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THE BOX-JENKINS APPROACH
TO TIME SERIES ANAIYSIS (*) (l)

O. D. ANDERSON (2)

Summary. — The Box-Jenkins approach to time series analysis and forecasting is currentty
a subject of major interest. At present, its successful application requires considérable skitt
from the practitioner. However, the potential gains of the method over other established, but
less sophisticated extrapolation procedures, make it imperative that all workers concerned
with time-series should have an appréciation of the approach.

This paper is designed for the numerate reader\ with some knowledge of statistics; and it
will be of greatest value to the analyst already wrestling with time series by other means.
To the generally interested reader, this account will be self-contained; but, for the specialist,
it will serve as a relatively simple introduction to this increasingly important methodology,
and the références cited will indicate how he can pursue the matter further,

1. INTRODUCTION TO TIME SERIES

A time series is a set of observations ordered in some dimension, usually
time. We will only consider discrete series with observations yt taken at
various (relatively précise) instants. These instants are chosen at equispaced
intervals; so, if we make n observations, we can consider them taken at
times t = 1, 2, . . . , n— just by suitably choosing the unit of time and the
starting point. For instance, according to an H.M.S.O. [13] publication,
the numbers of women unemployed in the United Kingdom on the first
of each month, from January 1967 to July 1972, are as given in the appendix
and shown in figure 1.1. (The data points are joined up by straight lines
which help the eye to follow the development through time, especially for
more volatile series histories.) There are 67 observations, so we say that
the series has length n = 67.

The Women Unemployed data is an example of a sampled series. The
H.M.S.O. publication has chosen to record the numbers on the first of
each month, but of course there are unemployed women at other times.
Alternatively, discrete time series can be obtained by accumulating a quantity
for a period of time. For instance, production figures are examples of
accumulated series. We do not speak of the production of say paraffin on
the last day of the month, but for the whole of that month. In économies,
these two types of series are usually referred to as «stock" and «flow",

(*) Reçu mai 1975.
(*) This paper was first présentée! at the University of Surrey Seminar in Economies,

25th February 1975.
(2) Statistician, Division of Statistics and Operational Research, Civil Service College,

London.
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4 O. D. ANDERSON

respectively. The various Index Numbers provide good examples of them.
Thus, the Wholesale Price Index> construeted by the Department of Industry,
gives a sampled time series; whilst the Index of Industrial Production,
prepared by the Central .Statistical Office, provides an accumulated series.

Some readers will have noticed that the Women Unemployed series does
not have a strictly constant sampling interval —months are not all of the

150-
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6 0 -
1 67

t —^
(months)

Figure 1.1

Women unemployed (1000's) in UK on lst of each month,
January 1967-July 1972.

same duration. For a sampled series» this does not usually matter very much;
but, for an accumulated one, it is more serious. Especially so when it is not
the calendar month that needs to be considered; but the effective working
month, which dépends on how many week-ends and public holidays it
contains. Adjustments are consequently often made to flow series, though
it is frequently difficult to draw the line-for instance» should strikes be
ïncluded, and what about a work-to-rule?

The basic time series property

Most statistical methodology is concerned with independent sets of
observations.. A lack of independence is usually considered highly undesir-
able, and one of the objects of good expérimentation is to eliminate dependence.
However, with time series analysis, we are concerned with data which
develops through time; and where, in gênerai, each observation dépends
on earlier observations. It is, in fact, this dependence which is of interest.
Contrast this with régression analysis, where a fundamental assumption
is that the observations are independent of each other.

Thus a time series behaves as if it possesses a "memory". Again, the
series to date to some extent détermines its future values; so it also contains
a certain degree of «foresight". Unlike many previous approaches to time
series analysis, the Box-Jenkins method uses this fundamental time series
property virtually to the full.

R.A.LR.0. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS 5

The purpose of time series analysis

Before we look at the mechanics of the subject, let us discuss why we wish
to analyse time series. There are three practical interrelated reasons for
doing so.

First, we might want to make inferences about the statistical structure
which gave rise to a particular series history. Should the series look like
figure 1.2, there are no prizes.

360-

r.m.s
volts

- 3 6 0 -
1 t —* 50

Figure 1.2

A.C. Single Phase Voltage across Household Mains, at intervals of .001 s.

Such a series is fully deterministic (apart from negligible dïsturbances)
and requires no further attention from the statistician. However, in écono-
mies, series are for ever fickle; and any patterns, or trends, will be buried
in irregularity. It is an object of time series analysis to obtain as full an
explanation as possible for the series, by building as satisfactory a model
as is possible. (Provided the situation merits the effort.)

Such a structural model may give an indication of the «physical" mechanism
which generated the series, and so increase our theoretical understanding
in the particular area.

However, even if this does not happen, the inferred structure, as repre-
sented by the model, can be used to forecast future values of the series—with,
hopefully, realistic stated degrees of uncertainty. For, other things being
equal, the same sort of dependence, observed in the past, can be expected
to continue into the future. This is why the mterdependence of the éléments
of a time series is of prime interest. Standing at the present, at the time n = now,
we study the past in order to get a glimpse, inevitably distorted, of the
future. This is the second object of time series analysis.

Having obtained a forecast, in a given situation, the possibility of alter-
ing some of the conditions présents itself. This, the third object of analysis,
is control—and, in Government, it is usually the prime purpose. For instance,
consider a balance of payments series. This is analysed and a model built.
There is little interest in the model per se, but forecasts made from it may

vol. 11, n° 1, février 1977



6 O. D. ANDERSON

be alarming. Then Government will try to avoid these future values by
appropriate action.

