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OPTIMAL REPLACEMENT RULE-DISCOUNTED
COST CRITERION (*)

by Dror ZUCKERMAN (X)

Abstract. — A replacement model under additive damage is considered. When the systemfails it must
be replaced and a failure cost is incurred. If the System is replaced before failure a smaller cost is
incurred. We consider the problem ofspecifying a replacement rule which minimizes the expected total
discounted cost.

1. INTRODUCTION

We examine a production System which opérâtes for random time until it fails.
The System is subject to a séquence of random shocks. Each shock causes a
random amount of damage and these damages accumulate additively. The
successive shock magnitudes Ylf Y2, . . . are positive, independent and
identically distributed random variables, having a known distribution
function B(y). If the accumulated damage in the System is x, then the elapsed
time until the next shock is a random variable characterized by the exponential
density function fx (t) = X(x)e~l{x)t.A failure can occur only at the occurrence of
a shock and the probability of such a failure is a function of the accumulated
damage in the system. More explicity, if at time t the cumulative damage is x
and a shock of magnitude y occurs, then the System fails with known probability
l—r(x + y). We refer to r(.) as the survival function.

Upon failure the system is replaced by a new one having the same properties
and the replacement cycles are repeated indefinitely. Each replacement costs C
dollars and each failure adds a cost of K dollars, thus providing an incentive for a
controller to attempt to replace before failure occurs. We allow a controller to
replace the system at any stopping time T before failure time.

(*) Reçu novembre 1977.
l1) The Hebrew University of Jérusalem.
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68 D. ZUCKERMAN

Throughout, we assume that the following two conditions are satisfied:
(a) the survival function r(z) is monotonically nonincreasing function of z;
(b) the shock rate, X(x), is monotonically nondecreasing over the state space

of the damage process.
The problem is to find an optimal replacement rule that balances the cost of

replacement with the cost of failure and results in a minimum expected total
discounted cost.

Assuming that the cumulative damage is observable by the controller, and
that his décisions may be based on its current value, we show that an optimal
replacement policy is a control limit policy. The term "control limit policy"
refers to a policy in which we replace the system either upon failure or when the
accumulated damage first exceeds a fixed critical value !;*, whichever occurs first.

Barlow and Proschan [1] assumed that the age of the system in current service
was maintained as a control variable, but no further information on the state of
the production system was available. Esary Marshall and Proschan [4]
investigated the property of a breakdown model for which the instants at which
damage to the system occurs are Poisson distributed over time and the
magnitude of damage caused by each shock (disturbance) equals one.

Taylor [5] dérives an optimal replacement rule which minimizes the total long
run average cost for the breakdown model in which shocks occur to the system at
a constant rate.

The following will be standard notation used throughout the paper:

and reserve E(P) without affixes for expectation (probability) conditional on
X (0) = 0. The notation E [Y; A], where 7is a random variable and A is an event,
refers to the expectation E[IAY] = E[Y\lA=ï\P{A), where IA is the set
characteristic function of A.

2. PRELIMINAIRES

Let [X(t); O^t<d] be the stochastic process representing the cumulative
damage process up to the failure time, 5, of the system.

Let À be a distinct point not in R+ and define

*<•>-{ î ( i ) ; ; : « :
R.A.I.R.O. Recherche opérationnelle/Opérations Research



OPTIMAL REPLACEMENT RULE-DISCOUNTED COST CRITERION 69

A key tool for us is the following formula:

Ex[e-aTf(X(T));A]-f(x) = Ex[re-°°{Af(X(s))-af(X(s))}ds~^, (2)

where

Af(x)=limt'1{Ex[f(X(t));A]-f{x)}. (3)
no

Formula (2) is valid for any function ƒ such that ƒ (x) and A f (x) are bounded and

continuous (see [2], p. 376).

Let

w(x) = Ex[S\.

We proceed with the following proposition.

PROPOSITION 1: w(x) is a bounded function ofx.

Proof: Let B be such that r(B) = a< 1. Let N be the number of shocks until

failure.

Deûne

Recalling that r(.) is nonincreasing we obtain

K1(x)= \r{x + y)dF(y)^r{B) = a for

and by induction it follows that

n()^[x{ }]"^a" for

Hence

EX[N}= X X » W ^ T ^ - f o r x ^

Since the expected time between two successive shocks is bounded from above by
À-(O), we have

w^mE*w=mh*j for X-B- (4)
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70 D. ZUCKERMAN

On the other hand, for X<B:

w{x)-w{B)

[mean number of YK's needed to achieve 71 + 7 2 + - • • + Yn^B]
X(0)

where M(z) is the renewal function associated with the distribution function B.
i. e.,

M(z)= liP{Y1 + Y2+...+Ya£z}.

