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THE BOX-JENKINS APPROACH TO TIME SERIES
ANALYSIS AND FORECASTING:

PRINCIPLES AND APPLICATIONS (*)

by Warren L. YOUNG (*)

Abstract. — In this paper, we first outline Box-Jenkins (B-J) notation and the stages in their
approach to time series analysis and forecasting, u e. identification, estimation and diagnostic
checking, and forecasting. We then describe the associated statistical tools used in the choice
of B-J modeis and also discuss seasonal B-J models. We then go on to deal with a spécifie
economie time series, identifying and estimating variant B-J models accordingly. After choosing
a model for forecasting purposes, we compare its forecasts with those generated by an eco-
nometrie model. Finally, we describe extensions of the B-J approach such as "transfer junction
modelling" and multivariate analysis, and discuss the recently proposed method of "inter-
vention analysis" utilizing the B-J approach.

INTRODUCTION

At the most gênerai level of analysis, there exist three ways of rëpresenting
fluctuations in a time series. We can attempt to explain its movements in terms
of factors related to the series, that is, by movements in the series itself. Alter-
natively, we can try to explain variations in one series by movements in another
or others, i. e. using bivariate or multivariate methods. Finally, we can attempt
to combine these two approaches in one way or another. As for the first
approach, there are a number of ad-hoc methods that can be used in this
regard, e. g. exponentially-weighted moving averages, while multiple régression
techniques based on a priori considérations are usually applied if the second
approach is used. With respect to the combination of approaches, this again
is usually done on an ad-hoc, ex-post factotem basis. In this paper, however,
we focus on a method of time series analysis and forecasting based upon
the methodological principle of allowing the data to «speak for itself", that is,
the Box-Jenkins approach. The material presented below is divided into two
main parts. The first deals with the underlying statistical rationale of and the
basic analytical principles involved in the Box-Jenkins approach. In the
second part of the paper, we give an example of the Box-Jenkins technique
as applied to a spécifie problem in time series analysis and forecasting —
comparing its results to those obtained by using econometrie methods — and
then go on to briefly discuss some extensions of the Box-Jenkins approach
itself [1].

(*) Reçu juillet 1975, révisé juin 1976.
(*) Ministry of Agriculture, Israël.
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130 WARREN L. YOUNG

I. PRINCIPLES

A. Integrated autoregressive moying-average processes and Box-Jenkins notation

Initially, let us take, for example, a non-seasonal time series { X}; we shall
deal with the problem of seasonality below. According to Box and Jenkins,
we can explain its movements — in the most fundamental way—by a combi-
nation of past movements in the series itself and white noise, i. e. a series
of identically distributed uncorrelated déviâtes. Box and Jenkins propose
that there exists an integer (d) which ensures that the équation

wt = (l-B)dXt (1)

is stationary, where BJ xt = xt-j. Thus, we can express the value of the series
at time (/) in the following manner

«SWa, (2)
9(B)'

where at is «white noise", while % (BY — (1 -Gj B . . . -% B*) and
(pp (By = (1 -(pj B . . . -cpp BP) accordingly.

Combining these two équations gives us the gênerai form of Box-Jenkins
model which applies to non-seasonal time series, i. e. :

%(B)p(l-B)dXt = % + %(Bfat, (3)

where Go is a constant which differs from zero [2].
In Box-Jenkins notation, then, équation (3) represents an autoregressive

integrated moving-average (ARIMA) process of order (p9 d, q), where p is
the degree of the autoregressive process, dis the degree of differencing, and q is
the degree of the moving-average process accordingly. The condition that all
roots of the two polynomial équations in B9 i. e. : (a) cp (B) = 0, and
(b) 0 (B) = 0, lie outside of the unit circle both ensures the stationarity
of vvr —in référence to (a) — and satisfies the Box-Jenkins "invertibility requi-
rement" —in référence to (è)-thus guaranteeing that the model as specified
is uniquely "représentative" [3].