It is an unfortunate fact of life, that though it is relatively easy to provide
a plausible explanation of a series to date, it is much more difficult to fore-
cast effectively. ït is conjectured that, with thé type of time series Government
encounters, control is even more difficult. "Conjectured", because who
can teil whether the control ever had the desired effect? If no action is taken,
one can observe later whether the forecast was close or not; but, if control
is attempted and a poor result occurs, is this due to poor control or poor
forecasting? However as with all statistics, just because you can never
succeed, does not mean you should not try—usually one can do better than
merely guess.

At present there is a considérable gap between what government and
business analysts appear to be doing in time series, and some of the possi-
bilities now available. This, of course, is the familiar tale of how practice
trails behind theory, and no doubt will be remedied in the next few years.
Indeed there are indications that modern methods are being tried, but in
some areas the old may prove more practicable for a long time yet. How-
ever, in this paper, we are going to discuss the recent and powerful, but
not simply manipulated, tooi now available to the time series analyste the
Box-Jenkins approach.

2. SIMPLE BOX-JENKINS MODELS

The theory of Professors Box and Jenkins' approach to discrete time
series analysis, incorporating an itérative cycle of Identification, Estimation
and Vérification, has been fully discussed in their book [9]. Anderson [5]
gives a more concise account, including recent research. The approach
deals with what is termed the time domain, where an observation yt is related
to previous yt_y , j > 0. This is in contrast to complementary methods,
based on harmonie analysis, which treat the frequency domain. In this
section, we will give a brief description of the simplest Box-Jenkins models.

Time processes

A time process is a séquence of random variables { Yt }, which are not
generally independent, but serially correlated. We shall interest ourselves
in linear processes of the form

satisfying the Gaussian assumption, which is that { At } is a structureless
process of independent zero-mean normal random variables with constant
variance a\ , called a white noise process. Without loss of generality, we
can choose p and q sufficiently small so that <pp, Qq / 0.

R.A.LR.O. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS

Introducing the backshift operator B, with the property that

BZi = Zi_l

for any process { Zt } and any time i, (2.1) can be written

or, using an obvious notation,

(2.2)

When q = 0, (2.2) is termed a/>th order Auto-Regressive process, or AR (/>);
while if p = 0, it is a Moving Average process of order q, or MA(q). For
gênerai p and #, (2.2) is an ARMA {p, q) process, which is called proper
when it does not degenerate to either AR (p) or MA (q). Note, that when
the process is of form (2.2), say, we will use the notation

{ Y,}-ARMA (p, s).

Simple examples are the AR(1), MA(1) and ARMA (1,1) processes of
respective form

(2.3)

(2.4)
i (2.5)

which can be alternatively written as, respectively,

(l-<pE) Y,

The process (2.2) is stationary if <pp(Ç), a polynomial in the complex
variable Ç, has ail its zéros outside the unit circle. It is invertible if a simîlar
condition holds for Qq (Q. We will also allow zéros of Qq (Q to lie on the
unit circle, giving marginal non-invertibility.

For a stationary process, by définition q>p(l) / 0; so, taking expectations
in (2.1), gives

£[YJ=O

and, for ail integers k9 defining the autocovariance yk at lag k by Cov [ Yt, Yr_k],
we have

vol. 11, n° 1, février 1977



8 O. D. ANDERSON

In particular y0 = a£ . (Should E [ Yt~] = jxy # 0 then, instead of workïng
with { Yt }, we work with the mean-corrected process { Yt = Yt — \iY }.)

A gênerai process is fully described by

and a\ . Alternatively it can be represented by

(Yo> Y I , . . . , Y p + « ) .

Defining the autocorrélation at lag k by

Yo
precisely the same information as in *¥ is contained in

The complete set of autocorrélations pu p2, . . . is termed the autocorrélation
function, or a. c. f.

Associated with the a. c. f. is the partial autocorrélation function, the
p. a. c. f. This is a set nu n2, . . . defined by

where Pk is the kxk autocorrélation matrix, with gênerai r, sth ele-
ment = lf>|r_S| ; and P£ is Pk , with every r, kth element replaced by pr.
In simple language, each nk gives the conditional corrélation between Yt

and y,_fc, given the intervening Yt.u . . . , Yt_k+l; and each nk can be
interpreted as the <p* of that AR (k) model which comes closest to represent-
ing the process.

The forms for the a. c. f. and p. a. c. f., associated with AR, MA and
ARMA models, are summarised in table 2.1; while the actual fonctions,
for particular low-order processes, are shown in figure 2.1.

TABLE 2.1

Characteristics of a. cf. and p. a. cf. for linear processes

Process

ARQO
MAfe)
ARMA

a. c. f.

Damps out
Cuts off after lag q (*)
Damps out

p. a. c. f.

Cuts off after lag p
Damps out
Damps out

(*) Stronger results have been given by Anderson [2, 3].

R.A.I.R.O. Recherche opérationnelle/Opérations research
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Pk

-1

fi
Ol

20 O

(a) (1 - -8 B) Yt = At

Pk
t1!

20 0 k _ 20 O f T T ^

(b) Yt= (1+.8B)At

20

-1

| I ' ' " "20
k

(c)

4
v OUf 20

Pk
O

f k -

ïïk!
'OL

20 O 20

(d) Yt = (1-B + -6B2 )A t

Pk

-1

1...

fi
20 20

(e) (1--5B)Yt = (1 + -5B) At

Figure 2.1
Theoretical a. c. f. and p. a. c. f. for some low-order models.

