S* is
zero.

Proof: The optimal solution (r(y*), sf, . . . , s$) for NMRDP with a\, b \ and
p\j given in (6), (7) and (8) satisfies (2) which implies

Max YJ (af~r(y*)kf + ZPus?~~5*)yf i = 0, VieS. (10)
keDi leDt jeS

Suppose y* is not optimal in the set S*. Then there is at least one payoff
matrix Q% in which yh is optimal instead of y *, so that for the corresponding
game,

JteCfc teDh jeS

Now consider Player II being fixed at strategy

y=(y*> y*> • • • > y * - i > y * y$)

and an NMRDP with respect to player / solved with the corresponding
coefficients a~\, b\ and p\ (keCit ij e S) obtained in a manner similar to (6), (7), (8)
with y. Let its solution obtained from (2) be r (y), st {i = 1, . . . f JV). It is obvious
that {r{y*)> sf, . . . , s j j ) is feasible for this new program but not optimal
since (11) would violate the condition for optimality. Hence r(y)<r{y*)> which
contradicts y* being optimal, Thus, y f is optimal in the ith game whose payoff
matrix is Qf(i=l, . •., N).

From (10), it follows then that the value of each game in the set S* is zero.
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Similar results can be established by fixing Player ƒ at x, where x corresponds
to

r(x) = Max M i n r j x , y). (12)
xsX yeY

Suppose Player I is fixed at x and NMRDP corresponding to Player II is
solved and the optimal solution is (r(x), s1, $2, .. ., sN).

A set S of N 2-person zero-sum games is defmed such that the ith game has as
its payoff matrix Qt= { qf } where

je S

Then, x is optimal for Player I in the set S such that xt is optimal in the zth game
whose payoff matrix is Qt and the value of each game in the set S is zero.

LEMMA 2: The stationary stratégies x and y* are such that
r(x) = r(y*) = r(x, }/*) which can be denotedby r* and that st~sf — C, a constant
(i = l, . . . , N ) .

Proof: It is easy to see that r{y*)^r(x).

Corresponding to N 2-person zero-sum games in set S*,

1 = 0 , i = l N. (13)

Similarly corresponding to games in set S,

Of i = l , . . . , JV. (14)

Consider the non-terminating stochastic game (NSG) F* in which the payoff
matrices are [Ai — r(y*)Bi](i=l, ..., N). The alternatives of actions for the
players and the transition probabilities are as already defmed for the NSRG.
Hoffman and Karp [3] have shown the existence of stationary optimal stratégies
for the players in the NSG and that the value is unique. Recalling the
characterization of solution in Hoffman and Karp [3], if g* dénotes the value of
the game F*, (13) indicates that the parameter r (j/*) has been selected such that
the value #* = 0. Fr om lemma 1, y* is optimal for Player / / in game F*.

It can be seen similarly that if f dénotes another NSG in which the payoff
matrices are [At — r (x) B J (z = 1, . . . , N) and g is its value, then from (14), g — 0
and x is optimal for Player I in the game f.

Now suppose r(y*)>r(x) then since Bi>0, element-by-element

i = l , . . . ( N (15)
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and the values of the corresponding NSG'sF* and f would imply,

9*<ê. (16)

which contradicts the relationship developed from (13) and (14) above.

Hence,
r(y*) = r(x) (17)

Let the common value of r(y*) and r(x) and r(x) be denoted by r*, then

r(x, y*)^r(y*) = r* and r{x, y*)^r(x) = r*.

Therefore,
r(jc, y*) = r* (18)

Substituting the common value r* for r(y*) and r(x) in (13) and (14) respectively
shows that

sf-Si = C} a constant for i = l, . . . , AT. (19)

THEOREM 1: T/ie NSRG has a minimax solution with a unique value and the
players have stationary optimal stratégies.

Proof: Going back to relations (4) and (3),

r (y*) = Max r (xf j;*) = Max r {t, y*). (20)
xeX teT

Therefore,
rtt(t, y*)^r(y*) = r* for all t e l . (21)

Similarly,
ra(je, M) Z r (x) = r* for all u 617, (22)

where r* = r(x, /*).

Thus, from (21) and (22) it can be seen that

ra(t, y*)gr(jc, y*)^r a(x, u), for all t e r a n d w G Ï 7 (23)

which establishes that the pair (x, y*) is optimal among all the stratégies
(T, U), r* is unique and that it is independent of the mitial probability vector a.

4. CHARACTERIZATION OF THE SOLUTION OF NSRG

From lemmas 1 and 2:

Max £ (a?-r*b?+
(24)
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and

Min £
leDi keC, (25)

(24) and (25) together give the characterization of NSRG by the following N
relations,

Value Gi = \z\la?-r*b?+£ = 0,
(26)

where r* is unique and one of the s f (say s$) is set to zero.

The stationary optimal stratégies (x*, y*) are composed of the optimal
stratégies (x?, y f) in the respective games Gi(i = l, . . . , N),

The above characterization leads to a convergent algorithm for Computing the
solution and this is presented in the following section.

5. A CONVERGENT ALGORITHM

Step 0: Set itération rc = 0 and fix Player / / at a stationary strategy,)'(O).

Step 1: Using stationary strategy y{n) for Player II, fmd an unique solution r{n),
s<.n>(i=l, 2 , \ . . , N) of the system,

Max

and,

(27)

(28)

by using the policy itération algorithm by Fox [2] for the NMRDP.

Step 2: Solve the N two-person zero-sum games whose element in the (k, l)
position of the payoff matrix of fth game is

| (29)

to obtain the optimal stratégies x[n + 1), y\h + 1) and the unique values #- n + 1 ) for

z = l , 2, . . . , N.

R.A.I.R.O. Recherche opérationnelle/Opérations. Research
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Set

and,

Step 3: If ̂ B + 1 ) = i, then the solution of NSRGis given by x* =xin+ x \
3;* = y(» + D and r* = r(n). Stop.

If gr(."+1)^O for at least one state, then go to step 1 with n <- n+1. •

If 0SB) = O for all i, then x(M), y(n) and r*""1* form the the solution of the NSRG

since the characterization given by (26) is satisfied.

If however g\n)^0 for at least one state i, then the foliowing theorem shows
that r(n) obtamed at the next itération is a lower value then the current value,
r(n~L), and it leads to convergence.

THEOREM 2: The séquence r(n) (n = l,2, . . .) generaled is monotonically

decreasing, bounded from below by the unique value, r*.

Proof: Clearly, g ̂  ^ 0 for all i since there exists a strategy y(n) which if fixed for
Player II gives the maximal payoff zero according to (27)-(28). Therefore,

keC, leDt

pfj

with,

(30)

(31)

Consider the linear programming problem corresponding to (27) and (28)
which générâtes r(n) when Player II is fixed at y(n),

Min r

S.T.
/ei),

rt st (ï = l, . . . , N— 1) unrestricted.

(32)

(33)

(34)

(35)

It can be seen from (3O)-(31) that r{tt'L\ s}B-1J(i=l, . . ., AT) is a feasible
solution of the program (32)-(35).
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In view ofthe non-optimality ofthe current solution, ö?;n)<0 for at least one
state i. Therefore, the optimal value rin} of the program (32)-(35) has to be
smaller than the feasible value r(""1}, Thus

rw<r ("-1> (36)

and it is bounded by r* as shown in theorem 1.

A similar proof would hold if the algorithm is stated fixing Player / instead of
Player II but the séquence r(n) will be a monotonically increasing one bounded
from above by r*. It may be noticed that the above alogithm and the
convergence proof have some similarity to those of Hoffman and Karp [3] for the
case of NSG.
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