B. Stages in the Box-Jenkins approach

There are three stages in the Box-Jenkins approach to time series analysis
and forecasting —identification, estimation and diagnostic checking, and the
forecasts themselves. At the identification stage, we first choose a set of tempo-
rary values for the parameters p, d, and q based upon an identification pro-
cedure which shall be outlined below. We then obtain the initial estimâtes
for the coefficients <pl5 (p2, ...,<pp and 0l3 92) . . . , 6 g . Diagnostic checks
are then made in order to détermine the representativeness of the model
vis-a=vis the data set. ïf, as a resuit of these checks, an alternative form of
model is suggested, then the cycle is repeated up to this point. Finally, fore-
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BOX-JENKINSAPPROACH: PRINCIPLES AND APPLICATIONS 131

casts are made on the basis of the final model spécification as obtained from
the estimation process and its associated choice of models criterion [4] .

The primary tools in the Box-Jenkins identification procedure consist
of the auto-correlation and partial autocorrélation fonctions. For example,
let us take wt as a stationary process with mean u. An autocorrélation of
order k in this case is simply the corrélation between wt and wt_k, that is,

pfc = E{(wt-u)(wt_k-u)}IE{(wt-u)2} with p_k = pk,

The partial autocorrélation of order k between wt and wt_k can be expressed
k

as cpfcfc, and is given by the équation pj = £ cp̂  py_£, wherey = 1, 2, . . . , k.

It will be noted that under the condition (1 — q>a B . . . — <pfc B
k)wt = at the

situation cpfcfc = cpfc and <pk^jtk+j = 0 also pertains, for all ; ^ 1 [5].
In any event, we how turn to the main points in the Box-Jenkins model

identification procedure:
(i) If the series { Xf } is not stationary, i. e. d # 0 in équation (3), the auto-

corrélations will not decrease quickly for higher values of k (number of lags),
and thus differencing is necessary in order to obtain series stationarity.
The autocorrélations in this case are shown in graphie form below:

1,0

0,0 l l l l . i L . i

-1,0

(ii) Let us assume that we have applied a sufficient degree of differencing
in order t a obtain series stationarity. In this case:

(a) Supposing q = O, so that wt is an autoregressive series of order p> e. g.
ARIMA (1, d, 0), then the autocorrélations will die out —for all values of
k- foliowing the différence équation

or, in other words, they will damp out in exponential and/or sine wave forms,
where the partial autocorrélations will —for all values of k > p — themselves
take on the value <pkk = 0. The autocorrélation structure in this situation
is illustrated below:

1,0
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132 WARREN t. YOUNG

(b) If, on 'the other hand, p = 0, in which case we can say that there -is
a moving-average process involved of order q, e. g. ARIMA (0, d, 1), the
autocorrélation structure is of the form pk ~ 0 for ail k > q, whereas the partial
autocorrélations die out according to a mixture of damped exponentials
and sine waves. This situation is illustrated in the figure below, which shows
the autocorrélation function generated:

1,0

0,0

-1.0

(c) In the case where p ^ 0 and q ^ 0, wt would be an ARIMA process
of order (/?, d, q). In such a situation, the autocorrélation structure follows
the différence équation

p

p&= E «Pip*-*

for ail lags k > q, that is, it dampens out by a combination of exponentials
and sine waves.

Practically, however, we don't know the true autocorrélation and partial
autocorrélation structure and must, therefore, estimate them on the basis
of the sample data available to us. Let us take, for example, a sample series wl9

w2, wm, •.. which is part of the global series wt. In this case, we can obtain
an estimate of pk according to the équation

i n

(wt-w) ,
n t=k+i l n f = i

where w is the mean of the sample.
The estimate of cp̂  is, then, <pkk, which is obtained by solving the following

set of équations
k

where j goes from 1 to K. We must, then, rely on the fact that the autocor-
rélations and partial autocorrélations of the sample are identical to those
of the global series. This will hold the larger the sample, and thus we require
a sample which is moderately large so as to confidently identify a spécifie
model [6].