Time Series

Time processes are important because their réalisations occur as sets of
ordered observations such as yu y29 . . * » y„ , a time series of length n. Provided
the process is ergodic, when the probabilistic structures of all its possible
réalisations are the same, the properties of such a series are expected to
mimic, to some extent, those of its parent process, though «sampling error"
will distort them. Thus one would expect the sample mean y and variance s*
not to be significantly different from zero and y0 respectively, given the
model (2.1).

The estimated a. c. f. and p. a. c. f. are sets { rk} and {ƒ>*}» where

Co
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= 0,

and pk is obtained from { rk } as nk was from { pfc }.
Though it will usually be quite easy to recognise the similarity between

the sampled and theoretical functions when the model is known, it will be
more difficult to deduce the process from the estimated functions due to
the sampling errors and the fact that the estimated sets are themselves auto-
correlated. Thus, for instance, the rules that, for an ARMA (p, q), the a. c. f.
mimics that-of an AR(p) process after q~~p lags, while the p. a. c. f. resembles
that of an MA(^) after p — q lags, are of little practical value in process
modelling.

For an MA (q) process, from Bartlett [8],

Var [ r , ] ^

while for an AR(/>) process, Quenouille [21] gave

VarlXI^1.
n

When n is fairly large, the distributions of rk , k > q, for an MA {q), and
Pk > k > P> f° r an AR (/?), are roughly normal, with zero mean. These results
are useful for identifying processes.

However, significant rk and pk values have to be considered with care.
The "significance" refers to an individual estimate, whereas one wishes to
interpret the set of non-independent estimâtes. Thus, amongst say ru . . . , r20>
one does not «expect" to have just one value significant at the 5 % level.
However in 20 such sets, one would expect to have many more than one
such value. In fact, due to the sériai dependence of the estimâtes, when one
chance significant value occurs, there is a tendency towards having several
significant values. Plotting the functions for known simulations seems to
be the best way of gaining expérience of how the sample a. c. f. and p. a. c. f.
should be interpreted.

Finally we remark, that with our interest in forecasting in mind, the gênerai
model (2.2) can be written in random shock form

(2.7)

Hère v|/ (Ç) is a polynomial in Ç, in gênerai of infinité degree, defined by

R.A.LR.O. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS 11

(2.7) is then of course an MA (oo) représentation. Wold [25] has shown
that every stationary process, from which any deterministic part has been
removed, can be represented in this way.

3. THE BOX-JENKINS CYCLE

Given a time series history yu y2, . . . , ƒ „ , the problem is to make an
inference about a process { Yt }, which may be considered to have given
rise to the réalisation. Note that usually it is the particular series at hand
which is of interest, and so { Yt } does not necessarily represent the gênerai
ensemble of possible series, but just that subensemble which is ergodic with
the given series.

The first step, as with any applied statistical problem, is to get the feel
of the data. Ideally the series is plotted against time, and visual inspection
will indicate whether it is plausible to assume that the process is stationary.
The writer àlso likes to construct a histogram of the yt, to see whether a
gaussian assumption is reasonable, and to further test this assumption by
obtaining the réalisation skewness and kurtosis. (Cf. Webb [23] and
Lomnicki [19].) In this section, we will assume that the hypothesis of a
stationary gaussian process is acceptable; and, that the plot does not indicate
that { Yt } is seasonal.

In such a situation, one might expect that an adequate représentation
will be

{y,}~ARMA(p,g),

where, from expérience, p + q is small. This last point is reasonable since,
in practice, series are rarely sufficiently long to make any high order process
a substantially superior fit to a carefully selected low order alternative. And,
apart from the importance of avoiding a spuriously good fit by «data-
mining", there are notably diminishing returns for effort in fitting more
complex models.

Identification

In order to identify tentative initial choices for p and qy the a. c. f. and
p. a. c. f. are calculated, and preferably plotted, for the first K lags, where K
is, say, min (20, n/4). A suitable program has been given by Anderson [4].
Two questions are then asked : —

(a) Is pk ~ N(0, l/n) for k > pi If so, an AR O) is indicated.

(b) Is rk ~ N (0, l/w ( 1 + 2 V r f ) ) for k > ql If so, an MA (q) is suggested.

If neither (a) nor (b) occurs, then neither the a. c. f. nor the p. a. c. f.
««eut off", and an ARMA model is inferred.

vol. 11, n° 1, février 1977



12 O. D. ANDERSON

Box and Jenkins [9] claim that, as a rule, one can take p+q g 2. Then,
generally, questions (a) and (b) should indicate whether the process should
be tentatively identified as AR (1), AR (2), MA (1) or MA (2); while if none
of these are indicated, by default an ARMA (1, 1) would be tried.

To give the reader some idea of how well this strategy might do, four
simulated ARMA (p9 q) series of length 200, with p+q ^ 2, are analysed.
(At the time of such analyses the generating processes should be unknown,
but can be checked afterwards.) Even so the situation is better than can
be expected with «real" series, since the processes are chosen of exactly
the right form, whereas in practice they will only more or less approximate
to this. Also a history length of 200 is much longer than is normally available.
The results from the identification program are shown in table 3.1.