From inequalities (4) and (5) it follows that

() s [ rhi f o r

as required. • Using proposition 1 we obtain that for any permissible
stopping time T, E[T] is finite.

3. OPTIMAL PLANNED REPLACEMENT

We allow a controller to institute a planned replacement at any stopping
time T< 5. Upon failure the system must be replaced by a new identical one and
the replacement cycles are repeated indefinitely.

Every replacement costs C dollars, and a failure replacement, the
event { r = 5 } invokes an additional cost of K dollars. We now attempt to
minimize the expected total discounted cost. For a given stopping time T, the
expected discounted cost from the first replacement cycle is

~*T; T=S\.

where a is the discount factor.
Generally, the expected discounted cost from the n-th replacement cycle is

Clearly we can restrict our attention to the following: set of stopping times:

R.A.I.R.O. Recherche opérationnelle /Opérations Research
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For each stopping time Te S, E[T]^l/\{0)>0. On the other hand, for any
permissible stopping T, E [ T] < oo, therefore, the expected total discounted cost
associated with a stopping time T, will be

A ( discounted cost associated with the ï-th replacement )
l i m L \ }

n -» oo i= i ( cycle when a stopping time T is employed )

By applying the dominated convergence theorem it follows

JJT a= lim V TJf a(i) =
H - COÏ=1 ' l - ü ^ J

Let Ù* — inîUTi a be the optimal discounted cost. Also let
T R(x)=\r{x + y)dB(y).

The optimal policy will be determined with the aid of the following theorem.

THEOREM 1: A stopping time !T* is optimal if and only ifit maximizes

L J o J
where

J(x) = *(U* +Q-X(x)K[l-R{x)]. (9)

Proof: To begin the dérivation, note that for ever y stopping time T:

CE[e~aT; T<d]+{C + K)E[e~aT; T=S\
U* ~ l-E\e-aT\ ' ^10^

A stopping time T minimizes the total discounted cost if and only if T maximizes

QT=UZ{l-E[e-«7)}-CE[e-aT;T<S]--(C + K)E[e-ctT; T=S\, (11)

and the maximum value of 6ris zero. QT can be rearranged to give

6 r=-C-{£[( l7* +C + X)e" a 7 ] - (^+C + X)}

+ {£[Xr a r ; r < 8 ] - K } . (12)

Now, we may use formula (2) to express

' ~ c - " . j . - J

)-aK)ds , (13)
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72 D. ZUCKERMAN

where

g(x)=Umt~1{Ex[U* + C + K]-( l /* + C + X)}=0 (14)

and

h(x)=\imr1{Ex[K;

]. (15)

Using (14) and (15), (13) can be rearranged to give

0 r=_C+ f e-^{a(US^C)-X(X(s))K[l-R(X{s))]}ds . (16)

This should make it clear that T* is an optimal stopping time if and only if it
maximizes (8), as required. Q

The foliowing concludes the proof of optimality.

THEOREM 2: An optimal replacement policy T* is a control limit policy.
Furthermore, the optimal critical value is given by

Proof: Let us consider the foliowing stopping time

^£*}, 5}.

It can easily be seen that J (x) is nonincreasing in x. Thus by définition of T* we
obtain for all t < ô :

J(X{t))>0 if and only if t<T*.

For every stopping time T:

er.-er=JEr r j(x(5))dsi-£i" rj(x(s))^si

= £ | f J(X(s))ds; T<r* | - £ | I J(X(s))ds\T^T*V£O (17)

Thus, r * maximizes QT, and this complètes the proof of the optimality
ofT*. •

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Example; In order to illustrate computational procedures, let us consider the
following model:

(i) the survival function is given by

1 if
0 if ^

In words, System failure occurs when the cumulative damage first exceeds a fixed
threshold L;

(ii) the magnitude of damage associated with each shock equals one;
(iii) the shock rate as a function of the cumulative damage in the System is

given by

Without loss of generality we may assume that the threshold L is an integer.
Furthermore, it suffices to consider stopping times of the form

for £=1,2 L.
Let ti(i — Of 1, . . ., L— 1) be the time interval between the î-th shock and

the i+1 shock.

{ U }i=o, i, 2 L-i is a séquence of independent random variables exponential-
ly distributed with parameters X(i) = a + i, respectively. Since

and

if ^ = L,

if Ç = l ,2 , . . „ L - 1 ,

the total discounted cost associated with a stopping time 7\ is given by

if L = l,i = Q

n
i = 0

if Ç = l , L - l .
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74 D. ZUCKERMAN

In order to fïnd the optimal policy, we have simply to minimize UT^a

for £ = 1, 2, . . . , £ .

REMARK: The level of difficulty in expressing UT a explicitly,
dépends heavily on the structure of the survival functionr(.) and the
distribution function B. In some cases simulation methods are needed in order to
détermine the optimal policy.
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