We obtain estimâtes of the coefficients of équation (3) as a resuit of the mini-
mization of the sum of squares of the errors £ af by using a non-linear
régression technique. Following from this, standard errors of estimate and
confidence intervals for the parameters are derived, and their significance
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BOX-JÊNKINS APPROACH: PRINCIPLES AND APPLICATIONS 133

canbe tested accordingly. We require, however, starting estimâtes for the
parameters so as to initialize the itérative procedure involved in the non-
linear régression technique utilized. These initial estimâtes are obtained
on the basis of the autocorrélations generated at the identification stage [7],

There are a number of tests that can be performed so as to be able to ascer-
tain whether the model specified on the basis of the initial identification and
estimation procedures is that which most adequately represents the data.
As such, the simplest and best approach in this regard would be to estimate
a more gênerai model, i. e. one which encompasses more parameters than
that actually identified. Examination of the statistical significance of the addi-
tional parameters would then show whether it is necessary to include them
in the niodel itself. But, in any case, it is inadvisable to add both extra auto-
regressive and moving average parameters, since, if the model as originally
specified is that which best represents the data, there will be a high corrélation
between the estimâtes obtained through adding parameters, in addition
to their having high standard déviations, so that the estimation process would
not necessarily even converge [8].

Box and Jenkins suggest a number of tests on residuals generated by the
model. If we call them at, their autocorrélations rk (à), and suppose that
the true errors series { at } is actually „white noise'\ then we can say that rk (a)
has a zero mean and standard déviation approximately equal to (1/^/n).
These autocorrélations represent all déviations from typical white noise
behaviour in the residuals and can even suggest an alternative spécification
for the model itself. A gênerai-but not too powerful—test for the existence
of white noise in this case is a comparison of the values of Q and chi-square
values for (M-p-q) degrees of freedom, where

and M is a number greater than or equal to 20. In this test it is possible to
use the cumulative periodogram of the residuals to see whether there is regu-
larity in the différences between white noise and the error series itself [9],

Let us suppose that we have constructed an acceptable model for the
series Xx . . . Xn, but that we require forecasts of the future values Xn+m,
where m = 1, 2, 3, etc. In addition, it is not difficult to suppose that if we
are at time («), the optimal forecast—in terms of the minimum forecast
errors expected — of Xn+m is simply the conditional expected value at time (ri).
However, the conditional values of X„y Xn-U etc. are actually their known
values at (ri), whereas those for an, an_u etc. are the residuals generated by
the model itself, and those for an+1, an+2> etc. are equal to zero, while those
for Xn+U Xn+2> etc. are the forecasts made at (n). The forecast method, if
we are given a model of équation form (3) is, therefore, an itérative process,
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134 WARREN L. YOUNG

where we take values of m = 1, 2, 3, etc. and substitute (n+m) in place
of (t) in the équation [10].

Box and Jenkins also suggest a gênerai model which can represent seasonal
series in the following manner:

<pp (BY Os (B)s Vd Vs Xt = 0, (B)« 0S (B)s at,

i. e., an ARIMA model of order (p, d, q) (P, D, Q)s, where the period s is
equal to four in the case of quarterly data, and equal to twelve for monthly
data, and cp, = 1 -<Pi B-(p2 B2, . . . , <DS = 1—<pA M By ..., V* = (l-B)*,
Vs = (1— Bs)d respectively. Of course, there is no need to use the multipli-
cative model if the identification procedure suggests this. For example, we
may consider two alternative model spécifications for quarterly data, viz.

(a) u;i = (l

i.e. ARIMA (0. 1, l)(0, 1, l)s

and

(b) u ; i - ( l - B ) ( l - B 4 ) X f = ( l»0 1 B-0 4 B 4 -0 5 B 5 ) a f s

i.e. ARIMA (0, 1, l)(0, 1, 2)s.

Now, if 05 — — 0j 04, the spécifications are identical. If, however, the autocor-
rélation structure of wt suggests that such a relationship doesn't exist, then
it is préférable to utilize the latter formulation, i. e. (é), which is a more
gênerai one. Principles relating to fitting models and forecasting in the case
of seasonal time series are basically the same as those for non-seasonal
series [11].