TABLE 3.1

Results from Identification program for 4 simulated series

k

1
2
3
4
5

y

A

rk

-.800
.670

-.518
.390

-.310

-.800
.085
.112

-.046
- .061

.03

3.34

B

rk

.449
-.056
-.023

.028

.013

pk

.449
-.324

.218
-.118

.077

- .34

1.34

C

rk

-.719
.337

-.083
.075

-.088

Pk

-.719
-.375
-.048

.239

.173

- .05

2.32

D

rk

.427

.475

.169

.253

.126

Pk

.427

.358
-.160

.106

.035

.09

1.15

For all four series 2/\Jn = .1414.

Series A ; { rk } disqualifies the possibility of MA, {pk } very strongly
suggests AR (1).

Series B ; { rk } suggests MA(1), {pk } seems compatible with this.
Series C : {rk} suggests MA (2), {pk} compatible with this.
Series D ; { rk } disqualifies MA, {pk} suggests AR (2).

In fact all four identifications are correct, but we have not done quite so
well as this suggests. For series D, p3 is just significant. So, if we had not
known that p + q ^ 2, an AR (3) would have been identified. This model
will be tried as an «overfit" later in the section.

R.A.I.R.O. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS 13

For shorter réalisations, the identification becomes much more difficult.
Figure 3.1 shows the sampled functions for a simulated series of length 80
from the ARMA (1,1) model

This series is still relatively long, compared with lengths which usually
occur in practice; but, comparing figures 3.1 and 2.1 (e), we see that there
is a considérable différence between the estimated and theoretical functions.

Illl

P I
ki

i
• I

20' i l ' ' 2 0 , 1 k _

Figure 3.1
Estimated a. c. f. and p. a. c. f.

for simulation of length 80 from (1 — .5 B) Yt = (1 +.5 B) At.

As a gênerai rule, for a Box-Jenkins analysis, the series length should
be at least 40 (rather longer for the seasonal models of the next section).
Otherwise, due to sampling error, the estimated functions will not contain
sufficient information for a meaningful identification. Put another way, if
the series is too short, any subtle patterns observed in it are as likely as not
to be purely fortuitous.

Estimation

Once a model has been tentatively identifiée), its parameters have to be
efnciently estimated, and the resulting fit assessed, mainly by an analysis
of residuals, to see whether it can be accepted as a plausible explanation of
the series. If the model is found to be inadequate, then this assessment should
indicate promising modifications to the identification, and the cycle is
repeated; and so on until the analyst is satisfied.

The efficient fitting can be left to a suitable computer package —for
instance I.C.L. [14]. First, however, one should test that

= 0 (3.1)

is plausible. For, otherwise, one should work with the series

vol. 11, n° 1, février 1977



14 O. D. ANDERSON

The test is to compare y9 in the usuai way, with its Standard error, assum-
ing (3.1) is true. For p + q ^ 2, the standard errors can be obtained from
table 3.2.

TABLE 3.2

Approximate Var [y ] for ARMA (/?, q) processes, p + q ^ 2

\ q

P X

0

i

2

0

1

i + n
l - r i

1+r! l - 2 r ^ + r 2

i - n i - r 2

1

l+2ri

i _i_ 1

*1 - r 2

All multipliée

2

1 +2rj + 2r2

i by co/n.

Of course the cases with p + q < 2 are easily deduced from those with
p + q = 2. Thus for MA (1), p2 = 0, and the MA (2) and ARMA (1, 1)
results both reduce to 1+2 ru on putting r2 = 0. Similarly, putting r2 = r\
in the AR (2) and ARMA (1, 1) results gives that for AR (1). Putting rx = 0
reduces those of MA (1) and AR (1) to that of ARMA (0, 0), white noise.

Depending on the computer program, either rough parameter estimâtes C1)
or null values are needed as initial values, from which the efficient estimâtes
are obtained by itération. A non-linear least squares procedure is used to
obtain the vector of parameter estimâtes

which minimises the shock sum of squares

where the

are the estimated shocks given the model and the series.

( l) For instance, for an AR (1) process, it is easy to show that pa = (p. So a sensible
initial estimate for (p is given by <p0 = fi.

R.AJ.R.O. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS 15

Denoting the { at } which minimise S by { at }, the efficient shock estimâtes,
we have

yt = af + ©1 j ; r_1+.. . ,

where (l-^B-...) = 0"1 (B) <p (B), and

Subtractjng these two équations gives

so the { at } are in fact the residuals after fitting.
If it is possible, S contours should be displayed, since these often provide

useful visual information as to how perhaps the fit should be modified.
In fact, a preliminary plot of the S surface can indicate any peculiarities
in the estimation situation, and for instance prevent the estimation program
converging on a minor dip in the surface. For models with p + q ^ 2, the
plotting is straightforward, but for higher order processes the technique
is much less convenient.

For series A to D, table 3.3 gives the estimâtes.

TABLE 3.3

Estimâtes for series A to D

Series

A

B

C

D

Parameter Estimâtes

£ =- .805

d = .845

0! =-1.010

02 = .635

<?i = .285

% = .360

S.E's of estimâtes

.042

.038

.053

.054

.067

.067

1.091

.833

.864

.805

The standard errors of the estimated parameters are needed to test the
significance of these estimâtes. For low order models, the S.E.'s can be
obtained from table 3.4, substituting estimâtes for the parameters in thé
expressions.

vol. 11, n° 1, février 1977



1 6 O. D. ANDERSOW

TABLE 3.4

Approximate Variances for parameter estimators of low order models

AR(1) Var[$]*iZ?!,
n

AR (2)

MA(1)

n
i-e2

n
I_Û2

MA (2)

ARMA(1, 1) Var[9] ~(_L_^

Var[0]^ (—

Vérification

The final portion of the Box-Jenkins cycle is to subject the identified and
estimated model to "diagnostic checks" of its adequacy. Such checks should
be designed to test for any suspected departures from the fit, and also to
show up any other serious discrepancies.

If we suspect that a more elaborate model might be necessary, one with
extra parameters can be «overfitted", and tested to see if it is indeed superior.

As indicated earlier in the section, the p. a. c. f. for series D suggests an
AR (3) overfit should be tried. The estimâtes for this are

q>! = .348, S.E. = ,072,
$ 2 « .405, S.E. - .070,
$3 = - .168, S.E. = .071, a2

A = .803.

Comparing these with table 3.3, a\ is not much smaller, nor are the para-
meters cpj and <p2 significantly different from the corresponding estimâtes
for the AR (2) fit. However, cp3 is significantly different from zero, as was
suspected at the identification stage, so the AR (3) overfit is justified. An
incorrect conclusion, as we know, but supported by the évidence.

Note that one should never increase the orders of both the AR and MA
operators simultaneously, since this can easily lead to parameter redundancy.
Thus, for instance, if we tried to fit an ARMA'(1, 1), as an overfit to a truly

R.A.I.R.O. Recherche opérationnelle/Opérations research



THE BOX-JENKINS APPROACH TO TIME SERIES ANALYSIS 17

white noise model, we would run into extreme parameter instability, and
the estimation program might well fail to converge. This is because a white
noise process

Yt = At

can be written as

for any choice of cp and 9 = — cp.
If we have to rely on the results themselves pointing to any model inade-

quacy, an analysis of the residuals is, as usual, helpful. Suppose an
ARMA (p,q) model was identified when an ARMA (/?*, ^*) should have
been. Then the residuals ought to follow a réalisation of

qy {B) dq (B) At = <pp (B) %* (B) C„ (3.1)

where { At } is not a white noise process, but { Ct } is. Thus we would
expect the a. c. f. and p. a. c. f. of the residual series to mimic those for
an appropriate ARMA (p* + q, p + q*) model. However the fitted ARMA (p, q)
is trying to approximate to the true ARMA (/?*, q*), and so there will in
gênerai be some rough cancellation in (3.1) yielding a more parsimonious
fit to the actual residuals, say

So, if a residual series shows évidence of not being a white noise réalisation,
an ARMA (p, q) model can be identified and fitted to it, and then combined
with the original ARMA (p, q), to give ARMA (p+p9 q + q). A rather better
approach is to first identify p and q and then overfit an ARMA (p+p, # + §)•
It is reasonable to suppose that this single estimation will be more efficient
than the product of two sequentially staged estimations. Of course, theore-
tically p and q must be replaced by p*+q and p + q*, but then the resulting
ARMA (ƒ>+/>* + #, q+p + q*) has a common factor cpp (B) Qq (B) in both
the AR and MA parts, and so on cancellation the ARMA (/;*, q*) is retrieved.

For moderately long séries and k not too small, the S.E.'s for the auto-
corrélations and partial autocorrélations of the residual series, rk (a) and
pk (a), are obtained in the usual way. But for small k, Box and Pierce [10]
show that this can no longer be done. They demonstrate that, under the
assumption that a model of the correct form has been fitted, the early rk (a)
can have variances much lower than the white noise value l/«. This extra
sensitivity can show up otherwise unnoticed rk (a) as significant, and thus
indicate a sensible overfit.

For the AR (1) fit to series A,

^ ( 5 ) = .072, r2(a)= .111,

r a ( a ) = - .009, r4(a) to r20(a) < .135
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in magnitude. The Box-Pierce theory gives

S.E. [rt (a)] « . 057 < S.E. [r2 (2)] < S.E. [r3 (a )],

S.E. [r4(3)] .a .068 < S.E. [^(S)], k > 4.

Thus none of the observed rfc (â) are more than twice their standard errors
away from zero, and the AR(1) fit seems satisfactory, no overfit being
called for.

An easy, but low powered check is the Portmanteau lack of fit test, again
due to Box and Pierce [10]. This can gi\e little support to the model, should
it prove not significant, but is simple to include in the estimation program.
The statistic

is computed, where K is sufficiently large. R evidently contains information
on the first K of the pk (o), tafcen as a whole, and when the fitted model is
appropriate

A significant R indicates model inadequacy. For convenience, K can be
taken to satisfy

when the model identified is ARMA (p, q), and then only %\0 points will
be needed.

For instance, consider incorrectly identifying series C as AR (2). When
fitted, this gives the very highly significant R value of 47.12, and so would
be rejected. The fit for the correct MA (2) model has R — 20.98, which
is not significant, even at the 40 % ievel.

Finally we consider the Cumulative Periodogram check on the residuals.
Define

2Hr) = -{(t ZiCosln-i)2+(£ aiSin2n-A2}
n l\i-=i n J V'=i » / J

for r = 1, . . . , [(n—2)/2], where [ ] dénotes the «integer part of". Then
we plot C(j) against j/n, where
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If the residual series comes from a white noise process, the plot will
be scattered randomly about the join of (0,0) to (.5,1). Inadequacies in the
fit show up as systematic déviations from this line, and the significance of
such déviations is assessed by the Kolmogorov-Smirnov test, (for instance,
Siegel [22]).