H. APPLICATIONS

A. Short-term forecasting

In this section, we give an example of the Box-Jenkins technique as applied
to a spécifie problem in short-term forecasting, and compare the results
obtained to those generated by econometrie methods. The series we take
as an example is the number of hire-purchase contracts for new automobiles
in England and Wales from 1958-1969 (quarterly). Allard, in his study of
hire-purchase made while at the British Treasury, found that the principle
variables which explained movements in this series—which gave a gênerai
impression of the effects of government policy on the credit purchase of
consumer durables — were as follows: (a) personal disposable income, (b)
companies trading profits, (c) the rate of purchase tax, and (d) a composite
variable based upon the rate of interest on hire purchase contracts, the
maximum repayment period, and the minimum deposit rate [12],
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BOX-JENKINS APPROACH: PRINCIPLES AND APPLICATIONS 135

Below, we consider ex-ante, post-sample forecasts made by Allard's model
in comparison to those made by using the Box-Jenkins technique for the
same period. But first, let us look at the results of applying the Box-Jenkins
method to the series itself. The autocorrélations and partial autocorrélations
of the original series (Xt)> in addition to regularly differenced, seasonally
differenced, and a combination of these two types» i. e. (1 —B) Xt, (1 — B4) Xtf

and (l — B) (\—B4\Xï9 are given in the following tables, and illustrated
below:

TABLE I

Original series (Xt)

Lag-&

1
2
3
4
5
6 . . . . .
7
8 . . . . ,
9

10

rk

.67

.37

.46

.63

.38

.17

.31

.42

.21

.03

.67
- . 1 4

.51

.24
- . 4 0

.14

.15
- . 1 1
- . 0 6
- . 0 4

Lag-A;

11
12
13
14
15
16 . . . . .
17
18
19 . . . . .
20 . . , . .

rk

.16

.25

.08
- . 0 6

.05

.09
- . 0 7
- . 2 1
- . 1 6
- . 1 4

.04
- . 0 3

.00
- . 0 4
- . 0 4
- . 0 8
- . 0 5
- . 1 2
- . 1 4
- . 0 6

mean (w)
variance =

= 58.6;
499.9.

TABLE II

Regularly differenced series (l—B)Xt

hag-k

1
2
3
4
5
6
7
8
9

10

rk

- . 0 4
- . 6 5
- . 1 0

.67
- . 0 8
- . 5 7

.04

.57
- . 0 5
- . 5 2

®kk

- . 0 4
- . 6 6
- . 3 1

.34
- . 3 0
- . 2 2

.08
- . 0 3

.02
- . 0 3

Lag-k

1 1 . . . . .
12. . . . .
13
14
15
16
17. . . . .
18
19. . . . .
20

rk

.02

.43
- . 0 1
- . 4 1

.04

.34

.00
- . 3 2

.03

.25

®kk

- . 1 3
- . 0 9

.03
- . 0 9

.00
- . 0 6

.00

.04

.01
- . 0 3

mean (w) = 0.9;
variance = 318.1.
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136 WARREN L. YOUNG

TABLE III

Seasonally dijferenced series (l—B4)Xt

Lzg-k

1
2
3 . . . .
4 .
5
6
7
8
9

10

rk

65
.18

— .17
— 30
— 21
- . 0 4

.06
- . 0 2
— 12
- . 1 3

OAfe

.65
— .41
— .14
— .04

.10
- . 0 1
- . 0 5
- . 2 2

.04

.03

Lag-/:

11
12
13
14
15..
16
1 7 . ; . . .
18
19. . .
20

rk

- . 1 1
- . 0 8

.00

.05

.08

.08

.08

.08

.06
- . 0 2

- . 0 9
- . 1 1

.08
— .02

.07
- . 0 7

.08

.03

.03
- . 1 8

mean (w) = 3 . 3 ;
variance = 3 1 3 . 9

TABLE IV

Combinée dijferenced series (l-B) (1-5 4 ) Xt

Lag-A;

1
2
3
4
5
6
7

00*

9
10

rk

.15
- . 1 6
- . 3 1
- . 3 3
- . 0 8

.10

.27

.00
- . 1 2
- . 0 5

<*.