Usually the results are presented by superimposing parallel dotted lines
above and below the white noise join. These are so positioned that, if the
plot crosses either, the results are significant at the appropriate level. Causes
of significant values will be both model inadequacy and fitting error, (and
of course chance). However, the test is very insensitive and rarely spots
inadequacies which the other tests have missed if the identification and

Figure 3.2

Cumulative Periodogram for residuals, after fitting AR (2) to series C;
with 95 % confidence lines, for white noise process of same length, dotted in.

estimation have been sensibly carried out. In figure 3.2, the incorrect, and
already rejected, AR (2) fit to series C shows up as only just significant.
Apart from when the seasonality of a series has been blatantly overlooked,
the test usually fails to spot the most evidently incorrect models, and con-
sequently it seems doubtful whether it is really worth applying. However,
visual comparison of plots for various competing fits can be useful.

Should a fit stand up to diagnostic checks it is not, of course, proved
correct, but just shown to be plausible, and is adequate only in this sense.
However, goodness of fit is not the only criterion when analysing a time
series. Often the fitted model will be required to generate forecasts, and
best fits do not necessarily give the best prédictions. The closeness of fit
dépends very much on the peculiarities of the series at hand, whilst future
values will depend more on the actual generating process. A perfect fit can
always be obtained by choosing a high enough order model, but this is a
pointless exercise for a statistical series.
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4. INTEGRATED AND SEASONAL MODELS

Many observed non-stationary time series exhibit a certain homogeneity
and can be accounted for by a simple modification of the ARMA model,
the Autoregressive Integrated Moving Average model. This ARIMA (p, d, q)
is written

where O(i?), the generalised autoregressive operator, is a polynomial of
degree p + d, with exactly d zéros equal to unity and all the others outside
the unit circle. So

®(B) = <pp(B)(l-B)d = <pp(B)Vd,

where cpp (B) is a stationary autoregressive operator of order p, and the
operator V efïects a differencing.

If we replace Vd Yt by Wt, the ARIMA (/?, d, q) process { Yt} is reduced
to an ARMA(^g) process { Wt }. Should a réalisation show évidence
that E[Wt~\ ^ 0, then the series { wt } is replaced by { zt = wt-ïv }. Thus
such a non-stationary series can, after the appropriate degree of differencing d,
be treated by the methods of the previous section. Having obtained the { wt }
fit, the corresponding { yt } fit can be obtained by the opération inverse to
the differencing Vd, that is by summing or integrating the stationary { wt }
fit d times. Since this is a linear transformation, the optimal properties of
the fit are retained.

As an example, consider a series which appears to be stationary, except
that there are superimposed randomly occurring shifts in its level. Evidently
we require a model whose behaviour is not infiuenced by the local level of
the process, such that given any constant C

This implies O (B) C = 0 or equivalently that O (1) = 0, and so O (B) has
a factor (1 — B). If it has only one such factor, differencing once will result
in a stationary series.

Should there also occur random shifts of slope, the model needs to have
<t>(i?) with a factor (l—B)2, and differencing twice is necessary to produce
stationarity. And so on, should stochastic trends of higher order be present -
though, in practice, it is seldom found necessary to différence more than
twice. In gênerai, then, we have d ^ 2; and, for non-seasonal series, p + q g 2.
The procedure for such homogeneous non-stationarity is to first recognise
it, by visual inspection of the plotted series, and then remove it by the
necessary degree of differencing. Alternatively, the fact that for a non-
stationary process the a. c. f. follows a gentle linear décline, whilst for a
stationary one the décline is rapid, allows d to be decided by inspection
of the sampled a. c. f.'s for {yt}, {Vyt} and {V2j>, }.
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Differencing can also be used to remove deterministic trends, though it
rapidly builds up the noise variance, and so should not be overdone.

Consider the I.C.I. closing stock price series, shown in figure 4.1, which
exhibits a varying level. lts first two differenced series are shown in figure 4.2;
(a) looks stationary, whilst (b) appears overdifferenced, the variance evidently
being greater. The corresponding a. c. f.'s and p. a. c. f.'s are shown in
figure 4.3 and support this conclusion.

310 —

260-
1 t — 107

Figure 4.1

I.C.I. closing stock prices (ncw pcncc), 25 August 1972-19 January 1973 (Financial Times).

25

(a) Vy, ^f-J^V^V'A^^ /U'VVvYVWM/ lAV

-25 1 106

2 5 "

" ^ 1 105

Figure 4.2

First two differenced series for I.C.I. closing stock price data.

Figure 4.3 (a) suggests the tentative identification of

V Y r - white noise. (4.1)

This is on the basis of the low order rk and pk, but we note that inserting
the resulting 2 S.E. lines gives r7 approaching significance and />7,/?i4 Just
significant, (which in fact, as we will see, suggests a seasonal component
of period 7). Of course, for model (4.1), there is nothing to estimate, but
the residuals can still be used to check the model's adequacy, and simple
overfits can be tried. However doing this does not suggest anything préfér-
able, so the white noise model will be retained for the present.
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(a)

( b )

A.c. f

.1 1 i
I I

2 S.E lines
for white noise
of same length.

P. a . c . f

Figure 4.3
a. c. f.'s and p. a. c. f.'s for series of figure 4.2.