.15
- . 1 9
- . 2 6
- . 3 1
- . 1 4
- . 1 0

.06
- . 2 2
- . 1 6
- . 0 3

Lag-A:

11
12
13
14
15
16
17
18
19
20

- . 0 1
- . 0 6

.04

.02

.05
- . 0 2

.01

.03

.09

.00

- . 0 2
- . 2 1
- . 1 0
- . 1 8
- . 0 2
- . 1 6
- . 1 2
- . 1 0

.12
- . 0 9

mean (w) = —0.2 ;
variance = 224.5

We can draw a number of conclusions from the results as presented above :

(a) The autocorrélations of XtJ the original series, do not damp out, and
thus we must différence the series.

(b) The autocorrélations of the regularly differenced series, (l-B)Xt,
do not damp out for multiples of k = 4, meaning that some form of seasonal
differencing is, therefore, required.
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BOX-JENKINS APPROACH: PRINCIPLES AND APPLICATIONS 137

(c) The autocorrélations of the regular seasonally differenced series are
adequate for model building, since those of the combined differenced series
indicate «overfiltering". However, following the principle of "overfitting",
we also use this form [13].

1 0

0 0

0K K1O

- 1 0 L

0KK1Oi-

-101-

Original series

i I r .. i Lag - k

J i l I I ' Lag - k

Regularly différenced séries { 1 - E )

l . I
Lag - k

I I
Lag - k

Autocorrélation and partial autocorrélation functions.

Original Series (Xt).

In addition, the results suggest that a mixed autoregressive seasonal moving
average model of form ARIMA (2, O, 0) (0, 1, l)s can.readily be applied,
since, in table III, the autocorrélations die out by k = 2, and the "kink"
at k = 4 would be removed by the seasonal moving average filter. One model
we fit, therefore, is of the form

vol. 11, n° 2, mai 1977



138 WARREN L. YOUNG

The equation's parameters were estimated by a non-linear régression
technique, and resulted in the following estimâtes, with Standard errors of
estimate in parentheses: ^ = 0.92 (0.17), <p2 - -0.37 (0.19), and 0 = 0.21
(0.21). The error variance as estimated (158.0) represents a decrease of 68
percent in the variance of Xt. The autocorrélations of the residuals are shown
in table V below:

TABLE V

Autocorrélations of residuals rk (a)

Lag-/c

1
2 . . .
3
4. . .
5
6
7
8.
9

10

rk(ïï)

-0 .02
-0 .04
-0 .01
-0 .02
—0 11
-0 .04

0.18
-0 .03
-0 .13
-0 .04

Lag-A-

11
12
13
14
15
16
17
18
19 . .
20

rk{a)

-0 .01
—0.16

0.00
-0 .02

0 05
—0.07
-0.01

0.00
0.04

-0 .06

However, 4 of the original 46 data points are "lost" by using the différence
filter (l—B4), thus resulting in 42 "effective" observations in the sample.
Now, the Q statistic in our case has the following value:

20

0 = 42 E r\ (a) = 4.49.
k=i

The test statistic, when compared to the tabulated value of chi-square
for 17 degrees of freedom, proved to be less than this value at a significance
level of 99 percent. This confions that there doesn't exist any évidence of signi-
ficant departure from "white noise" i. e. randomness, as regards the error
series, which, in this case, is the residuals, as noted.

But, as indicated previously, the preliminary analysis also suggests a variant
model spécification. This'is of the form ARIMA (0, 1,1) (0,1, l)s, since
table IV's autocorrélations die out by k = 1, and the partials as a "sine wave",
so that the kink around k = 4 would be removed by a seasonal moving average
filter, given that we are using the combined regularly and seasonally diffe-
renced filter (1-B) (l-B*). In this case, the model is of the form:

R.A.I.R.O. Recherche opérationnelle/Opérations research



BOX-JENKINS APPROACH: PRINCIPLES AND APPLICATIONS 139

and the estimated parameters were as foliows : 9X = 0.01 (0.16), and
02 = 0.56 (0.15). In addition, the error variance was equal to 195.1, a good
deal more than that of the first alternative. Thus, the combination of higher

0 0

Seasonally d i f ferenced series ( l - B 4 )

Lag - k

Lag - k

K 1 O | - Combined differenced series ( I - B ) ( l - B 4 )

- 1 O L

0 K K 1 O r

Lag - k

Lag - k

Autocorrélation and partial autocorrélation functions.