Figure 4.4 gives the daily Ben Nevis températures for a period in 1884;
it gives the first differenced series and also the corresponding a.c. f.'s and
p. a. c. f.'s. Looking at the températures plot, there appears to be a diagonal
trend, which suggests differencing. The differenced series appears stationary.
(Of course the trend is only the first half of the annual cycle, so for purposes
of extrapolation a differenced model will be much more sensible than a
straight line régression plus noise.) Again, for the températures, { rk } and
{Pk} suggest differencing; whilst the plotted functions for the differenced
series suggest perhaps an ARIMA (0, 1, 2) model.

The differenced series was efficiently fitted and this gave

Vyt « ( 1 - . 2 3 8 5 - .305B2)atr o2
A = 17.91.

[.068] [.069]

where the numbers in brackets are the S.E.'s associated with the parameters
directly above them. There is some trouble with the residuals initially, five
of the first eleven being significant - but this can be attributed to the
problem of «starting up". Apart from these, only four of the next 188 are
significant. Only one of the residual autocorrélations is significant, and this
only just, whilst the portmanteau %2 is very low. However the residual
autocorrélations do present a wavelike pattern, though this is quite a common
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^chance" phenomenon (and the cumulative periodogram for the residuals,
which is not significant, does not suggest any missed periodicities). The fit
would thus appear not too unreasonable.

20

25-

o1 IJ-

-1

199

_f20 IJ: ' j 20

-1!

Figure 4.4
Ben Nevis noon températures, February 1 st-August I8Ü1 1884,

with first differenced series and corresponding a. c. f.'s and p. a. c. f.'s.

Seasonal Models

We now extend our ideas to ïnclude the analyses of series with seasonal
components. Figure 1.1 showed the Women Unemployed data, which
display a pronounced periodic pattern as well as a changing trend. Here
the seasonal period T is 12, the basic time interval being one month.

For modelling such a series, we introducé the (stationary) seasonal auto-
regressive operator of order P,

= l - O i BT- . . . -Q>PBTP
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and the (invertible) seasonal moving average operator of order Q

eQ(BT) = 1 + 0!B r+ . . . +BQBTQ

and the seasonal différence operator

V r 3 l - f l T .
A model of form

will be called a SARIMA model of order (P, D, Q)T. It has its theoretical
a. c. f. and p. a. c. f. identical to those of the corresponding ARIMA model,
obtained by replacing T by 1, except that the values will occur at intervals
of T instead of consecutively. However note that, for the SARIMA, the
unit interval between observations is not the same as the structural interval T,
though of course every observation will help to fit the model. Because of
the function sprawl, longer estimated functions are required; subject to
not going beyond about N/4, where N = n — d— TD.

A genera! Box-Jenkins model can be written as

q>, (B) ®P (BT) Vd V? Yt = % (B) QQ (BT) At

which is the multiplicative (p, d, q) x (P, D, Q)T model
Such a model is useful in explaining many series with a marked periodicity.

Thus, for the Women Unemployed data, one would expect autocorrélation
between neighbouring months in the same year, and between the same
months in adjacent years. Both the monthly and annual intervals are important.
The idea can be extended to combine several distinct periodicities, and
modified to give non-multiplicative models. Further généralisations are
possible. (Certain other non-stationary series can be reduced to stationarity
by an appropriate non-linear transformation. Thus, if, as with many economie
series, the variance appears to increase or decrease in step with the local
level; then a logarithmic transformation, to stabilise the variance, might
be tried. But beware of the basic fact that, when transformed back, the model
will no longer be optimal.)

The cycle of Identification, Estimation and Vérification is unaltered in
principle, though now the seasonal period must first be identified and then
the degree of seasonal differencing, as well as that of unit differencing,
decided on. The problem of identifying p, P, q and Q is usually extremely
diffieult (2) for the non-expert, and even the skilled analyst generally has
to repeat the cycle several times, before a satisfactory fit obtains (3).

(2) The functions for, say, the multiplicative model will reflect the characteristics of
both the ARIMA and SARIMA components, but these will also interact to give extra
terms. The sampling errors considerably confuse the already complicated theoretical results.

(3) If available, on line facilities greatly spead up the modelling.
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The autocorrélations and partial autocorrélations for a «suitable" trans-
formation of the Women Unemployed series are shown in figure 4.5, and
the final Box-Jenkins fit is

the R value having then a probability of .93 of being exceeded.

11

•il

! k

Figure 4.5

a. c. f. and p. a. c. f. for transformation of Women unemployed series.

For the I.C.I. data we get the model

(l+.186J3)Vj/, = (1+.253 5 7 K

with a chance .74 of R being exceeded. The seasonal period of 7 is hard
to explain, as the stock exchange has a five day week.

5. MODEL INTERPRETATION

In practice, it is often insufficient to just model a series, but further
necessary to relate the model to theory. For many workers will only accept
a fit when they can see some theoretical explanation of how the model cornes
about. Whereas pure AR or MA models can have simple interprétations,
proper ARMA models are more difficult to explain. Ho wever, in a fascinat-
ing paper, Granger [17] has shown how such more complex mixed models
can arise, in a variety of ways, from basically pure AR or MA situations.
This interprétation complètes the Box-Jenkins analysis.

First of all, the sum of a number of independent simple processes, including
at least one which is not pure MA, gives a proper mixed process. This dépends
on a resuit, discussed in Anderson [6], which we will call Granger's Lemma.
This states that the sum of two independent MA processes, of orders qx

and q29 is also MA and of order max [<ql9 #2]-
For instance, suppose we have an AR (1) process

Ct (5.1)
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buried in independent white noise

Yt=Dt. (5.2)

(The process { Yt } might represent observation error.) Then what is the
observed process { Zt = Xt + Yt }?

Evidently

and the right of this is MA(O) + MA(1), which, by Granger's lemma can
be written in the form (\+§B)Av Thus

Z, ~ARMA(1, 1).

Conversely, it can be shown that a process

can be explained as arising from the sum of (5.1) and (5.2), provided certain
realisability conditions hold, namely

6cp<0
and

A second situation, where a pure process can give rise to an observed
mixed process, arises when an incorrect choice of sampling interval is made.
If a series is observed too frequently, evidently redundant data amasses,
whereas if it is recorded too rarely, high-frequency detail is lost. But, look
more closely at, say, the AR (2) model

(l_<xfl)(l-pB)Zr = 4 (5.3)

when it is sampled at twice its structural interval. Then we would observe
the process

1 / 2 p A 1 / 2 ) Z f = ^ , (5.4)

where A = B2 is the backshift operator for the sampled process. Then,
multiplying (5.4) through by (1+a A1/2) (1 + p A1/2) gives

( l - a 2 A ) ( l - p 2 A ) Z f = ^ + (a+P)Xr_1+ocM.-2, (5.5)

where the R.H.S. is easily shown to have an MA (1) représentation, in
terms of a sampling interval of two. Thus (5.5) is ARMA (2,1), and alter-
nate terms of an AR (2) process give rise to such a mixed process. (See also
Anderson [7].)
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As a further example, we give one of a number of results from some
interesting work by Amemiya and Wu [1], If an AR(p) process is observed
as an accumulated series, observations being made every m structural intervals»
then for m > p, the accumulated series follows an ARMA (/?, /?). (Also
see Brewer [11].)

Finally, suppose that a pair of processes { Xt }, { Yt } are generated by
the bivariate autoregressive scheme

B)Yt + A t 9 \

j
where a (B), p (B)9 y (B), 5 (B) are finite polynomials in B of order a, b, c,
d respectively, with a0 = y0 = 1, Po = §o = 0; and { At }, { Ct } are inde-
pendent white noise processes. Then, using Granger's lemma, it is straight-
forward to show that

{Xt} - ARMA(max[ac, bd\ max[c, t]),

{ Yt) ~ ARMA(max[ac, bd], max[a, d~\)

and so the simple "feed back" situation of (5.6) again gives rise to ARMA
models.

6. FORECASTBSfG

Now consider the problem of predicting a future value yh+n, (h = hence
from n = now), of a stationary zero-mean series, given the réalisation to
date { yu ..., yn } but no other data. Any forecast of yh+n will evidently
be some function of yl9 . . . , yn , and we will restrict ourselves to just linear
fonctions, that is to the class of linear forecasts. We will also assume that the
best forecast is the one which has least e. m. s. e., (expected mean square error).

The process has a unique invertible, or marginally non-invertible,
MA représentation

Yt= f vM,-,- = x|/CBM,, At~IN(0,o2
A)9 (6.1)

J=o
oo

where \|/0 = 1, and the zéros of £ \|̂ - Ç-J ail lie on or outside the unit circle.
>=o

The optimal forecast is then, as shown in Whittle [24],

Hfn = nï\h+jan-P (6.2)

where the { ât } are the residuals after fitting the model, assumed to be
correctly identified and exactly estimated. Then hfn has variance given by

kV±<üjitf (6.3)
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which is independent of n, and increases monotonically with forecast lead.
S o the further ahead one forecasts, the worse one expects to do, on average —
which is intuitively reasonable.

In practice, the model might well be misidentified or misestimated, and
so the forecasts are likely to have an error variance larger than (6.3), and
to be biased. (Granger [18] even suggests inspection of the forecast errors,
when the future values eventually corne available, as a useful diagnostic
check, since systematic departures from the theoretical error pattern can
indicate a misspecification and point to a suitable model modification.)
More serious is the fact that, even if the fitted model does closely explain
the series history, it is very likely to change in the future. So the expectation
of realistic forecasts, for anything but the short-run, is rather optimistic.

Of course, the optimal forecast function has been derived on the assumption
that the aim of minimising forecast e, m. s. e. is valid. But this will only
be so when the cost function associated with making forecast errors is
quadratic. In practice, this is seldom realistic, as frequently the function
will evidently not even be symmetrie about zero error, under and over-
forecasting by the same amounts not being equally «expensive". However,
Granger [16] has shown that even when the assumption is not valid, a fairly
efficient procedure is to forecast as if it were; but, in the case of an unsym-
metrical cost function, to appropriately bias the resulting prédictions, so
that the errors on the more expensive side will be reduced.
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APPENDIX

Women unemployed (1000's) in UK on lst of each month,
January 1967-July 1972.

1967
1968
1969
1970
1971
1972

Jan

96.4
97.3
84.5
80.5
92.0

127.5

Feb

104.1
97.8
84.5
83.0
98.8

128.4

Mar

102.0
94.5
82.3
82.7

104.9
129.5

Apr

100.3
90.2
78.3
81.5

104.8
131.9

May

96.4
85.6
74.6
78.3
99.2

120.1

June

87.3
77.5
68.7
71.6
91.7

109.1

July

85.1
73.4
71.9
75.4

100.6
118.3

Aug

87.9
76.6
74.1
78.6

106.1

Sept

89.8
76.8
74.9
79.8

110.3

Oct

96.3
85.3
82.4
84.8

117.0

Nov

99.5
85.9
83.3
87.5

123.1

Dec

95.6
82.9
80.1
86.5

122.9
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