Seasonally differenced series (1—B4) Xt.

variance and insignificance in parametric estimation for one of the two moving
average terms leads us to reject this spécification and choose the first alter-
native, i. e. ARIMA (2, 0, 0) (0, 1, l)s as préférable for forecasting purposes.
An inspection of the autocorrélations shown in table V above does not suggest
any alternative spécification, so we used ARIMA (2, 0, 0) (0, 1, 1), to generate
forecasts accordingly.

vol. 11, n° 2, mai 1977



140 WARREN L. YOUNG

The table below compares Allard's forecast results with those of the ARIMA
model as specified up to nine periods ahead, and gives the forecast errors
in percentage terms:

TABLE VI

Actual values and forecast results

Forecast from and
model type:
1969
II—Box-Jenkins . .
1969 I I -Al la rd . .
1970 IV-Allard. .
Actual Value

Forecast for: year an quarter, and error, in percent

1971 I

70.3
72.5
69.5
66.7

%

(+5.4)
(+8.7)
(+4.2)

1971 II

69.1
70.0
72.0
69.1

%

(0.0)
(+1-3)
(+4.2)

1971 III

79.9
102.0
106.0
93.6

%

(-13.7)
(+ 8.4)
( + 12.4)

As shown in the table above, the Box-Jenkins forecasts from base 1969 II
are better than Allard's from the same period in two out of three cases. Fur-
thermore, the 1970 IV Allard forecasts are not that much better than the 1969 II
based Box-Jenkins forecasts, while one of the 1969 II based ARIMA forecasts
is even better than the 1970 IV based Allard forecast for the same period.
We can conclude, therefore, that the Box-Jenkins forecasts are, on average,
better than Allard's own for the forecast periods he considers [14].

B. Extensions of the Box-Jenkins approach

Originally, Box and Jenkins proposed that their method could be extended
to encompass bivariate analysis by using a "transfer function-noise model"
approach. In this case, we suppose that the variable Yt is dependent on Xt,
so that Yt = a + P Xt+ut, where ut is the error term. We obtain the esti-
mâtes ût and pk (ût) for k = 1, 2, . . . under the condition that
ut = 1/(1 —cpjB) at9 where at is white noise. We then suppose that ut and ut

have approximately the same autocorrélation structure, so that we obtain,
by substitution

- a t 9

which, after transformation, yields

R.A.I.R.O. Recherche opérationnelle/Opérations research



BOX-JENKINS APPROACH: PRÏNCIPLES AND APPLICATIONS 141

The approach can be extended, therefore, to multivariate analysis, but the
estimation of parameters would, in this case, prove to be quite difficult. In any
event, Box and Jenkins have outlined a detailed strategy for building bivariate
transfer-function type models, while work is presently being done by Granger
and others to extend the Box-Jenkins approach to the multivariate case [15].

Recentiy, the Box-Jenkins approach has also been used to deal with the
effects of «'interventions" on a response variable given a dependent hoise
structure. In this regard, Box and Tiao have utilized such an approach —which
they call "intervention analysis"—in an attempt to answer questions of the
type: "given a known intervention, is there évidence that change in the series
of the kind expected actually occured, and, if so, what can be said of the nature
and magnitude of the change ?". Glass, who introduced the term "inter-
vention" has, for his part, applied, along with others, the Box-Jenkins approach
in order to analyze structural change and non-stationarity in time series.
What both groups of researchers have found is that the Box-Jenkins frame-
work is quite applicable to these types of problems. This results from the
fact that procedures such as the "t test" for estimating mean changes due to
an intervention are not applicable to time series, since these are often serially
correlated and exhibit non-stationarity, in addition to occassionally reflecting
seasonality. As such, parametric or non-parametric tests which depend on
normality, constant variance, and independence of the observations are of
no use in this case, while those relying on the independence or symmetry
of distribution are neither available nor random in nature. Box and Tiao
conclude, therefore, that the models based on ARIMA methodology which
they propose for use in intervention analysis «may be readily extended to
represent many situations of potential interest" [16].
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